首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Resonance Raman spectra are reported for native horseradish peroxidase (HRP) and cytochrome c peroxidase (CCP) at 290, 77 and 9 K, using 406.7 nm excitation, in resonance with the Soret electronic transition. The spectra reveal temperature-dependent equilibria involving changes in coordination or spin state. At 290 K and pH 6.5, CCP contains a mixture of 5- and 6-coordinate high-spin FeIII heme while at 9 K the equilibrium is shifted entirely to the 6-coordinate species. The spectra indicate weak binding of H2O to the heme Pe, consistent with the long distance, 2.4 Å, seen in the crystal structure. At 290 K HRP also contains a mixture of high-spin FeIII hemes with the 5-coordinate form predominant. At low temperature, a small 6-coordinate high-spin component remains but the 5-coordinate high-spin spectrum is replaced by another which is characteristic either of 6-coordinate low-spin or 5-coordinate intermediate spin heme. The latter species is definitely indicated by previous EPR studies at low temperature. This behavior implies that, in contrast to CCP, the distal coordination site of HRP is only partially occupied by H2O at any temperature and that lowering the temperature significantly weakens the Fe-proximal imidazole bond. Consistent with this inference, the 77 K spectrum of reduced HRP shows an appreciable fraction of molecules having an Fe-imidazole stretching frequency of 222 cm−1, a value indicating weakened H-bonding of the proximal imidazole.Resonance Roman spectroscopyHorseradish peroxidaseCytochrome c peroxidaseCoordination equilibrium  相似文献   

2.
The high-frequency resonance Raman spectra of FeIII yeast native cytochrome c peroxidase (CCP) and five of its mutants [CCP(MI), Phe-51, Leu-48, Lys-48, Asn-235, and Phe-191] were recorded in phosphate buffer, pH 7.0, and in glycerol/phosphate mixtures at 295 and 10 K. Glycerol induces heme coordination changes in some of the CCP mutants at room temperature. It apparently weakens the binding of the Fe atom to ligands in the distal heme cavity and drives the heme toward the 5-coordinate, high-spin state. At 10 K, native CCP and all the mutants (except Phe-51 which remains 6-coordinate, high-spin) show various distributions of spin and coordination states which differ from those observed at 295 K. Upon cooling in phosphate buffer, pH 7, and to a much lesser extent in 66% glycerol/phosphate, an internal strong-field ligand is coordinated to the Fe. A likely candidate is H2O-595, which could become a strong-field ligand on H-bonding and/or proton transfer to H2O-648, and/or the distal His-52. However, distal His-52 itself cannot be ruled out as the coordinating ligand considering that the Phe-51 mutant, which binds H2O-595 at room temperature, does not show a large 6-coordinate, low-spin component at 10 K like the other mutants. These results clearly indicate that the Fe coordination in CCP and its mutants is sensitive to both temperature and solvent composition.  相似文献   

3.
Resonance Raman (RR) spectra of the acidic form of FeIII horseradish peroxidase (HRP) were obtained at room and low temperatures using B- and Q-band excitation. At 296 K, HRP exhibits two sets of porphyrin skeletal stretching frequencies which are attributed to a thermal mixture of 5- and 6-coordinate high-spin FeIII states. When the temperature is lowered, the observed bands shift to higher frequencies, and these are assigned to intermediate- and low-spin states. Addition of 40% glycerol has no effect on the spectra at 296 K, but at 20 K, all four frequency sets are observed corresponding to the two forms observed at room and low temperature in the absence of glycerol. The 296 K RR spectrum of the HRP-hydroquinone complex is similar to that of free HRP, but conversion to the intermediate- and low-spin states is complete at a higher temperature than in the free enzyme. Addition of benzohydroxamic acid (BHA) to HRP shifts the RR frequencies to those corresponding to a 6-coordinate high-spin species at both room and low temperature. Two upsilon (C = C) stretching modes are observed for HRP and its donor complexes, indicating that the vinyl groups are inequivalent. On BHA binding, one of the vinyl modes and upsilon 37 (Eu) are enhanced, suggesting symmetry lowering of the heme site.  相似文献   

