首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria from Pisum sativum seedlings purified free of peroxisomal and chlorophyll contamination were examined for acetyl-coenzyme A (CoA) hydrolase activity. Acetyl-CoA hydrolase activity was latent when assayed in isotonic media. The majority of the enzyme activity was found in the soluble matrix of the mitochondria. The products, acetate and CoA, were quantified by two independent methods and verified that the observed activity was an acetyl-CoA hydrolase. The pea mitochondrial acetyl-CoA hydrolase showed a Km for acetyl-CoA of 74 micromolar and a Vmax of 6.1 nanomoles per minute per milligram protein. CoA was a linear competitive inhibitor of the enzyme with a Kis of 16 micromolar. The sensitivity of the enzyme to changes in mole fraction of acetyl-CoA suggested that the changes in the intramitochondrial acetyl-CoA/CoA ratio may be an effective mechanism of control. The widespread distribution of mitochondrial acetyl-CoA hydrolase activity among different plant species indicated that this may be a general mechanism in plants for synthesizing acetate.  相似文献   

2.
The anaerobic hyperthermophilic archaea Desulfurococcus amylolyticus, Hyperthermus butylicus, Thermococcus celer, Pyrococcus woesei, the hyperthermophilic bacteria Thermotoga maritima and Clostridium thermohydrosulfuricum and the aerobic mesophilic archaeon Halobacterium saccharovorum were grown either on complex media, on sugars or on pyruvate as carbon and energy sources. During growth acetate was formed as fermentation product by all organisms. The enzymes involved in acetyl-CoA formation from pyruvate and in acetate formation from acetyl-CoA were investigated:
  1. Cell extracts of all species, both archaea and bacteria, catalyzed the coenzyme A-dependent oxidative decarboxylation of pyruvate with viologen dyes or with Clostridium pasteurianum ferredoxin as electron acceptors indicating a pyruvate: ferredoxin oxidoreductase to be operative in acetyl-CoA formation from pyruvate.
  2. Cell extracts of all archaeal species, both hyperthermophiles (D. amylolyticus, H. butylicus, T. celer, P. woesei) and the mesophile H. saccharovorum, contained an acetyl-CoA synthetase (ADP forming), which catalyzes both acetate formation from acetyl-CoA and ATP synthesis from ADP and phosphate (Pi): Acetyl-CoA+ADP+Pi?Acetate + ATP+CoA. Phosphate acetyltransferase and acetate kinase could not be detected.
  3. Cell extracts of the hyperthermophilic (eu)bacteria T. maritima and C. thermohydrosulfuricum contained phosphate acetyltransferase and acetate kinase rather than acetyl-CoA synthetase (ADP forming).
These data indicate that acetyl-CoA synthetase (ADP forming) represents a typical archaeal property rather than an enzyme specific for hyperthermophiles. It is proposed that in all acetate forming archaea the formation of acetate and of ATP from acetyl-CoA, ADP and Pi are catalyzed by acetyl-CoA synthetase (ADP forming), whereas in all acetate forming (eu)bacteria these reactions are catalyzed by two enzymes, phosphate acetyltransferase and acetate kinase.  相似文献   

3.
Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the recombinant E. histolytica ACD and found that the enzyme is bidirectional, allowing it to potentially play a role in ATP production or in utilization of acetate. In the acetate-forming direction, acetyl-CoA was the preferred substrate and propionyl-CoA was used with lower efficiency. In the acetyl-CoA-forming direction, acetate was the preferred substrate, with a lower efficiency observed with propionate. The enzyme can utilize both ADP/ATP and GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit the acetate-forming direction of the reaction, with 50% inhibitory concentrations of 0.81 ± 0.17 mM (mean ± standard deviation) and 0.75 ± 0.20 mM, respectively, which are both in the range of their physiological concentrations. ATP and PPi displayed mixed inhibition versus each of the three substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of ACD enzymatic activity, and possible roles for this regulation are discussed.  相似文献   

