首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.

Key message

A new time- and cost-effective strategy was developed for medium-density SNP genotyping of rice biparental populations, using GoldenGate assays based on parental resequencing.

Abstract

Since the advent of molecular markers, crop researchers and breeders have dedicated huge amounts of effort to detecting quantitative trait loci (QTL) in biparental populations for genetic analysis and marker-assisted selection (MAS). In this study, we developed a new time- and cost-effective strategy for genotyping a population of progeny from a rice cross using medium-density single nucleotide polymorphisms (SNPs). Using this strategy, 728,362 “high quality” SNPs were identified by resequencing Teqing and Lemont, the parents of the population. We selected 384 informative SNPs that were evenly distributed across the genome for genotyping the biparental population using the Illumina GoldenGate assay. 335 (87.2 %) validated SNPs were used for further genetic analyses. After removing segregation distortion markers, 321 SNPs were used for linkage map construction and QTL mapping. This strategy generated SNP markers distributed more evenly across the genome than previous SSR assays. Taking the GW5 gene that controls grain shape as an example, our strategy provided higher accuracy (0.8 Mb) and significance (LOD 5.5 and 10.1) in QTL mapping than SSR analysis. Our study thus provides a rapid and efficient strategy for genetic studies and QTL mapping using SNP genotyping assays.  相似文献   

2.
In order to develop a large set of single-nucleotide polymorphisms (SNPs) in Cryptomeria japonica, for a wide range of applications, we adopted a systematic EST (expressed sequence tags) re-sequencing approach. We examined a group of four genotypes comprising parents of a mapping population as well as representatives of two main lines from natural populations. We sequenced 5,170 gene fragments, representing analysis of over 1.3?Mb of DNA sequences in C. japonica. This analysis leads to the discovery of 13,413 SNPs in 3,744 amplicons, with an average of one SNP for every 101.0?bp (one SNP for every 78.3?bp in introns and for every 106.7?bp in exon regions). Nucleotide diversity in C. japonica (???=?0.0045) was found to be similar to values recorded in highly polymorphic forest tree species such as pine. We also validated the use of the SNPs as molecular markers for genetic diversity studies using the high throughput SNP genotyping platform GoldenGate. From 1,536 candidate SNP sites tested, 1,164 (75.8?%) were confirmed to be polymorphic. We anticipate that the genome-wide SNP markers reported here will be useful for evaluating the species?? range-wide genetic structure and in marker-assisted selection used as part of the C. japonica tree improvement program.  相似文献   

3.
Single nucleotide polymorphism (SNP) data can be obtained using one of the numerous uniplex or multiplex SNP genotyping platforms that combine a variety of chemistries, detection methods, and reaction formats. Kompetitive Allele Specific PCR (KASP) is one of the uniplex SNP genotyping platforms, and has evolved to be a global benchmark technology. However, there are no publications relating either to the technology itself or to its application in crop improvement programs. In this review, we provide an overview of the different aspects of the KASP genotyping platform, discuss its application in crop improvement, and compare it with the chip-based Illumina GoldenGate platform. The International Maize and Wheat Improvement Center routinely uses KASP, generating in excess of a million data points annually for crop improvement purposes. We found that (1) 81 % of the SNPs used in a custom-designed GoldenGate assay were transferable to KASP; (2) using KASP, negative controls (no template) consistently clustered together and rarely produced signals exceeding the threshold values for allele calling, in contrast to the situation observed using GoldenGate assays; (3) KASP’s average genotyping error in positive control DNA samples was 0.7–1.6 %, which is lower than that observed using GoldenGate (2.0–2.4 %); (4) KASP genotyping costs for marker-assisted recurrent selection were 7.9–46.1 % cheaper than those of the BeadXpress and GoldenGate platforms; and (5) KASP offers cost-effective and scalable flexibility in applications that require small to moderate numbers of markers, such as quality control analysis, quantitative trait loci (QTL) mapping in bi-parental populations, marker-assisted recurrent selection, marker-assisted backcrossing, and QTL fine mapping.  相似文献   