4.
Yeast cytochrome c peroxidase (CCP) efficiently catalyzes the reduction of H2O2 to H2O by ferrocytochrome c in vitro. The physiological function of CCP, a heme peroxidase that is targeted to the mitochondrial intermembrane space of Saccharomyces cerevisiae, is not known. CCP1-null-mutant cells in the W303-1B genetic background (ccp1Δ) grew as well as wild-type cells with glucose, ethanol, glycerol or lactate as carbon sources but with a shorter initial doubling time. Monitoring growth over 10 days demonstrated that CCP1 does not enhance mitochondrial function in unstressed cells. No role for CCP1 was apparent in cells exposed to heat stress under aerobic or anaerobic conditions. However, the detoxification function of CCP protected respiring mitochondria when cells were challenged with H2O2. Transformation of ccp1Δ with ccp1W191F, which encodes the CCPW191F mutant enzyme lacking CCP activity, significantly increased the sensitivity to H2O2 of exponential-phase fermenting cells. In contrast, stationary-phase (7-day) ccp1Δ-ccp1W191F exhibited wild-type tolerance to H2O2, which exceeded that of ccp1Δ. Challenge with H2O2 caused increased CCP, superoxide dismutase and catalase antioxidant enzyme activities (but not glutathione reductase activity) in exponentially growing cells and decreased antioxidant activities in stationary-phase cells. Although unstressed stationary-phase ccp1Δ exhibited the highest catalase and glutathione reductase activities, a greater loss of these antioxidant activities was observed on H2O2 exposure in ccp1Δ than in ccp1Δ-ccp1W191F and wild-type cells. The phenotypic differences reported here between the ccp1Δ and ccp1Δ-ccp1W191F strains lacking CCP activity provide strong evidence that CCP has separate antioxidant and signaling functions in yeast.  相似文献   

5.
Five heterometallic compounds with formulae [Ba(H2O)4Cr2(μ-OH)2(nta)2] · 3H2O (I), [M(bpy)2(H2O)2] [Cr2(OH)2(nta)2] · 7H2O, where M2+ = Zn, (II); Ni, (III); Co, (IV) and [Mn(H2O)3(bpy)Cr2(OH)2(nta)2] · (bpy) · 5H2O (V); bpy = 2,2′-bipyridine, (nta = nitrilotriacetate ion) have been prepared by reaction of I with the corresponding MII-sulfates in the presence of 2,2′-bipyridine. Substances I–V have been characterized by magnetic susceptibility measurements, EPR and X-ray determinations. I represents a 2D coordination polymer formed by coordination of centrosymmetrical dimeric chromium(III) units and Barium cations. The 10-coordinate Ba polyhedron is completed by four water molecules. Compounds II–IV are isostructural and consist of non-centrosymmetric dimeric anions [Cr2(μ-OH)2(nta)2]2−, complex cations [MII(bpy)2(H2O)2]2+ and solvate water molecules. The octahedral coordination of chromium atoms implies four donor atoms of the nta3− ligands and two bridging OH groups. Multiple hydrogen bonds of coordinated and solvate water molecules link anions and cations in a 3D network. A similar [Cr2(μ-OH)2(nta)2]2− unit is found in V. The bridging function is performed by a carboxylate oxygen atom of the nta ligand that leads to the formation of a trinuclear complex [Mn(bpy)(H2O)2Cr2(μ-OH)2(nta)2]. Experimental and calculated frequency and temperature dependences of EPR spectra of these compounds are presented. The fine structure appearing on the EPR spectra of compound V is analyzed in detail at different temperatures. It is established that the main part of the EPR signals is due to the transitions in the spin states of a spin multiplet with S = 2. Analyses of experimental and calculated spectra confirm the absence of interaction between metal ions (MII) and Cr-dimers in complexes III and IV and the presence of weak Mn–Cr interactions in V. The temperature dependence of magnetic susceptibilities for I–V was fitted on the basis of the expression derived from isotropic Hamiltonian including a bi-quadratic exchange term.  相似文献   