4.
Acetyl-CoA carboxylase from the diatom Cyclotella cryptica has been purified to near homogeneity by the use of ammonium sulfate fractionation, gel filtration chromatography, and affinity chromatography with monomeric avidin-agarose. The specific activity of the final preparation was as high as 14.6 micromoles malonyl-CoA formed per milligram protein per minute, indicating a 600-fold purification. Native acetyl-CoA carboxylase has a molecular weight of approximately 740 kilodaltons and appears to be composed of four identical biotin-containing subunits. The enzyme has maximal activity at pH 8.2, but enzyme stability is greater at pH 6.5. Km values for MgATP, acetyl-CoA, and HCO3- were determined to be 65, 233, and 750 micromolar, respectively. The purified enzyme is strongly inhibited by palmitoyl-CoA, and is inhibited to a lesser extent by malonyl-CoA, ADP, and phosphate. Pyruvate stimulates enzymatic activity to a slight extent. Acetyl-CoA carboxylase from Cyclotella cryptica is not inhibited by cyclohexanedione or aryloxyphenoxypropionic acid herbicides as strongly as monocot acetyl-CoA carboxylases; 50% and 0% inhibition was observed in the presence of 23 micromolar clethodim and 100 micromolar haloxyfop, respectively.  相似文献   

5.
Acetate-Activating Enzymes of Bradyrhizobium japonicum Bacteroids   总被引:1,自引:0,他引:1       下载免费PDF全文
Acetyl coenzyme A (acetyl-CoA) synthetase and acetate kinase were localized within the soluble portion of Bradyrhizobium japonicum bacteroids, and no appreciable activity was found elsewhere in the nodule. The presence of each acetate-activating enzyme was confirmed by separation of the two enzyme activities on a hydroxylapatite column, by substrate dependence of each enzyme in both the forward and reverse directions, by substrate specificity, by inhibition patterns, and also by identification of the reaction products by C18 reverse-phase high-pressure liquid chromatography. Phosphotransacetylase activity, found in the soluble portion of the bacteroid, was dependent on the presence of potassium and was inhibited by added sodium. The greatest acetyl-CoA hydrolase activity was found in the root nodule cytosol, although appreciable activity also was found within the bacteroids. The combined specific activities of acetyl-CoA synthetase and acetate kinase-phosphotransacetylase were approximate to that of the pyruvate dehydrogenase complex, thus providing B. japonicum with sufficient capacity to generate acetyl-CoA.  相似文献   

6.
A fatty acid synthetase multienzyme complex was purified from Euglena gracilis variety bacillaris. The fatty acid synthetase activity is specifically inhibited by antibodies against Escherichia coli acyl-carrier protein. The Euglena enzyme system requires both NADPH and NADH for maximal activity. An analysis was done of the steady-state kinetics of the reaction catalysed by the fatty acid synthetase multienzyme complex. Initial-velocity studies were done in which the concentrations of the following pairs of substrates were varied: malonyl-CoA and acetyl-CoA, NADPH and acetyl-CoA, malonyl-CoA and NADPH. In all three cases patterns of the Ping Pong type were obtained. Product-inhibition studies were done with NADP+ and CoA. NADP+ is a competitive inhibitor with respect to NADPH, and uncompetitive with respect to malonyl-CoA and acetyl-CoA. CoA is uncompetitive with respect to NADPH and competitive with respect to malonyl-CoA and acetyl-CoA. When the concentrations of acetyl-CoA and malonyl-CoA were varied over a wide range, mutual competitive substrate inhibition was observed. When the fatty acid synthetase was incubated with radiolabelled acetyl-CoA or malonyl-CoA, labelled acyl-enzyme was isolated. The results are consistent with the idea that fatty acid synthesis proceeds by a multisite substituted-enzyme mechanism involving Ping Pong reactions at the following enzyme sites: acetyl transacylase, malonyl transacylase, beta-oxo acyl-enzyme synthetase and fatty acyl transacylase.  相似文献   

7.
Fatty acid synthesis was compared in cell-free extracts of epidermis and parenchyma of Allium porrum L. leaves. Parenchyma extracts had the major fatty acid synthetase (FAS) activity (70-90%) of the whole leaf; palmitic acid was also the major fatty acid synthesized when acetyl-coenzyme A (CoA) was the primer, but when acetyl-acyl carrier protein (ACP) was employed, C18:0 and C16:0 were synthesized in equal proportion. With the epidermal FAS system when either acetyl-CoA or acetyl-ACP was tested in the presence of labeled malonyl-CoA, palmitic acid was the only product synthesized. Specific activities of the FAS enzyme activities were determined in both tissue extracts.

