首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the grand goals of historical biogeography is to understand how and why species'' population sizes and distributions change over time. Multiple types of data drawn from disparate fields, combined into a single modelling framework, are necessary to document changes in a species''s demography and distribution, and to determine the drivers responsible for change. Yet truly integrated approaches are challenging and rarely performed. Here, we discuss a modelling framework that integrates spatio-temporal fossil data, ancient DNA, palaeoclimatological reconstructions, bioclimatic envelope modelling and coalescence models in order to statistically test alternative hypotheses of demographic and potential distributional changes for the iconic American bison (Bison bison). Using different assumptions about the evolution of the bioclimatic niche, we generate hypothetical distributional and demographic histories of the species. We then test these demographic models by comparing the genetic signature predicted by serial coalescence against sequence data derived from subfossils and modern populations. Our results supported demographic models that include both climate and human-associated drivers of population declines. This synthetic approach, integrating palaeoclimatology, bioclimatic envelopes, serial coalescence, spatio-temporal fossil data and heterochronous DNA sequences, improves understanding of species'' historical biogeography by allowing consideration of both abiotic and biotic interactions at the population level.  相似文献   

2.
3.
Biotic interactions influence species niches and may thus shape distributions. Nevertheless, species distribution modelling has traditionally relied exclusively on environmental factors to predict species distributions, while biotic interactions have only seldom been incorporated into models. This study tested the ability of incorporating biotic interactions, in the form of host plant distributions, to increase model performance for two host‐dependent lepidopterans of economic interest, namely the African silk moth species, Gonometa postica and Gonometa rufobrunnea (Lasiocampidae). Both species are dependent on a small number of host tree species for the completion of their life cycle. We thus expected the host plant distribution to be an important predictor of Gonometa distributions. Model performance of a species distribution model trained only on abiotic predictors was compared to four species distribution models that additionally incorporated biotic interactions in the form of four different representations of host plant distributions as predictors. We found that incorporating the moth–host plant interactions improved G. rufobrunnea model performance for all representations of host plant distribution, while for G. postica model performance only improved for one representation of host plant distribution. The best performing representation of host plant distribution differed for the two Gonometa species. While these results suggest that incorporating biotic interactions into species distribution models can improve model performance, there is inconsistency in which representation of the host tree distribution best improves predictions. Therefore, the ability of biotic interactions to improve species distribution models may be context‐specific, even for species which have obligatory interactions with other organisms.  相似文献   

4.
Fossils represent invaluable data to reconstruct the past history of life, yet fossil-rich sites are often rare and difficult to find. The traditional fossil-hunting approach focuses on small areas and has not yet taken advantage of modelling techniques commonly used in ecology to account for an organism’s past distributions. We propose a new method to assist finding fossils at continental scales based on modelling the past distribution of species, the geological suitability of fossil preservation and the likelihood of fossil discovery in the field, and apply it to several genera of Australian megafauna that went extinct in the Late Quaternary. Our models predicted higher fossil potentials for independent sites than for randomly selected locations (mean Kolmogorov-Smirnov statistic = 0.66). We demonstrate the utility of accounting for the distribution history of fossil taxa when trying to find the most suitable areas to look for fossils. For some genera, the probability of finding fossils based on simple climate-envelope models was higher than the probability based on models incorporating current conditions associated with fossil preservation and discovery as predictors. However, combining the outputs from climate-envelope, preservation, and discovery models resulted in the most accurate predictions of potential fossil sites at a continental scale. We proposed potential areas to discover new fossils of Diprotodon, Zygomaturus, Protemnodon, Thylacoleo, and Genyornis, and provide guidelines on how to apply our approach to assist fossil hunting in other continents and geological settings.  相似文献   

5.
Inferring speciation times under an episodic molecular clock   总被引:5,自引:0,他引:5  
We extend our recently developed Markov chain Monte Carlo algorithm for Bayesian estimation of species divergence times to allow variable evolutionary rates among lineages. The method can use heterogeneous data from multiple gene loci and accommodate multiple fossil calibrations. Uncertainties in fossil calibrations are described using flexible statistical distributions. The prior for divergence times for nodes lacking fossil calibrations is specified by use of a birth-death process with species sampling. The prior for lineage-specific substitution rates is specified using either a model with autocorrelated rates among adjacent lineages (based on a geometric Brownian motion model of rate drift) or a model with independent rates among lineages specified by a log-normal probability distribution. We develop an infinite-sites theory, which predicts that when the amount of sequence data approaches infinity, the width of the posterior credibility interval and the posterior mean of divergence times form a perfect linear relationship, with the slope indicating uncertainties in time estimates that cannot be reduced by sequence data alone. Simulations are used to study the influence of among-lineage rate variation and the number of loci sampled on the uncertainty of divergence time estimates. The analysis suggests that posterior time estimates typically involve considerable uncertainties even with an infinite amount of sequence data, and that the reliability and precision of fossil calibrations are critically important to divergence time estimation. We apply our new algorithms to two empirical data sets and compare the results with those obtained in previous Bayesian and likelihood analyses. The results demonstrate the utility of our new algorithms.  相似文献   