6.
The molecular structure of the title complexes [Fe(H2O)4][Fe(Hedta)(H2O)]2 · 4H2O (I) and [Fe(H[2edta)(H2O)] · 2H2O (II) have been determined by single-crystal X-ray analyses. The crystal data are as follows: I: monoclinic, P21/n, A = 11.794(2), B = 15.990(2), C = 9.206(2) Å, β = 90.33(1)°, V = 1736.1(5) Å3, Z = 2 and R = 0.030; II: monoclinic, C2/c, A = 11.074(2), B = 9.856(2), C = 14.399(2) Å, β = 95.86(1)°, V = 1563.3(4) Å3, Z = 4 and R = 0.025. I is found to be isomorphous with the MnII analog reported earlier and to contain a seven-coordinate and approximately pentagonal-bipyramidal (PB) [FeII(Hedta)(H2O] unit in which Hedta acts as a hexadentate ligand. The [FeII(H2edta)(H2O)] unit in II has also a seven-coordinate PB structure with the two protonated equatorial glycine arms both remaining coordinated, and thus bears a structural resemblance to the seven-coordinate [CoII(H2edta)(H2O)] reported previously.  相似文献   

7.
Complexes of type A4[VO(tart)]2·nH2O, where A = Rb or Cs and tart =d,l-tartrate(4−) (n = 2) or d,d-tartrate(4−) (n = 2 for Rb and n = 3 for Cs), were prepared from an aqueous mixture of V2O5, AOH and H4tart. These complexes were studied by single-crystal X-ray diffraction methods: Rb4[VO(d,l-tart)]2·2H2O, space group P1 with a = 8.156(1),b = 8.246(1),c = 8.719(1)Å, = 66.09(1)°, β = 65.07(1)°, γ = 82.40(1)°,Z = 2, 1917 observed reflections, and final Rw = 0.035; Cs4[VO(d,l-tart)]2·2H2O, space group P21/c with a = 9.350(1),b = 13.728(2),c = 8.479(1)Å, β = 106.77(1)°,Z = 4, 2235 observed reflections, and final Rw = 0.054; Rb4[VO(d,d-tart)]2·2H2O, space group P4122 with a = 8.072(1),c = 32.006(3)Å,Z = 8, 1014 observed reflections and final Rw = 0.038; Cs4[VO(d,d-tart)]2·3H2O, space group P122 with a = 8.184(1),c = 33.680(5)Å,Z = 8, 1310 observed reflections, and final Rw = 0.063. Bulk magnetic susceptibility data (1.5–300 K) for these compounds and A4[VOl,l-tart)]2·nH2O (A = Rb, Cs) were obtained on polycrystalline samples. These data were analyzed in terms of a Van Vleck exchange coupled S = 1/2 model which was modified to include an interdimer exchange parameters Θ. Analysis of the low-temperature (1.5–20 K) susceptibility data gave 2J = +1.30 cm−1 and Θ = −1.86 K for Rb4[VO(d,l-tart)]2·2H2O, 2J = +1.16 cm−1 and Θ = −1.69 K for Cs4[VO(d,l-tart)]2·2H2O, 2J = +1.90 cm−1 and Θ = −0.82 K for Rb4[VO(d,d-tart)]2·2H2O, 2J = +2.04 cm−1 and Θ = −0.80 K for Rb4[VO(l,l-tart)]2·2H2O, 2J = +1.52 cm−1 and Θ = −0.25 K for Cs4[VO(d,d-tart)]2·3H2O, and 2J = +1.64 cm−1 and Θ = −0.31 K for Cs4[VO(l,l-tart)]2·3H2O. These results suggest the magnitudes of intradimer (ferromagnetic and interdimer (antiferromagnetic) exchange interactions are similar in these complexes, as observed for the analogous Na salts.  相似文献   

