首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
为了解多粘类芽孢杆菌(Paenibacillus polymyxa)分泌蛋白的典型特征,本研究通过SignalP、ProtCompB、TMHMM、Phobius、LipoP、TatP、MEME和BLAST等多种分析程序对多粘类芽孢杆菌SC2菌株的全基因组共5 439条蛋白质序列进行生物信息的综合分析。结果表明,共获得146个具有典型信号肽的SPⅠ(Signal peptidase Ⅰ)分泌蛋白。信号肽序列中出现频率最高的氨基酸依次是亮氨酸、丙氨酸和丝氨酸。对信号肽的切割位点分析发现与枯草芽孢杆菌等一致,均为A-X-A型。通过MEME对信号肽序列进行分析发现存在一种保守基序。最后用BLAST分析发现,在146个分泌蛋白中,89个具有功能描述的分泌蛋白,主要是细胞生长代谢及生物降解酶类,其余57个皆为功能尚未明确的假定蛋白。本研究获得了多粘类芽孢杆菌SC2菌株分泌蛋白的信息,为进一步研究多粘类芽孢杆菌的蛋白功能奠定了基础。  相似文献   

2.
粘细菌是一类具有复杂的多细胞群体行为, 属 peoteobacteria 的δ 分支, 能够产生丰富的生物活性物质, 为第二类药源微生物新类群。由于粘细菌的捕食性, 及产生的活性物质结构新、种类多、作用机制新颖多样, 使得粘细菌作为重要的药源开发菌具有潜在的应用前景。粘细菌的活性物质主要在抗肿瘤、抗病毒、抗寄生虫等药研的应用, 特别是抗肿瘤活性甚至高于紫杉醇, 为肿瘤患者带来福音; 利用溶藻粘细菌可以缓解形成水华的有害藻类危害; 农业上可开发除草剂、杀虫剂、粘细菌菌肥, 有利于发展生态有机农业, 生产无公害绿色产品; 粘细菌做为纤维素生物燃料可以缓解燃料危机, 促进可持续发展具有重大意义。  相似文献   

3.
通过测定大肠杆菌K12 (Escherichia coli K12)菌悬液的OD260的变化, 研究了多粘类芽孢杆菌(Paenibacillus polymyxa)Cp-S316抗细菌活性物质对其细胞膜完整性的影响, 结果表明Cp-S316抗细菌活性物质可损伤大肠杆菌K12的细胞膜, 从而引起胞内RNA、DNA等大分子物质的泄漏。为获得抗细菌活性物质高产菌株, 以Cp-S316为出发菌株, 通过紫外诱变以及对自身产生的抗细菌活性物质的抗性筛选法进行预筛、摇瓶初筛和复筛, 获得突变株多粘类芽孢杆菌A17, 其发酵效价比出发菌株Cp-S316提高91%, 该突变株的高产遗传性状稳定。  相似文献   

4.
研究了内生多粘类芽孢杆菌(Paenibacillus polymyxa)S-7对甜菜叶片光合参数和产量的影响.结果表明:接种内生多粘类芽孢杆菌S-7能显著促进甜菜光合作用,其中叶片净光合速率(Pn)、气孔限制值(Ls)、气孔导度(Gs)和蒸腾速率(Tr )的平均值分别提高了16.11%、23.82%、41.91%和34.80%;叶片胞间CO2浓度(Ci)平均值降低了21.09%.生物学产量和含糖率分别提高了25.63%和17.46%,促进了甜菜产量和品质提高.表明内生菌不仅影响甜菜光合参数,而且对甜菜产量和品质的提高具有明显的促进作用.  相似文献   

5.
植物病原真菌广谱拮抗菌的筛选鉴定及发酵条件初步研究   总被引:1,自引:0,他引:1  
通过对峙培养法筛选到对8种植物病原真菌具有拮抗作用的芽孢杆菌菌株,通过测量10-30℃下的抑菌圈直径发现AFB037菌株在不同温度下抑菌效果最好。通过表型和16S rDNA序列分析将AFB037菌株鉴定为多粘类芽孢杆菌。AFB037菌株抗菌成分的产生需要真菌菌体成分的诱导,提示其有效成分可能为细胞壁降解酶类。  相似文献   