The properties of malonyl-CoA:ACP transacylase were examined from the two different tissues. The molecular weights estimated by Sephadex G-200 chromatography were 38,000 for the epidermal enzyme and 45,000 for parenchymal enzyme. The optimal pH was for both enzymes 7.8 to 8.0 and the maximal velocity 0.4 to 0.5 micromoles per milligram protein per minute. These enzymes had different affinities for malonyl-CoA and ACP. For the malonyl-CoA:ACP transacylase of epidermis, the Km values were 5.6 and 13.7 micromolar for malonyl-CoA and ACP, respectively, and 4.2 and 21.7 micromolar for the parenchymal enzyme. These results suggest that the FAS system in both tissues are nonassociated, that the malonyl-CoA:ACP transacylases are isozymes, and that both in epidermis and in parenchyma tissue two independent FAS system occur. Evidence would suggest that β-ketoacyl-ACP synthase II is present in the parenchymal cells but missing in the epidermal cell.

  相似文献   

8.
1. Crude extracts of seeds of Pinus radiata catalysed acetate-, propionate-, n-butyrate- and n-valerate-dependent PP(i)-ATP exchange in the presence of MgCl(2), which was apparently due to a single enzyme. Propionate was the preferred substrate. Crude extracts did not catalyse medium-chain or long-chain fatty acid-dependent exchange. 2. Ungerminated dry seeds contained short-chain fatty acyl-CoA synthetase activity. The activity per seed was approximately constant for 11 days after imbibition and then declined. The enzyme was located only in the female gametophyte tissue. 3. The synthetase was purified 70-fold. 4. Some properties of the enzyme were studied by [(32)P]PP(i)-ATP exchange. K(m) values for acetate, propionate, n-butyrate and n-valerate were 4.7, 0.21, 0.33 and 2.1mm respectively. Competition experiments between acetate and propionate demonstrated that only one enzyme was involved and confirmed that the affinity of the enzyme for propionate was greater than that for acetate. CoA inhibited fatty acid-dependent PP(i)-ATP exchange. The enzyme catalysed fatty acid-dependent [(32)P]PP(i)-dATP exchange. 5. The enzyme also catalysed the fatty acyl-AMP-dependent synthesis of [(32)P]ATP from [(32)P]PP(i). Apparent K(m) (acetyl-AMP) and apparent K(m) (propionyl-AMP) were 57mum and 7.5mum respectively. The reaction was inhibited by AMP and CoA. 6. Purified enzyme catalysed the synthesis of acetyl-CoA and propionyl-CoA. Apparent K(m) (acetate) and apparent K(m) (propionate) were 16mm and 7.5mm respectively. The rate of formation of acetyl-CoA was enhanced by pyrophosphatase. 7. It was concluded that fatty acyl adenylates are intermediates in the formation of the corresponding fatty acyl-CoA.  相似文献   

9.
We have confirmed that coenzyme A is required for rat fatty acid synthetase activity (T. C. Linn, M. J. Stark, and P. A. Srere, 1980, J. Biol. Chem.255, 1388–1392). When rat liver or mammary gland fatty acid synthetase was assayed in the presence of a CoA-scavenging system such as ATP citrate lyase, almost complete inhibition of fatty acid synthesis was observed. The inhibition was reversed by addition of CoA or pantetheine, but not by addition of N-acetylcysteamine or other thiols. In the absence of CoA, the rate of elongation of acyl moieties on both native fatty acid synthetase and fatty acid synthetase lacking the chain-terminating thioesterase I component (trypsinized fatty acid synthetase) was reduced 100-fold. All of the palmitate synthesized slowly by the CoA-depleted native multienzyme was released, by the thioesterase I component, as the free fatty acid; only shorter-chainlength acyl moieties remained bound to the enzyme. The acyl-S-multienzyme thioesters formed by the trypsinized fatty acid synthetase in the absence of CoA contained saturated moieties of chain length C6-C16; addition of CoA promoted elongation of the acyl-S-multienzyme thioesters without release from the enzyme. The transfer of acetyl and malonyl moieties from CoA to the multienzyme, the reduction of S-acetoacetyl-N-acetylcysteamine and S-crotonyl-N-acetylcysteamine, and the dehydration of S-β-hydroxybutyryl-N-acetylcysteamine, reactions catalyzed by the fatty acid synthetase, were not dependent on the presence of CoA. The hydrolysis of acyl-S-multienzyme catalyzed by thioesterase I, the resident chain-terminating component of the fatty acid synthetase, and thioesterase II, a monofunctional mammary gland chain-terminating enzyme, was also independent of CoA availability as was hydrolysis of an acyl-S-pantetheine pentapeptide isolated from the multienzyme. On the basis of these observations we conclude that CoA is required for the elongation of acyl moieties on the fatty acid synthetase but not for their release from the multienzyme.  相似文献   