8.
The syntheses and structures of [Ni(H2O)6]2+[MF6]2− (M = Ti,Zr,Hf) and Ni3(py)12F6·7H2O are reported. The former three compounds are isostructural, crystallizing in the trigonal space group (No. 148) with Z = 3. The lattice parameters are a = 9.489(4), C = 9.764(7) Å, with V = 761(1) Å3 for Ti; a = 9.727(2), C = 10.051(3) Å, with V = 823.6(6) Å3 for Zr; and a = 9.724(3), C = 10.028(4)Å, with V = 821.2(8)Å3 for Hf. The structures consist of discrete [Ni(H2O)6]2+ and [MF6]2− octahedra joined by O---HF hydrogen bond Large single crystals were grown in an aqueous hydrofluoric acid solution. Ni3(py)12F6·7H2O crystallizes in the monoclinic space group I2/a (No. 15) with Z = 4. The lattice parameters are a = 16.117(4), B = 8.529(3), C = 46.220(7) Å, β = 92.46(2)°, and V = 6348(5) Å3. The structure consists of discrete Ni(py)4F2 octahedra linked through H---O---HF and H---O---HO hydrogen bonding interactions. Single c were grown from a (HF)x·pyridine/pyridine/water solution.  相似文献   

9.
The interaction of horse ferricytochrome c with the reagents [Fe(EDTA)(H2O)] and [Cr(CN)6]3− were studied at pH 7 and 25°C by 1H-NMR spectroscopy. Two binding regions near to the heme crevice of cytochrome c were identified. Both regions bound both reagents but they exhibited different selectivities.

The relevance of this finding to the electron-transfer function of cytochrome c is discussed.  相似文献   


10.
The chlorocadmate(II) systems of (H2me2pipz)[Cd2Cl6(H2O)2] (1) and (H2mepipz)2[Cd3Cl10(H2O)] (2) (L = me2pipz = N,N′-dimethylpiperazine; L′ = mepipz = N-methylpiperazine) were prepared and their structural and thermal properties investigated. Compound 1 is monoclinic, space group P21/c, A = 7.664(1), B = 7.472(4), C = 15.347(1) Å, β = 99.468(7)°, Z = 2, R = 0.024. The crystal structure consists of organic cations and infinite one-dimensional chains of [CdCl3(H2O)]n3− anions. Each Cd atom is octahedrally surrounded by bridged and terminal chlorine atoms and by a water molecule, which is in trans position with respect to the terminal chlorine atom. Inter- and intrachain hydrogen bond interactions between the terminal chlorine atoms and the water molecules contribute to the crystal packing. Compound 2 is orthorhombic, space group Cmc21, A = 15.286(3), B = 13.354(3), C = 13.154(3) Å, R = 0.023. The crystal structure consists of organic dications and infinite chains of [Cd2Cl6(CdCl4H2O]n4− units running along the [001] axis. Each unit is formed of regularly alternate six-coordinated Cd atoms, one of them linking one pentacoordinated Cd atom which completes its coordination througha water molecule. A strong hydrogen bond interaction involving the organic dication and the inorganic chain contributes to the crystal packing. Differential hydrogen bond interaction involving the organic dication and the inorganic chain contributes to the crystal packing. Differential scanning calorimetry measurements did not show the presence of any structural phase transitions. The structures are compared with those of (H2pipz)[Cd2Cl6(H2O)2] (3), (H2mepipz)[Cd2Cl6(H2O)2]·H2O (4) and (H2mepipz)[Cd2Cl6] (5) (L = pipz = piperazine, L′ = mepipz = N-ethylpiperazine).  相似文献   