6.
水稻恶苗病拮抗菌的筛选、鉴定及其抑菌活性   总被引:1,自引:0,他引:1  
从水稻根际土壤中筛选出拮抗水稻恶苗病的菌株,初步研究其抑菌作用及生防效果。采用平板稀释法从水稻根际土壤中分离获得菌株,以水稻恶苗病菌为靶标菌采用平板对峙法筛选出拮抗菌;通过形态学特征、生理生化特征及16S r DNA序列分析对筛选出的拮抗菌进行鉴定;检测拮抗菌无菌发酵液对水稻恶苗病菌菌丝生长的影响,同时测定拮抗菌的抑菌谱及进行盆栽实验。分离得到6株拮抗菌,其中有一株对水稻恶苗病菌拮抗作用较强的菌株SH15,经鉴定菌株SH15为多粘类芽孢杆菌。菌株无菌发酵液对水稻恶苗病菌菌丝生长有显著抑制作用;菌株SH15抑菌谱广,对水稻恶苗病菌、层出镰孢菌、棉花枯萎病菌、辣椒疫病菌、棉花黄萎病、黄瓜黑斑病菌均有一定的抑菌活性。水稻盆栽实验表明,接种多粘类芽孢杆菌SH15可显著降水稻恶苗病的发病指数,平均防效高达65.68%。因此,多粘类芽孢杆菌SH15在水稻恶苗病的生物防治方面具有一定的应用价值。  相似文献   

7.
多粘芽孢杆菌P250-2完整菌体不能作为质粒DNA的转化受体,但其质粒消除菌株P_0250-5制成的原生质体,可接受多粘芽孢杆菌的pBD2502及枯草杆菌的pUB110质粒DNA转化。在高渗蔗糖再生培养基上,原生质体再生率为20%左右,形成率在95%以上。在含新霉素(10μg/ml)、青霉素(25μg/ml)、四环素(12.5μg/ml)的高渗蔗糖再生培养基上分别获得了转化子。多粘芽孢杆菌的转化频率为3.29×10~(-3),枯草杆菌为4.4×10~(-4)。转化子的形态表现、生化特性和抗菌谱与给体菌株一致,表明多粘芽孢杆菌株间及多粘芽孢杆菌和枯草杆菌种间的质粒可以进行转化。  相似文献   

8.
辣椒根腐病拮抗细菌的筛选及其生物学特性研究   总被引:3,自引:0,他引:3  
以辣椒根腐病原菌(Fusarium solani)为指示菌,从贵州辣椒根际筛选到5株具有明显拮抗效果的细菌,编号分别为:SC2、SC2-4、SC2-4-1、SC2-4-2、SC2-4X.上述菌株抗菌谱较广,对黄瓜枯萎病原菌(Fusarium oxysporum f.sp.cucumerinum)、黄瓜霜霉病原菌(Pseudoperonospora cubensis)、芹菜灰霉病原菌(Botrytis cinerea Pers)以及西红柿灰霉病原菌(Botrytis cinerea)也具有良好的拮抗性能.经形态学测定、生理生化分析和16S rDNA序列分析,将SC2、SC2-4-2、SC--4X鉴定为多粘类芽孢杆菌(Paenibacillus polymyxa),SC2-4、SC2-4-1鉴定为枯草芽孢杆菌(Bacillus subtilis).SC2菌株产生的抗菌物质可能为蛋白类或抗菌肽类物质.  相似文献   

9.
(R,R)-2,3-BD是一种重要的四碳平台化合物,在液晶材料、高附加值手性化合物,尤其是不对称合成光学纯药物等方面有天然优势.将来源于多粘芽孢杆菌(Paenibacillus polymyxa)DSM 365的α-乙酰乳酸合成酶(α-acetolactate synthase)基因 alsS、α-乙酰乳酸脱羧酶(α-acetolactate decarboxylase)基因alsD和(R,R)-2,3-丁二醇脱氢酶(2,3-butanediol dehydrogenase)基因R,R-bdh与表达载体pMA5连接,导入多粘芽孢杆菌P.polymyxa DSM 365中加强(R,R)-2,3-丁二醇的主代谢途径,构建可高效合成(R,R)-2,3-丁二醇的多粘芽孢杆菌工程菌株DM-5.利用工程菌株DM-5补料分批发酵60 h,(R,R)-2,3-丁二醇产量达54.91 g/L,得率为0.52 g/g,生产强度为0.92 g·L-1·h-1,与野生菌株相比(R,R)-2,3-丁二醇产量增加19.66%,且副产物甲醇浓度不变,乙醇、乙偶姻积累下降.本研究结果表明,在多粘芽孢杆菌中过量表达关键基因alsS、alsD和R,R-bdh 能够显著提高(R,R)-2,3-丁二醇的产量和生产强度,为多粘芽孢杆菌的代谢工程改造和工业化生产(R,R)-2,3-丁二醇提供参考.  相似文献   