10.
Thiolase (acetyl-coenzyme A [CoA] acetyltransferase, E.C. 2.3.1.19) from Clostridium acetobutylicum ATCC 824 has been purified 70-fold to homogeneity. Unlike the thiolase in Clostridium pasteurianum, this thiolase has high relative activity throughout the physiological range of internal pH of 5.5 to 7.0, indicating that change in internal pH during acid production is not an important factor in the regulation of this thiolase. In the condensation direction, the thiolase is inhibited by micromolar levels of CoA, and this may be an important factor in modulating the net condensation of acetyl-CoA to acetoacetyl-CoA. Other cofactors and metabolites that were tested and shown to be inhibitors are ATP and butyryl-CoA. The native enzyme consists of four 44,000-molecular-weight subunits. The kinetic binding mechanism is ping-pong. The Km value for acetyl-CoA is 0.27 mM at 30°C and pH 7.4. The Km values for sulfhydryl-CoA and acetoacetyl-CoA are, respectively, 0.0048 and 0.032 mM at 30°C and pH 8.0. The active site apparently contains a sulfhydryl group, but unlike other thiolases, this thiolase is relatively stable in the presence of 5,5′-dithiobis(2-nitrobenzoic acid). Studies of thiolase specific activity under various types of continuous fermentations show that regulation of this enzyme at both the genetic and enzyme levels is important.  相似文献   

11.
Mitochondria and high-speed supernatant were prepared from rat brain homogenates at 0–50 days of age. The development of malonyl-CoA synthetase, malonyl-CoA decarboxylase, coenzyme A-transferases and acetyl-CoA hydrolase was examined and compared to de novo fatty acid biosynthesis. The specific activity of malonyl-CoA synthetase rose steeply between 6 and 10 days, and this sudden increase coincided with peak specific activity of fatty acid synthetase. Similarly, malonate activation by coenzyme A-transfer from succinyl-CoA increased rapidly at the same time. Transfer of the coenzyme A moiety from acetoacetyl-CoA was only minimal during this period. Brain mitochondria had active malonyl-CoA decarboxylase which showed an almost linear increase of specific activity between 0 and 50 days. Acetyl-CoA resulting from malonyl-CoA decarboxylation underwent enzymatic hydrolysis to acetate and free coenzyme A. Only traces of acetoacetate were recovered. In mitochondria, acetyl-CoA hydrolase increased progressively whereas the cytosolic enzyme had high specific activity at birth which declined slowly during maturation.  相似文献   

12.
Injection of 0.48 or 0.72 mg of selenium/100 g body weight (as Na2SeO3) into 3-week-old chicks depressed hepatic activity of fatty acid synthetase compared with saline-injected controls. In in vitro experiments with fatty acid synthetase purified to homogeneity, Na2SeO3 was a competitive inhibitor (Ki = ca. 70 μM). Dithiothreitol (DTT) at low concentrations increased the inhibition of the enzyme by Na2SeO3. At higher DTT concentrations the potentiating effect of DTT on selenium inhibition of the enzyme disappeared. At still higher DTT concentrations, selenium inhibition of fatty acid synthetase was partically relieved. If DTT and Na2SeO3 (2 : 1 molar ratio, respectively) in inhibitory concentrations, were reacted together prior to addition to enzyme and substrate, no inhibition was observed. Potentiation of selenium inhibition of fatty acid synthetase was observed with 2-mercaptoethanol but not with ascorbate. Several organic seleno-compounds were not inhibitory. The data suggest that selenium inhibits fatty acid synthetase by reversible bonding to the sulfhydryl (SH) groups (possibly at the active sites for acetyl-CoA and/or malonyl-CoA binding) of the enzyme. Selenotrisulfide formation involving selenium and the SH groups from the enzyme and thiol compounds is advanced as a possible explanation for the interaction among Se, DTT and enzyme observed in these experiments.  相似文献   