11.
Two compounds, [Eu(H2O)7][Al(OH)6Mo6O18] · 4H2O (1) and {(C2H5NO2)2[Eu(H2O)5]}[Al(OH)6Mo6O18] · 10H2O (2), have been synthesized by conventional solution method and determined by single-crystal X-ray diffraction. Compound 1 shows a 1D chain structure built up of alternating Anderson-type polyanions [Al(OH)6Mo6O18]3− and hydrated rare-earth ions Eu3+. Compound 2 displays a 3D supramolecular network structure containing 1D sandglass-like channels along c axis, which were occupied by repetitive array of (H2O)8 clusters. Extensive hydrogen bonds play an important role in the formation of the 3D structures of 1 and 2. Luminescence measurements reveal that 1 and 2 exhibit intense red and orange fluorescent emission at room temperature, respectively. Origin of the distinct emission can be assigned to the different site symmetries of Eu3+ centers in the two compounds. These results are consistent with the crystal structures of the two compounds.  相似文献   

12.
Ojha S  Hwang J  Kabil O  Penner-Hahn JE  Banerjee R 《Biochemistry》2000,39(34):10542-10547
Human cystathionine beta-synthase is one of two key enzymes involved in intracellular metabolism of homocysteine. It catalyzes a beta-replacement reaction in which the thiolate of homocysteine replaces the hydroxyl group of serine to give the product, cystathionine. The enzyme is unusual in its dependence on two cofactors: pyridoxal phosphate and heme. The requirement for pyridoxal phosphate is expected on the basis of the nature of the condensation reaction that is catalyzed; however the function of the heme in this protein is unknown. We have examined the spectroscopic properties of the heme in order to assign the axial ligands provided by the protein. The heme Soret peak of ferric cystathionine beta-synthase is at 428 nm and shifts to approximately 395 nm upon addition of the thiol chelator, mercuric chloride. This is indicative of 6-coordinate low-spin heme converting to a 5-coordinate high-spin heme. The enzyme as isolated exhibits a rhombic EPR signal with g values of 2.5, 2.3, and 1.86, which are similar to those of heme proteins and model complexes with imidazole/thiolate ligands. Mercuric chloride treatment of the enzyme results in conversion of the rhombic EPR signal to a g = 6 signal, consistent with formation of the high-spin ferric heme. The X-ray absorption data reveal that iron in ferric cystathionine beta-synthase is 6-coordinate, with 1 high-Z scatterer and 5 low-Z scatterers. This is consistent with the presence of 5 nitrogens and 1 sulfur ligand. Together, these data support assignment of the axial ligands as cysteinate and imidazole in ferric cystathionine beta-synthase.  相似文献   

13.
In vitro copper (II) complex presents antimitotic effects. In this work, we have studied the in vivo seasonal toxic effects of copper (II), ligand (H2L) and the complex [Cu(H2L)(H2O)2]Cl2·4H2O in male Swiss mice. During spring, an i.p. injection of CuCl2 in aqueous NaCl (9 g·l-1) up to 0.05 µmol·kg-1 b.w. (body weight) killed 60% of the rodents after 6 days. LD100 was up to 0.3 µmol·kg-1; H2L was well tolerated, while the complex was 30% lethal with 50 µmol·kg-1. In autumn, mice were less sensitive to CuCl2, and both ligand and complex were equally tolerated and this leads to the conclusion that, in vivo, chronotoxicities of copper (II) and complex in NaCl aqueous solutions are quite different in spring and autumn seasons.  相似文献   