10.
海洋细菌LU—B02生物活性物质发酵条件及理化性质研究   总被引:12,自引:0,他引:12  
从辽宁渤海水域分离得到的多株细菌中筛选出1株能产生广谱抗菌物质的海洋细菌LU-B02,该菌对白色念珠菌、Y76等酵母状真菌具有较强的抗性,对一些海洋生物体病原菌或寄生菌以及农作物病原性丝状真菌也具有一定的抗性.在此基础上采用均匀设计对该菌株产生生物活性物质的发酵培养基进行选优;比较了不同菌龄、不同发酵时间LU-B02产生生物活性物质的浓度大小,考察了发酵液中生物活性物质对温度、pH值的稳定性;同时对生物活性物质的水溶性、离子特性等性质进行了研究.结果表明LU-B02菌龄16~24h、28℃下发酵26h产生的生物活性物质浓度最高,该物质为强碱性,水溶性强,对温度、pH值较稳定,为该活性物质的进一步提取精制和结构鉴定提供了依据.  相似文献   

11.
目的以点青霉菌作为指示菌,研究影响植物内生多粘芽胞杆菌发酵液抑菌活性的部分因素,为鉴定发酵液的抑菌物质提供基础研究。方法通过对多粘类芽胞杆菌发酵液进行不同处理(改变pH、加热、乙醇处理和蛋白酶酶解),采用牛津杯法观察处理后发酵液对点青霉菌抑菌活性的变化。结果多粘类芽胞杆菌发酵液的抑菌效果在酸性条件下稳定,抑菌效果明显;而在中性和碱性范围内不稳定,抑菌效果不明显;多粘类芽胞杆菌发酵液中的有些抑菌物质具备良好的热稳定性;80%乙醇处理的发酵上清液有抑菌作用;经蛋白酶酶解后发酵液的抑菌活性变化不大。结论多粘类芽胞杆菌产生的乙醇沉淀物具有抑菌作用;发酵液中可能含有类细菌素的抑菌物质。  相似文献   

12.
Different species of Paenibacillus are considered to be plant growth-promoting rhizobacteria (PGPR) due to their ability to repress soil borne pathogens, fix atmospheric nitrogen, induce plant resistance to diseases and/or produce plant growth-regulating substances such as auxins. Although it is known that indole-3-acetic acid (IAA) is the primary naturally occurring auxin excreted by Paenibacillus species, its transport mechanisms (auxin efflux carriers) have not yet been characterized. In this study, the auxin production of P. polymyxa and P. graminis, which are prevalent in the rhizospheres of maize and sorghum sown in Brazil, was evaluated. In addition, the gene encoding the Auxin Efflux Carrier (AEC) protein from P. polymyxa DSM36(T) was sequenced and used to determine if various strains of P. polymyxa and P. graminis possessed this gene. Each of the 68 P. polymyxa strains evaluated in this study was able to produce IAA, which was produced at concentrations varying from 1 to 17 microg/ml. However, auxin production was not detected in any of the 13 P. graminis strains tested in this study. Different primers were designed for the PCR amplification of the gene coding for the AEC in P. polymyxa, and the predicted protein of 319 aa was homologous to AEC from Bacillus amyloliquefaciens, B. licheniformis, and B. subtilis. However, no product was observed when these primers were used to amplify the genomic DNA of seven strains of P. graminis, which suggests that this gene is not present in this species. Moreover, none of the P. graminis genomes tested were homologous to the gene coding for AEC, whereas all of the P. polymyxa genomes evaluated were. This is the first study to demonstrate that the AEC protein is present in P. polymyxa genome.  相似文献   