13.
Trypsin treatment of purified fatty acid synthetase from the uropygial gland of goose released a 33,000 molecular weight peptide from the 270,000 molecular weight synthease. A combination of ammonium sulfate precipitation, Sephadex G-100 gel filtration, anion-exchange chromatography with QAE-Sephadex, and cation-exchange chromatography with cellulose phosphate gave rise to the first homogeneous preparation of the 33,000 molecular weight fragment containing fatty acyl-CoA thioesterase activity. Amino acid composition of this peptide was quite similar to that of the intact fatty acid synthetase except for a lower valine content; a partial specific volume of 0.734 was calculated for the thioesterase fragment. The pH optimum for the thioesterase was near 7.5 and the enzyme showed a high degree of preference for CoA esters of fatty acids with 16 or more carbon atoms. Palmitoyl-CoA inhibited the enzyme and therefore the rate of hydrolysis was not proportional to the amount of protein at low concentrations. Inclusion of bovine serum albumin in the reaction mixture prevented this inhibition. Disregarding the substrate inhibition, an apparent Km of 5 × 10?5m and a V of 340 nmol/min/mg were calculated. The thioesterase was inhibited by active serine-directed reagents such as phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate as well as by SH-directed reagents as p-chloromercuribenzoate and N-ethylmaleimide. The isolated thioesterase fragment generated antibodies in rabbits and the antithioesterase inhibited the enzymatic activity of fatty acid synthetase. The antithioesterase showed immunoprecipitant lines with fatty acid synthetase from the uropygial gland and the synthetase from the liver of goose. Anti-fatty acid synthetase prepared against the enzyme from the gland cross-reacted with the thioesterase segment. Even though the synthetase from the uropygial gland synthesizes multimethyl-branched fatty acids in vivo, the thioesterase segment of this synthetase appears to be quite similar to that isolated from the rat.  相似文献   

14.
The heterotrophic, hyperthermophilic archaeon Pyrococcus furiosus is a new addition to the growing list of genetically-tractable microorganisms suitable for metabolic engineering to produce liquid fuels and industrial chemicals. P. furiosus was recently engineered to generate 3-hydroxypropionate (3-HP) from CO2 and acetyl-CoA by the heterologous-expression of three enzymes from the CO2 fixation cycle of the thermoacidophilic archaeon Metallosphaera sedula using a thermally-triggered induction system. The acetyl-CoA for this pathway is generated from glucose catabolism that in wild-type P. furiosus is converted to acetate with concurrent ATP production by the heterotetrameric (α2β2) acetyl-CoA synthetase (ACS). Hence ACS in the engineered 3-HP production strain (MW56) competes with the heterologous pathway for acetyl-CoA. Herein we show that strains of MW56 lacking the α-subunit of either of the two ACSs previously characterized from P. furiosus (ACSI and ACSII) exhibit a three-fold increase in specific 3-HP production. The ΔACSIα strain displayed only a minor defect in growth on either maltose or peptides, while no growth defect on these substrates was observed with the ΔACSIIα strain. Deletion of individual and multiple ACS subunits was also shown to decrease CoA release activity for several different CoA ester substrates in addition to acetyl-CoA, information that will be extremely useful for future metabolic engineering endeavors in P. furiosus.  相似文献   