14.
The reaction of H2[PtCl6] · 6H2O and (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O (18C6 = 18-crown-6) with 9-methylguanine (MeGua) proceeded with the protonation of MeGua forming 9-methylguaninium hexachloroplatinate(IV) dihydrate (MeGuaH)2[PtCl6] · 2H2O (1).The same compound was obtained from the reaction of Na2[PtCl6] with (MeGuaH)Cl.On the other hand, the reaction of guanosine (Guo) with (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O in methanol at 60 °C proceeded with the cleavage of the glycosidic linkage and with ligand substitution to give a guaninium complex of platinum(IV), [PtCl5(GuaH)] · 1.5(18C6) · H2O (2).Within several weeks in aqueous solution a slow reduction took place yielding the analogous guaninium platinum(II) complex, [PtCl3(GuaH)] · (18C6) · 2Me2CO (3).H2[PtCl6] · 6H2O and guanosine was found to react in water, yielding (GuoH)2[PtCl6] (4) and in ethanol at 50 °C, yielding [PtCl5(GuoH)] · 3H2O (5).Dissolution of complexes 2 and 5 in DMSO resulted in the substitution of the guaninium and guanosinium ligands, respectively, by DMSO forming [PtCl5(DMSO)].Reactions of 1-methylcytosine (MeCyt) and cytidine (Cyd) with H2[PtCl6] · 6H2O and(H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O resulted in the formation of hexachloroplatinates with N3 protonated pyrimidine bases as cation (MeCytH)2[PtCl6] · 2H2O (6) and (CydH)2[PtCl6] (7), respectively. Identities of all complexes were confirmed by 1H, 13C and 195Pt NMR spectroscopic investigations, revealing coordination of GuoH+ in complex 5 through N7 whereas GuaH+ in complex 3 may be coordinated through N7 or through N9. Solid state structure of hexachloroplatinate 1 exhibited base pairing of the cations yielding (MeGuaH+)2, whereas in complex 6 non-base-paired MeCytH+ cations were found. In both complexes, a network of hydrogen bonds including the water molecules was found. X-ray diffraction analysis of complex 3 exhibited a guaninium ligand that is coordinated through N9 to platinum and protonated at N1, N3 and N7. In the crystal, these NH groups form hydrogen bonds N–HO to oxygen atoms of crown ether molecules.  相似文献   

15.
The crystal structures of Li[Fe(trtda)]·3H2O and Na[Fe(eddda)]·5H2O (trtda = trimethylenediaminetetraacetate and eddda = ethylenediamine-N,N′-diacetate-N,N′-di-3-propionate) have been determined by single crystal X-ray diffraction techniques. The former crystal was monoclinic with the space group P21/n,a = 17.775(3),b = 10.261(1),c = 8.883(2)Å, β = 95.86(4)° and Z = 4. The latter was also monoclinic with the space group P21/n,a = 6.894(2),b = 20.710(6),c = 13.966(3)Å, β = 101.44(2)° and Z = 4. Both complex anions were found to adopt an octahedral six-coordinated structure with all of six ligand atoms of trdta4− or eddda4− coordinated to the Fe(III) ion, unlike the corresponding edta4− complex which is usually seven-coordinate with the seventh coordination site occupied by H2O. Of the three geometrical isomers possible for the eddda complex, the trans(O5) isomer was actually found in the latter crystal. Factors determining the structural types of metal–edta complexes are discussed in detail.  相似文献   