4.
Single nucleotide polymorphisms (SNPs) are indispensable in such applications as association mapping and construction of high-density genetic maps. These applications usually require genotyping of thousands of SNPs in a large number of individuals. Although a number of SNP genotyping assays are available, most of them are designed for SNP genotyping in diploid individuals. Here, we demonstrate that the Illumina GoldenGate assay could be used for SNP genotyping of homozygous tetraploid and hexaploid wheat lines. Genotyping reactions could be carried out directly on genomic DNA without the necessity of preliminary PCR amplification. A total of 53 tetraploid and 38 hexaploid homozygous wheat lines were genotyped at 96 SNP loci. The genotyping error rate estimated after removal of low-quality data was 0 and 1% for tetraploid and hexaploid wheat, respectively. Developed SNP genotyping assays were shown to be useful for genotyping wheat cultivars. This study demonstrated that the GoldenGate assay is a very efficient tool for high-throughput genotyping of polyploid wheat, opening new possibilities for the analysis of genetic variation in wheat and dissection of genetic basis of complex traits using association mapping approach. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Mining single-nucleotide polymorphisms from hexaploid wheat ESTs.   总被引:20,自引:0,他引:20  
Single-nucleotide polymorphisms (SNPs) represent a new form of functional marker, particularly when they are derived from expressed sequence tags (ESTs). A bioinformatics strategy was developed to discover SNPs within a large wheat EST database and to demonstrate the utility of SNPs in genetic mapping and genetic diversity applications. A collection of > 90000 wheat ESTs was assembled into contiguous sequences (contigs), and 45 random contigs were then visually inspected to identify primer pairs capable of amplifying specific alleles. We estimate that homoeologue sequence variants occurred 1 in 24 bp and the frequency of SNPs between wheat genotypes was 1 SNP/540 bp (theta = 0.0069). Furthermore, we estimate that one diagnostic SNP test can be developed from every contig with 10-60 EST members. Thus, EST databases are an abundant source of SNP markers. Polymorphism information content for SNPs ranged from 0.04 to 0.50 and ESTs could be mapped into a framework of microsatellite markers using segregating populations. The results showed that SNPs in wheat can be discovered in ESTs, validated, and be applied to conventional genetic studies.  相似文献   

6.
Genetic maps serve as frameworks for determining the genetic architecture of quantitative traits, assessing structure of a genome, as well as aid in pursuing association mapping and comparative genetic studies. In this study, a dense genetic map was constructed using a high-throughput 1,536 EST-derived SNP GoldenGate genotyping platform and a global consensus map established by combining the new genetic map with four existing reliable genetic maps of apple. The consensus map identified markers with both major and minor conflicts in positioning across all five maps. These major inconsistencies among marker positions were attributed either to structural variations within the apple genome, or among mapping populations, or genotyping technical errors. These also highlighted problems in assembly and anchorage of the reference draft apple genome sequence in regions with known segmental duplications. Markers common across all five apple genetic maps resulted in successful positioning of 2875 markers, consisting of 2033 SNPs and 843 SSRs as well as other specific markers, on the global consensus map. These markers were distributed across all 17 linkage groups, with an average of 169±33 marker per linkage group and with an average distance of 0.70±0.14 cM between markers. The total length of the consensus map was 1991.38 cM with an average length of 117.14±24.43 cM per linkage group. A total of 569 SNPs were mapped onto the genetic map, consisting of 140 recombinant individuals, from our recently developed apple Oligonucleotide pool assays (OPA). The new functional SNPs, along with the dense consensus genetic map, will be useful for high resolution QTL mapping of important traits in apple and for pursuing comparative genetic studies in Rosaceae.  相似文献   

7.
We characterized 37 single nucleotide polymorphism (SNP) makers for eelgrass Zostera marina. SNP markers were developed using existing EST (expressed sequence tag)-libraries to locate polymorphic loci and develop primers from the functional expressed genes that are deposited in The ZOSTERA database (V1.2.1). SNP loci were genotyped using a single-base-extension approach which facilitated high-throughput genotyping with minimal optimization time. These markers show a wide range of variability among 25 eelgrass populations and will be useful for population genetic studies including evaluation of population structure, historical demography, and phylogeography. Potential applications include haplotype inference of physically linked SNPs and identification of genes under selection for temperature and desiccation stress.  相似文献   