15.
Squalene synthetase, an integral membrane protein and the first committed enzyme for sterol biosynthesis, was solubilized and partially purified from tobacco (Nicotiana tabacum) cell suspension cultures. Tobacco microsomes were prepared and the enzyme was solubilized from the lipid bilayer using a two-step procedure. Microsomes were initially treated with concentrations of octyl-β-d-thioglucopyranoside and glycodeoxycholate below their critical micelle concentration, 4.5 and 1.1 millimolar, respectively, to remove loosely associated proteins. Complete solubilization of the squalene synthetase enzyme activity was achieved after a second treatment at detergent concentrations above or at their critical micelle concentration, 18 and 2.2 millimolar, respectively. The detergent-solubilized enzyme was further purified by a combination of ultrafiltration, gel permeation, and Fast Protein Liquid Chromatography anion exchange. A 60-fold purification and 20% recovery of the enzyme activity was achieved. The partially purified squalene synthetase protein was used to generate polyclonal antibodies from mice that efficiently inhibited synthetase activity in an in vitro assay. The apparent molecular mass of the squalene synthetase protein as determined by immunoblot analysis of the partially purified squalene synthetase protein separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 47 kilodaltons. The partially purified squalene synthetase activity was optimal at pH 6.0, exhibited a Km for farnesyl diphosphate of 9.5 micromolar, and preferred NADPH as a reductant rather than NADH.  相似文献   

16.
Coenzyme A-linked aldehyde dehydrogenase from Clostridium kluyveri was purified from the soluble fraction of crude extracts and its physical and kinetic properties were studied. The enzyme was purified approximately 90-fold over crude extracts to a specific activity of 50 units/mg protein and was estimated to be 40% pure by polyacrylamide gel electrophoresis. From active enzyme centrifugation studies, aldehyde dehydrogenase was found to have a sedimentation coefficient of s20, w = 7.4. The Stokes radius of the enzyme was determined by gel filtration and found to be 9.5 nm in the presence of substrates and 11.0 nm in the absence of substrates. Using the values found for the sedimentation coefficient and the Stokes radius, the molecular weight of the enzyme in the presence of substrates was calculated to be 290,000 and the frictional ratio, 2.2. Aldehyde dehydrogenase can utilize thiols other than CoA as acetyl acceptors. A number of methods were employed in order to exclude the possibility that these thiols act merely by recycling nonenzymatically trace amounts of CoA that might be in the enzyme preparation. From steady-state kinetic measurements, a ping pong mechanism was proposed in which NAD+ binds to free enzyme, acetaldehyde binds next, and NADH is released before CoA binds and acetyl-CoA released. At Km levels of other substrates, substrate inhibition by CoA was observed. The nature of the substrate inhibition is discussed.  相似文献   

17.
Mechanistic details of mammalian metabolism in vivo and dynamic metabolic changes in intact organisms are difficult to monitor because of the lack of spatial, chemical, or temporal resolution when applying traditional analytical tools. These limitations can be addressed by sensitivity enhancement technology for fast in vivo NMR assays of enzymatic fluxes in tissues of interest. We apply this methodology to characterize organ-specific short chain fatty acid metabolism and the changes of carnitine and coenzyme A pools in ischemia reperfusion. This is achieved by assaying acetyl-CoA synthetase and acetyl-carnitine transferase catalyzed transformations in vivo. The fast and predominant flux of acetate and propionate signal into acyl-carnitine pools shows the efficient buffering of free CoA levels. Sizeable acetyl-carnitine formation from exogenous acetate is even found in liver, where acetyl-CoA synthetase and acetyl-carnitine transferase activities have been assumed sequestered in different compartments. In vivo assays of altered acetate metabolism were applied to characterize pathological changes of acetate metabolism upon ischemia. Coenzyme pools in ischemic skeletal muscle are reduced in vivo even 1 h after disturbing muscle perfusion. Impaired mitochondrial metabolism and slow restoration of free CoA are corroborated by assays employing fumarate to show persistently reduced tricarboxylic acid (TCA) cycle activity upon ischemia. In the same animal model, anaerobic metabolism of pyruvate and tissue perfusion normalize faster than mitochondrial bioenergetics.  相似文献   