13.
Ma M  Wang C  Ding Y  Li L  Shen D  Jiang X  Guan D  Cao F  Chen H  Feng R  Wang X  Ge Y  Yao L  Bing X  Yang X  Li J  Du B 《Journal of bacteriology》2011,193(1):311-312
Paenibacillus polymyxa SC2 is an important plant growth-promoting rhizobacterium (PGPR). Here, we report the complete genome sequence of P. polymyxa SC2. Multiple sets of functional genes have been found in the genome. As far as we know, this is the first complete genome sequence of Paenibacillus polymyxa.  相似文献   

14.
Paenibacillus peoriae is a potentially plant-beneficial soil bacterium and is a close relative to Paenibacillus polymyxa, the type species of the genus Paenibacillus. Herein, we present the 5.77-Mb draft genome sequence of the P. peoriae type strain with the aim of providing insight into the genomic basis of plant growth-promoting Paenibacillus species.  相似文献   

15.
Paenibacillus polymyxa is an endospore-forming Gram-positive soil bacterium that is well-known for its ability to promote plant growth. Here we report the draft genome sequence of P. polymyxa ATCC 842(T), the type strain of the species P. polymyxa, and the family Paenibacillaceae. The P. polymyxa genome contains a repertoire of biosynthetic genes for antibiotics and hydrolytic enzymes that account for its beneficial effects in the rhizosphere to the host plants it associates with.  相似文献   

16.
Aim:  To find sustainable alternatives to the application of synthetic chemicals for oomycete pathogen suppression.
Methods and Results:  Here, we present experiments on an Arabidopsis thaliana model system in which we studied the antagonistic properties of rhizobacterium Paenibacillus polymyxa strains towards the oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum . We carried out studies on agar plates, in liquid media and in soil. Our results indicate that P. polymyxa strains significantly reduced P. aphanidermatum and P. palmivora colonization in liquid assays. Most plants that had been treated with P. polymyxa survived the P. aphanidermatum inoculations in soil assays.
Conclusions:  The antagonistic abilities of both systems correlated well with mycoidal substance production and not with the production of antagonistic substances from the biocontrol bacteria.
Significance and Impact of the Study:  Our experiments highlight the need to take biofilm formation and niche exclusion mechanisms into consideration for biocontrol assays performed under natural conditions.  相似文献   

17.
18.
1株抗菌植物内生菌EJH-2菌株的分离和鉴定   总被引:13,自引:0,他引:13  
目的从中药植物金银花的组织中分离到1株具有抗菌活性的植物内生菌EJH-2菌株,并对其进行了分子生物学鉴定。方法通过总DNA提取,PCR扩增,得到1300bp的16S rRNA序列。PCR产物序列通过BLAST软件在NCBI网站中进行同源性比较。通过Bioedit7.0和Treedrawing软件绘制系统发育树。结果EJH-2的16SrRNA序列和数据库中的类多粘芽胞杆菌KCTC 1663菌株的序列的同源性为99.76%。在系统发育树中,EJH-2菌株和多粘类芽胞杆菌在同一分支。结论EJH-2菌株应归属于多粘类芽胞杆菌(Paenibacillus polymyxa)。  相似文献   

19.
Paenibacillus polymyxa invades plant roots and forms biofilms   总被引:3,自引:0,他引:3  
Paenibacillus polymyxa is a plant growth-promoting rhizobacterium with a broad host range, but so far the use of this organism as a biocontrol agent has not been very efficient. In previous work we showed that this bacterium protects Arabidopsis thaliana against pathogens and abiotic stress (S. Timmusk and E. G. H. Wagner, Mol. Plant-Microbe Interact. 12:951-959, 1999; S. Timmusk, P. van West, N. A. R. Gow, and E. G. H. Wagner, p. 1-28, in Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa, 2003). Here, we studied colonization of plant roots by a natural isolate of P. polymyxa which had been tagged with a plasmid-borne gfp gene. Fluorescence microscopy and electron scanning microscopy indicated that the bacteria colonized predominantly the root tip, where they formed biofilms. Accumulation of bacteria was observed in the intercellular spaces outside the vascular cylinder. Systemic spreading did not occur, as indicated by the absence of bacteria in aerial tissues. Studies were performed in both a gnotobiotic system and a soil system. The fact that similar observations were made in both systems suggests that colonization by this bacterium can be studied in a more defined system. Problems associated with green fluorescent protein tagging of natural isolates and deleterious effects of the plant growth-promoting bacteria are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号