8.
High-throughput SNP genotyping with the GoldenGate assay in maize   总被引:4,自引:0,他引:4  
Single nucleotide polymorphisms (SNPs) are abundant and evenly distributed throughout the genomes of most plant species. They have become an ideal marker system for genetic research in many crops. Several high throughput platforms have been developed that allow rapid and simultaneous genotyping of up to a million SNP markers. In this study, a custom GoldenGate assay containing 1,536 SNPs was developed based on public SNP information for maize and used to genotype two recombinant inbred line (RIL) populations (Zong3 x 87-1, and B73 x By804) and a panel of 154 diverse inbred lines. Over 90% of the SNPs were successfully scored in the diversity panel and the two RIL populations, with a genotyping error rate of less than 2%. A total of 975 SNP markers detected polymorphism in at least one of the two mapping populations, with a polymorphic rate of 38.5% in Zong3 x 87-1 and 52.6% in B73 x By804. The polymorphic SNPs in B73 x By804 have been integrated with previously mapped simple sequence repeat markers to construct a high-density linkage map containing 662 markers with a total length of 1,673.7 cM and an average of 2.53 cM between two markers. The minor allelic frequency (MAF) was distributed evenly across 10 continued classes from 0.05 to 0.5, and about 16% of the SNP markers had a MAF below 10% in the diversity panel. Polymorphism rates for individual SNP markers in pair-wise comparisons of genotypes tested ranged from 0.3 to 63.8% with an average of 36.3%. Most SNPs used in this GoldenGate assay appear to be equally useful for diversity analysis, marker-trait association studies, and marker-aided breeding.  相似文献   

9.
Oilseed rape (Brassica napus) is an allotetraploid species consisting of two genomes, derived from B. rapa (A genome) and B. oleracea (C genome). The presence of these two genomes makes single nucleotide polymorphism (SNP) marker identification and SNP analysis more challenging than in diploid species, as for a given locus usually two versions of a DNA sequence (based on the two ancestral genomes) have to be analyzed simultaneously during SNP identification and analysis. One hundred amplicons derived from expressed sequence tag (ESTs) were analyzed to identify SNPs in a panel of oilseed rape varieties and within two sister species representing the ancestral genomes. A total of 604 SNPs were identified, averaging one SNP in every 42 bp. It was possible to clearly discriminate SNPs that are polymorphic between different plant varieties from SNPs differentiating the two ancestral genomes. To validate the identified SNPs for their use in genetic analysis, we have developed Illumina GoldenGate assays for some of the identified SNPs. Through the analysis of a number of oilseed rape varieties and mapping populations with GoldenGate assays, we were able to identify a number of different segregation patterns in allotetraploid oilseed rape. The majority of the identified SNP markers can be readily used for genetic mapping, showing that amplicon sequencing and Illumina GoldenGate assays can be used to reliably identify SNP markers in tetraploid oilseed rape and to convert them into successful SNP assays that can be used for genetic analysis.  相似文献   

10.
Large numbers of single nucleotide polymorphism (SNP) markers are now available for a number of crop species. However, the high-throughput methods for multiplexing SNP assays are untested in complex genomes, such as soybean, that have a high proportion of paralogous genes. The Illumina GoldenGate assay is capable of multiplexing from 96 to 1,536 SNPs in a single reaction over a 3-day period. We tested the GoldenGate assay in soybean to determine the success rate of converting verified SNPs into working assays. A custom 384-SNP GoldenGate assay was designed using SNPs that had been discovered through the resequencing of five diverse accessions that are the parents of three recombinant inbred line (RIL) mapping populations. The 384 SNPs that were selected for this custom assay were predicted to segregate in one or more of the RIL mapping populations. Allelic data were successfully generated for 89% of the SNP loci (342 of the 384) when it was used in the three RIL mapping populations, indicating that the complex nature of the soybean genome had little impact on conversion of the discovered SNPs into usable assays. In addition, 80% of the 342 mapped SNPs had a minor allele frequency >10% when this assay was used on a diverse sample of Asian landrace germplasm accessions. The high success rate of the GoldenGate assay makes this a useful technique for quickly creating high density genetic maps in species where SNP markers are rapidly becoming available. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply approval of a product to the exclusion of others that may be suitable.  相似文献   