18.
A modified 3-hydroxypropionate cycle has been proposed as the autotrophic CO2 fixation pathway for the thermoacidophilic crenarchaeon Metallosphaera sedula. The cycle requires the reductive conversion of 3-hydroxypropionate to propionyl-coenzyme A (propionyl-CoA). The specific activity of the 3-hydroxypropionate-, CoA-, and MgATP-dependent oxidation of NADPH in autotrophically grown cells was 0.023 μmol min−1mg protein−1. The reaction sequence is catalyzed by at least two enzymes. The first enzyme, 3-hydroxypropionyl-CoA synthetase, catalyzes the following reaction: 3-hydroxypropionate + ATP + CoA → 3-hydroxypropionyl-CoA + AMP + PPi. The enzyme was purified 95-fold to a specific activity of 18 μmol min−1 mg protein−1 from autotrophically grown M. sedula cells. An internal peptide sequence was determined and a gene encoding a homologous protein identified in the genome of Sulfolobus tokodaii; similar genes were found in S. solfataricus and S. acidocaldarius. The gene was heterologously expressed in Escherichia coli, and the His-tagged protein was purified. Both the native enzyme from M. sedula and the recombinant enzyme from S. tokodaii not only activated 3-hydroxypropionate to its CoA ester but also activated propionate, acrylate, acetate, and butyrate; however, with the exception of propionate, the affinities for these substrates were reduced. 3-Hydroxypropionyl-CoA synthetase is up-regulated eightfold in autotrophically versus heterotrophically grown M. sedula, supporting its proposed role during CO2 fixation in this archaeon and possibly other members of the Sulfolobaceae family.  相似文献   

19.
1. Although citrate is known to activate purified preparations of acetyl-CoA carboxylase, it had no stimulatory effect on the incorporation of [14C]acetate into long-chain fatty acids in a whole homogenate of rat liver (S0.7) under conditions in which the activity of acetyl-CoA carboxylase was rate-limiting for fatty acid synthesis. 2. The rate of incorporation of acetyl carbon into fatty acids was estimated in S0.7 preparations incubated with [14C]acetate, by measuring the specific radioactivity of the acetyl carbon of acetyl-CoA and the incorporation of 14C into fatty acids. These estimates were compared with estimates of acetyl-CoA carboxylase activity in the S0.7 preparation obtained by direct assay in conditions in which the enzyme was in the fully activated state. 3. In the absence of citrate, incorporation of acetyl carbon into fatty acids was about 75% of the value expected if the acetyl-CoA carboxylase in the S0.7 preparation were in the fully activated state. 4. Incorporation of acetyl carbon into fatty acids in the S0.7 preparation was stimulated by citrate, but the effect was many times less than the stimulation of [14C]acetate incorporation by citrate in particle-free preparations. 5. When the mitochondria and microsomes were removed from the S0.7 preparation, [14C]acetate incorporation into fatty acids fell to a negligible value and the preparation became highly sensitive to stimulation by citrate. 6. It is suggested that in the presence of mitochondria and microsomes, and in the intact liver cell, the degree of activation of acetyl-CoA carboxylase is such that citrate activation may not be of physiological significance.  相似文献   

20.
Fatty acid synthetase has been purified from Cryptococcus neoformans 450 fold to a specific activity of 3.6 units per mg protein with an overall yield of 23%. The purified enzyme contained two non-identical subunits, Mr approximately 2.1×105 and 1.8×105. Under optimum conditions, 100 mM KCl and pH 7.5, apparent Km values for the substrates were: Acetyl CoA, 19 M; Malonyl CoA, 5 M; and NADPH, 6 M. Product inhibition patterns were determined to be: CoA, competitive versus acetyl CoA and malonyl CoA, uncompetitive versus NADPH; NADP, competitive versus NADPH, uncompetitive versus acetyl CoA and malonyl CoA; Palmitoyl CoA, competitive versus malonyl CoA, noncompetitive versus acetyl CoA and NADPH; Bicarbonate, uncompetitive versus malonyl CoA. These product inhibition patterns are consistent with the multisite ping-pong mechanism previously proposed for the avian fatty acid synthetase complex. The cryptococcal fatty acid synthetase was inhibited by the polyanionic polymers, heparin and dextran sulfate, an effect never before demonstrated for a fatty acid synthetase. This inhibition exhibited a marked dependence on the length of the polymer chain, with dextran sulfate fractions with Mr of 6×105 and above having K i values below 100 nanomolar. A model is presented that involves initial binding of the anionic polymer to the enzyme complex at a region of high positive charge density, followed by interaction of the end of the tethered polymer with the catalytic site. This study represents the first purification of fatty acid synthetase from a basidiomycete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号