16.
The positive ion electrospray mass spectrometry (ESI-MS) of trans-[Ru(NO)Cl)(dpaH)2]Cl2 (dpaH=2,2′-dipyridylamine), obtained from the carrier solvent of H2O–CH3OH (50:50), revealed 1+ ions of the formulas [RuII(NO+)Cl(dpaH)(dpa)]+ (m/z=508), [RuIIICl(dpaH)(dpa)]+ (m/z=478), [RuII(NO+)(dpa)2]+ (m/z=472), [RuIII(dpa)2]+ (m/z=442), originating from proton dissociation from the parent [RuII(NO+)Cl(dpaH)2]2+ ion with subsequent loss of NO (17.4% of dissociative events) or loss of HCl (82.6% of dissociative events). Further loss of NO from the m/z=472 fragment yields the m/z=442 fragment. Thus, ionization of the NH moiety of dpaH is a significant factor in controlling the net ionic charge in the gas phase, and allowing preferential dissociation of HCl in the fragmentation processes. With NaCl added, an ion pair, {Na[RuII(NO)Cl(dpa)2]}+ (m/z=530; 532), is detectable. All these positive mass peaks that contain Ru carry a signature ‘handprint’ of adjacent m/z peaks due to the isotopic distribution of 104Ru, 102Ru, 101Ru, 99Ru, 98Ru and 96Ru mass centered around 101Ru for each fragment, and have been matched to the theoretical isotopic distribution for each set of peaks centered on the main isotope peak. When the starting complex is allowed to undergo aquation for two weeks in H2O, loss of the axial Cl is shown by the approximately 77% attenuation of the [RuII(NO+)Cl(dpaH)(dpa)]+ ion, being replaced by the [RuII(NO+)(H2O)(dpa)2]+ (m/z=490) as the most abundant high-mass species. Loss of H2O is observed to form [RuII(NO+)(dpa)2]+ (m/z=472). No positive ion mass spectral peaks were observed for RuCl3(NO)(H2O)2, ‘caged NO’. Negative ions were observed by proton dissociation forming [RuII(NO)Cl3(H2O)(OH)] in the ionization chamber, detecting the parent 1− ion at m/z=274, followed by the loss of NO as the main dissociative pathway that produces [RuIIICl3(H2O)(OH)] (m/z=244). This species undergoes reductive elimination of a chlorine atom, forming [RuIICl2(H2O)(OH)] (m/z=208). The ease of the NO dissociation is increased for the negative ions, which should be more able to stabilize a RuIII product upon NO loss.  相似文献   

17.
The hydrothermal reactions of (Ph4P)[VO2Cl2] and H2C2O4 at 150 and 125°C yield (Ph4P)2[V2O2(H2O)2(C2O4)3]·4H2O (1) and (Ph4P)[VOCl(C2O4)] (2), respectively. The structure of the molecular anion of 1 consists of a binuclear unit of oxovanadium(IV) octahedra bridged by a bisbidentate oxalate group. The VO6 coordination geometry at each vanadium site is defined by a terminal oxo group, an aquo ligand, and four oxygen donors — two from the bisbidentate bridging oxalate and two from the terminal bidentate oxalate. The structure of 2 consists of discrete Ph4P+ cations occupying regions between [VOCl(C2O4)] spiral chains. The structure of the one-dimensional anionic chain exhibits V(IV) octahedra bridged by bisbidentate oxalate groups. Crystal data: 1·4H2O, monoclinic P21/n, A = 12.694(3), B = 12.531(3), C = 17.17(3) Å, β = 106.32(2)°, V = 2621.3(13) Å3, Z = 2, Dcalc = 1.501 g cm−3, structure solution and refinement converged at a conventional residual of 0.0518; 2, tetragonal P43, A = 12.145(2), C = 15.991(3) Å, V = 2358.7(12) Å3, Z = 4, R = 0.0452.  相似文献   