11.
Cassava (Manihot esculenta Crantz) is one of the most important food security crops in the tropics and increasingly being adopted for agro-industrial processing. Genetic improvement of cassava can be enhanced through marker-assisted breeding. For this, appropriate genomic tools are required to dissect the genetic architecture of economically important traits. Here, a genome-wide SNP-based genetic map of cassava anchored in SSRs is presented. An outbreeder full-sib (F1) family was genotyped on two independent SNP assay platforms: an array of 1,536 SNPs on Illumina's GoldenGate platform was used to genotype a first batch of 60 F1. Of the 1,358 successfully converted SNPs, 600 which were polymorphic in at least one of the parents and was subsequently converted to KBiosciences' KASPar assay platform for genotyping 70 additional F1. High-precision genotyping of 163 informative SSRs using capillary electrophoresis was also carried out. Linkage analysis resulted in a final linkage map of 1,837 centi-Morgans (cM) containing 568 markers (434 SNPs and 134 SSRs) distributed across 19 linkage groups. The average distance between adjacent markers was 3.4?cM. About 94.2% of the mapped SNPs and SSRs have also been localized on scaffolds of version 4.1 assembly of the cassava draft genome sequence. This more saturated genetic linkage map of cassava that combines SSR and SNP markers should find several applications in the improvement of cassava including aligning scaffolds of the cassava genome sequence, genetic analyses of important agro-morphological traits, studying the linkage disequilibrium landscape and comparative genomics.  相似文献   

12.
To deploy a high-throughput genotyping platform in germplasm management, we designed and tested a custom OPA (Oligo Pool All), LSGermOPA, for assessing the genetic diversity and population structure of the USDA cultivated lettuce (Lactuca sativa L.) germplasm collection using Illumina’s GoldenGate assay. This OPA contains 384 EST (expressed sequence tag)-derived SNP (single nucleotide polymorphism) markers selected from a large set of SNP markers experimentally validated and mapped by the Compositae Genome Project. Used for genotyping were DNA samples prepared from bulked leaves of five randomly-selected seedlings from each of 380 lettuce accessions. High-quality genotype data were obtained from 354 of the 384 SNPs. The reproducibility of automatic genotype calls was 99.8% as calculated from the four pairs of duplicated DNA samples in the assay. An unexpectedly high percentage of heterozygous genotypes at the polymorphic loci for most accessions indicated a high level of heterogeneity within accessions. Only 148 homogenous accessions, collectively comprising all five horticultural types, were used in subsequent analyses to demonstrate the usefulness of LSGermOPA. The results of phylogenetic relationship, population structure and genetic differentiation analyses were consistent with previous reports using other marker systems. This suggests that LSGermOPA is capable of revealing sufficient levels of polymorphism among lettuce cultivars and is appropriate for rapid assessment of genetic diversity and population structure in the lettuce germplasm collection. Challenges and strategies for effective genotyping and managing lettuce germplasm are discussed.  相似文献   

13.
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applications in rice (Oryza sativa L.), we designed seven GoldenGate VeraCode oligo pool assay (OPA) sets for the Illumina BeadXpress Reader. Validated markers from existing 1536 Illumina SNPs and 44?K Affymetrix SNP chips developed at Cornell University were used to select subsets of informative SNPs for different germplasm groups with even distribution across the genome. A 96-plex OPA was developed for quality control purposes and for assigning a sample into one of the five O. sativa population subgroups. Six 384-plex OPAs were designed for genetic diversity analysis, DNA fingerprinting, and to have evenly-spaced polymorphic markers for quantitative trait locus (QTL) mapping and background selection for crosses between different germplasm pools in rice: Indica/Indica, Indica/Japonica, Japonica/Japonica, Indica/O. rufipogon, and Japonica/O. rufipogon. After testing on a diverse set of rice varieties, two of the SNP sets were re-designed by replacing poor-performing SNPs. Pilot studies were successfully performed for diversity analysis, QTL mapping, marker-assisted backcrossing, and developing specialized genetic stocks, demonstrating that 384-plex SNP genotyping on the BeadXpress platform is a robust and efficient method for marker genotyping in rice.  相似文献   

14.
Single nucleotide polymorphism (SNP) detection has become a marker system of choice, because of the high abundance of source polymorphisms and the ease with which allele calls are automated. Various technologies exist for the evaluation of SNP loci and previously we validated two medium throughput technologies. In this study, our goal was to utilize a 768 feature, Illumina GoldenGate assay for common bean (Phaseolus vulgaris L.) developed from conserved legume gene sequences and to use the new technology for (1) the evaluation of parental polymorphisms in a mini-core set of common bean accessions and (2) the analysis of genetic diversity in the crop. A total of 736 SNPs were scored on 236 diverse common bean genotypes with the GoldenGate array. Missing data and heterozygosity levels were low and 94 % of the SNPs were scorable. With the evaluation of the parental polymorphism genotypes, we estimated the utility of the SNP markers in mapping for inter-genepool and intra-genepool populations, the latter being of lower polymorphism than the former. When we performed the diversity analysis with the diverse genotypes, we found Illumina GoldenGate SNPs to provide equivalent evaluations as previous gene-based SNP markers, but less fine-distinctions than with previous microsatellite marker analysis. We did find, however, that the gene-based SNPs in the GoldenGate array had some utility in race structure analysis despite the low polymorphism. Furthermore the SNPs detected high heterozygosity in wild accessions which was probably a reflection of ascertainment bias. The Illumina SNPs were shown to be effective in distinguishing between the genepools, and therefore were most useful in saturation of inter-genepool genetic maps. The implications of these results for breeding in common bean are discussed as well as the advantages and disadvantages of the GoldenGate system for SNP detection.  相似文献   

15.
ABSTRACT: BACKGROUND: There is considerable interest in developing high-throughput genotyping with singlenucleotide polymorphisms (SNPs) for the identification of genes affecting importantecological or economical traits. SNPs are evenly distributed throughout the genome and arelikely to be functionally relevant. In rainbow trout, in silico screening of EST databasesrepresents an attractive approach for de novo SNP identification. Nevertheless, ESTsequencing errors and assembly of EST paralogous sequences can lead to the identification offalse positive SNPs which renders the reliability of EST-derived SNPs relatively low. Furthervalidation of EST-derived SNPs is therefore required. The objective of this work was toassess the quality of and to validate a large number of rainbow trout EST-derived SNPs. RESULTS: A panel of 1,152 EST-derived SNPs was selected from the INRA Sigenae SNP database andwas genotyped in standard and double haploid individuals from several populations using theIllumina GoldenGate BeadXpress assay. High-quality genotyping data were obtained for 958 SNPs representing a genotyping success rate of 83.2 %, out of which, 350 SNPs (36.5 %)were polymorphic in at least one population and were designated as true SNPs. They alsoproved to be a potential tool to investigate genetic diversity of the species, as the set of SNPsuccessfully sorted individuals into three main groups using STRUCTURE software.Functional annotations revealed 28 non-synonymous SNPs, out of which four substitutionswere predicted to affect protein functions. A subset of 223 true SNPs were polymorphic inthe two INRA mapping reference families and were integrated into the INRA microsatellitebasedlinkage map. CONCLUSIONS: Our results represent the first study of EST-derived SNPs validation in rainbow trout, aspecies whose genome sequences is not yet available. We designed several specific filters inorder to improve the genotyping yield. Nevertheless, our selection criteria should be furtherimproved in order to reduce the observed high rate of false positive SNPs which results fromthe occurrence of whole genome duplications.  相似文献   

16.
Single nucleotide polymorphisms (SNPs) represent the most abundant type of genetic polymorphism in plant genomes. SNP markers are valuable tools for genetic analysis of complex traits of agronomic importance, linkage and association mapping, genome-wide selection, map-based cloning, and marker-assisted selection. Current challenges for SNP genotyping in polyploid outcrossing species include multiple alleles per loci and lack of high-throughput methods suitable for variant detection. In this study, we report on a high-resolution melting (HRM) analysis system for SNP genotyping and mapping in outcrossing tetraploid genotypes. The sensitivity and utility of this technology is demonstrated by identification of the parental genotypes and segregating progeny in six alfalfa populations based on unique melting curve profiles due to differences in allelic composition at one or multiple loci. HRM using a 384-well format is a fast, consistent, and efficient approach for SNP discovery and genotyping, useful in polyploid species with uncharacterized genomes. Possible applications of this method include variation discovery, analysis of candidate genes, genotyping for comparative and association mapping, and integration of genome-wide selection in breeding programs.  相似文献   

17.
Novel sequencing technologies were recently used to generate sequences from multiple melon (Cucumis melo L.) genotypes, enabling the in silico identification of large single nucleotide polymorphism (SNP) collections. In order to optimize the use of these markers, SNP validation and large-scale genotyping are necessary. In this paper, we present the first validated design for a genotyping array with 768 SNPs that are evenly distributed throughout the melon genome. This customized Illumina GoldenGate assay was used to genotype a collection of 74 accessions, representing most of the botanical groups of the species. Of the assayed loci, 91 % were successfully genotyped. The array provided a large number of polymorphic SNPs within and across accessions. This set of SNPs detected high levels of variation in accessions from this crop’s center of origin as well as from several other areas of melon diversification. Allele distribution throughout the genome revealed regions that distinguished between the two main groups of cultivated accessions (inodorus and cantalupensis). Population structure analysis showed a subdivision into five subpopulations, reflecting the history of the crop. A considerably low level of LD was detected, which decayed rapidly within a few kilobases. Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in melon. Since many of the genotyped accessions are currently being used as the parents of breeding populations in various programs, this set of mapped markers could be used for future mapping and breeding efforts.  相似文献   