18.
Mono- and di-manganese inclusion compounds 1 and 2 are reported. Two mono-manganese molecules Mn(bpy)2(NO3)2 (bpy=2,2′-bipyridine) and [Mn(bpy)2(NO3)(H2O)]·NO3 coexist in the mole ratio of 1:1 in the structure of 1, while two di-manganese molecules [Mn2O(bpy)2(phtha)2(H2O)2]·(NO3)2 (phtha=phthalate) and [Mn2O(bpy)2(phtha)2(NO3)(H2O)]·NO3 in the structure of 2. Refluxing Mn(NO3)2/bpy/phthalic acid reaction mixtures in CH3CN leads to the isolation of 1, further concentration of the reaction solution in raising temperature results in 2. The Mn1 and Mn2 units in the inclusion compounds 1 and 2 are similar to other reported Mn1 and Mn2 analogs, respectively. The Jahn–Teller distortion was observed to give rise to the elongation along the Oterminal---Mn---Ocarboxyl axes for all the four Mn(III) sites in 2, leading to unexpected longer Mn(III)---Oaqua than Mn(II)---Oaqua in 1. Extensive hydrogen bonding interactions among H2O, NO3 − and COOH were observed in the two inclusion compounds. Cyclic voltammetry of 2 in DMF displays two quasi-reversible redox couples at +0.10/+0.22 and −0.43/−0.36 V assigned to the Mn(III)Mn(IV)/2Mn(III) and 2Mn(III)/Mn(III)Mn(II), respectively. Variable temperature magnetic susceptibilities of 1 and 2 were measured. The data were fit to a model including axial zero-field splitting term and a good fit was found with D=1.77 cm−1, g=1.98 and F=1.48×10−5 for 1. For 2, the least-squares fitting of the experimental data led to J=2.37 cm−1, g=2.02 and D=0.75 cm−1 with R=1.45×10−3.  相似文献   

19.
The first crystal and molecular structure of a transition metal complex containing 1,2-dithiocroconate (1,2-dtcr, dianion of 1,2-dimercaptocylopent-1-ene-3,4,5-trione), [Cu(bpca)(H2O)]2[Cu(1,2-dtcr)2]·2H2O (where bpca is the bis(2-pyrdidylcarbonyl)amide anion), has been determined by single crystal X-ray diffraction methods. The compound crystallizesin the monoclinic syste, space group P21/c, with a = 11.661(3), b = 20.255(6), c = 8.265(3) Å, ß = 107.26(2)° and Z = 2. The structure is formally built of [Cu(1,2-dtcr)2]2− and [Cu(bpca)(H2O)]+ ions and water of hydration. The copper atom of the anion is situated at a crystallographic inversion centre, bonded to four sulfur atoms in a planar, approximately square arrangement. In the cation the copper equatorial plane is formed by the three nitrogen atoms of the bpca ligand and a water oxygen atom. In addition there is a very weak axial bond to one of the sulfur atoms of a 1,2-dtcr ligand in the anion. Through these latter weak bonds each anion is connected to, and sandwiched between, two cations, resulting in neutral, trinuclear, centrosymmetric formula units. The triple-decker molecules are arranged in stacks along the crystallographic a-axis creating close contacts between the terminal copper atoms and bpca groups of the neighbouring molecules. This intermolecular interaction is, however, too weak to define the structure as a chain compound. The distance between adjacent copper atoms within the trinuclear unit is 4.189(1) Å, while the shortest intra-stack metal-metal separation between terminal copper atoms is 5.281(1) Å. Variable-temperature magnetic susceptibility measurements in the temperature r.2–140 K reveal that a Curie law is followed; with three non-interacting copper(II) ions in the formula unit.  相似文献   

20.
Two new multi-cobalt-containing polyoxotungstates K4Na6Co2(H2O)12{Co(H2O)4[Co2(H2O)10Co4(H2O)2(B--SiW9O34)2]2} · 40H2O (1) and K10Na2[Co4(H2O)2(GeW9O34)2] · 20H2O (2) have been obtained by the routine synthetic reactions in aqueous solution. The polyoxoanion framework of 1 consists of two sandwich-type polyoxoanions [Co4(H2O)2(B--SiW9O34)2]12− connected together by a [CoO2(H2O)4] cluster to constitute the sandwich dimer, and then, four isolated Co(H2O)5 cations coordinate to the dimer through four μ2-O atoms. The polyoxoanion 2 is isomorphic to the sandwich-type polyoxoanion [Co4(H2O)2(B--SiW9O34)2]12− in 1. The magnetic property of compound 1 has been studied by measuring its magnetic susceptibility in the temperature range 2.0–300.0 K, indicating the existence of intramolecular ferromagnetic Co–Co interactions, and, the electrochemical properties of 1 and 2 are detected in the pH 4 buffer solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号