18.
Although yield trials for switchgrass (Panicum virgatum L.), a potentially high value biofuel feedstock crop, are currently underway throughout North America, the genetic tools for crop improvement in this species are still in the early stages of development. Identification of high-density molecular markers, such as single nucleotide polymorphisms (SNPs), that are amenable to high-throughput genotyping approaches, is the first step in a quantitative genetics study of this model biofuel crop species. We generated and sequenced expressed sequence tag (EST) libraries from thirteen diverse switchgrass cultivars representing both upland and lowland ecotypes, as well as tetraploid and octoploid genomes. We followed this with reduced genomic library preparation and massively parallel sequencing of the same samples using the Illumina Genome Analyzer technology platform. EST libraries were used to generate unigene clusters and establish a gene-space reference sequence, thus providing a framework for assembly of the short sequence reads. SNPs were identified utilizing these scaffolds. We used a custom software program for alignment and SNP detection and identified over 149,000 SNPs across the 13 short-read sequencing libraries (SRSLs). Approximately 25,000 additional SNPs were identified from the entire EST collection available for the species. This sequencing effort generated data that are suitable for marker development and for estimation of population genetic parameters, such as nucleotide diversity and linkage disequilibrium. Based on these data, we assessed the feasibility of genome wide association mapping and genomic selection applications in switchgrass. Overall, the SNP markers discovered in this study will help facilitate quantitative genetics experiments and greatly enhance breeding efforts that target improvement of key biofuel traits and development of new switchgrass cultivars.  相似文献   

19.
Linkage maps are needed for genetic studies and molecular breeding of taro (Colocasia esculenta). In this study, we used genotyping-by-sequencing (GBS) to identify single nucleotide polymorphism (SNP) loci on two mapping populations: F31 (HLB11 × VU006) composed of 266 progenies and F32 [HLB01 × (VU370×ID316)] composed of 292 progenies. SNP calling generated an initial set of 22,734 SNPs for F31 and 16,744 for F32. A large proportion of individuals and loci were later removed by filtering on the proportion of missing data and segregation distortions. Linkage maps were constructed with filtered SNPs in association with 14 simple sequence repeat (SSR) markers, using the maximum likelihood method. In both populations, loci were successfully grouped into 14 linkage groups (LGs) with an independence logarithm of odds (LOD) threshold of 11.0 and 8.0 for F31 and F32, respectively. LGs ranged in size from 90 to 15 markers for F31 and from 92 to 12 markers for F32. Bridge markers (459 SNPs and 9 SSRs) were identified and revealed homologous groups between families. Although our maps presented unprecedented chromosome coverage, the colinearity between homologous groups was low (except for LG07), and map lengths were globally inflated. Putative effects of missing data, segregation distortion, and genotyping errors on map accuracy are discussed. This research work led to the identification of a reliable set of SNPs potentially useful as a tool for a wide range of genetic studies in taro.  相似文献   

20.
Rapid SNP discovery and genetic mapping using sequenced RAD markers   总被引:7,自引:0,他引:7  
Single nucleotide polymorphism (SNP) discovery and genotyping are essential to genetic mapping. There remains a need for a simple, inexpensive platform that allows high-density SNP discovery and genotyping in large populations. Here we describe the sequencing of restriction-site associated DNA (RAD) tags, which identified more than 13,000 SNPs, and mapped three traits in two model organisms, using less than half the capacity of one Illumina sequencing run. We demonstrated that different marker densities can be attained by choice of restriction enzyme. Furthermore, we developed a barcoding system for sample multiplexing and fine mapped the genetic basis of lateral plate armor loss in threespine stickleback by identifying recombinant breakpoints in F(2) individuals. Barcoding also facilitated mapping of a second trait, a reduction of pelvic structure, by in silico re-sorting of individuals. To further demonstrate the ease of the RAD sequencing approach we identified polymorphic markers and mapped an induced mutation in Neurospora crassa. Sequencing of RAD markers is an integrated platform for SNP discovery and genotyping. This approach should be widely applicable to genetic mapping in a variety of organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号