6.
7.
One way the effects of both ecology and environment on species can be observed in the fossil record is as changes in geographical distribution and range size. The prevalence of competitive interactions and species replacements in the fossil record has long been investigated and many evolutionary perspectives, including those of Darwin, have emphasized the importance of competitive interactions that ultimately lead one species to replace another. However, evidence for such phenomena in the fossil record is not always manifest. Here we use new quantitative analytical techniques based on Geographical Information Systems and PaleoGIS tectonic reconstructions to consider this issue in greater detail. The abundant, well-preserved fossil marine vertebrates of the Late Cretaceous Western Interior Seaway of North America provide the component data for this study. Statistical analysis of distributional and range size changes in taxa confirms earlier ideas that the relative frequency of competitive replacement in the fossil record is limited to non-existent. It appears that typically, environmental gradients played the primary role in determining species distributions, with competitive interactions playing a more minor role.  相似文献   

8.
Prediction of plant species distributions across six millennia   总被引:1,自引:0,他引:1  
The usefulness of species distribution models (SDMs) in predicting impacts of climate change on biodiversity is difficult to assess because changes in species ranges may take decades or centuries to occur. One alternative way to evaluate the predictive ability of SDMs across time is to compare their predictions with data on past species distributions. We use data on plant distributions, fossil pollen and current and mid-Holocene climate to test the ability of SDMs to predict past climate-change impacts. We find that species showing little change in the estimated position of their realized niche, with resulting good model performance, tend to be dominant competitors for light. Different mechanisms appear to be responsible for among-species differences in model performance. Confidence in predictions of the impacts of climate change could be improved by selecting species with characteristics that suggest little change is expected in the relationships between species occurrence and climate patterns.  相似文献   

9.
The sizes of organisms are determined by their interactions with their environment and related ecological and evolutionary processes. Recent studies of body size distributions across communities show evidence for multimodality. The multiple modes were originally explained as a consequence of textural discontinuities in habitat structure. Because communities consist of species that are drawn from lineages, body size patterns within lineages will affect those that are expressed in communities. We used a cellular automation model to argue that multimodality in body sizes within lineages can arise from a few fundamental evolutionary mechanisms alone. We tested the hypothesis using body size data for 138 fish genera and found strong support for the idea that evolution structures body size distributions. The results suggest, first, that we should expect the distribution of body sizes within lineages to be multimodal and second, that a coherent theory of community body size distributions will need to combine both evolutionary and ecological perspectives. Received 28 January 2002; accepted 21 March 2002  相似文献   

10.
The ability of palaeontologists to correctly diagnose and classify new fossil species from incomplete morphological data is fundamental to our understanding of evolution. Different parts of the vertebrate skeleton have different likelihoods of fossil preservation and varying amounts of taxonomic information, which could bias our interpretations of fossil material. Substantial previous research has focused on the diversity and macroevolution of non-avian theropod dinosaurs. Theropods provide a rich dataset for analysis of the interactions between taxonomic diagnosability and fossil preservation. We use specimen data and formal taxonomic diagnoses to create a new metric, the Likelihood of Diagnosis, which quantifies the diagnostic likelihood of fossil species in relation to bone preservation potential. We use this to assess whether a taxonomic identification bias impacts the non-avian theropod fossil record. We find that the patterns of differential species abundance and clade diversity are not a consequence of their relative diagnosability. Although there are other factors that bias the theropod fossil record that are not investigated here, our results suggest that patterns of relative abundance and diversity for theropods might be more representative of Mesozoic ecology than often considered.  相似文献   

11.
Biotic interactions have been considered as an important factor to be included in species distribution modelling, but little is known about how different types of interaction or different strategies for modelling affect model performance. This study compares different methods for including interspecific interactions in distribution models for bees, their brood parasites, and the plants they pollinate. Host–parasite interactions among bumble bees (genus Bombus: generalist pollinators and brood parasites) and specialist plant–pollinator interactions between Centris bees and Krameria flowers were used as case studies. We used 7 different modelling algorithms available in the BIOMOD R package. For Bombus, the inclusion of interacting species distributions generally increased model predictive accuracy. The improvement was better when the interacting species was included with its raw distribution rather than with its modeled suitability. However, incorporating the distributions of non‐interacting species sometimes resulted in similarly increased model accuracy despite their being no significance of any interaction for the distribution. For the Centris‐Krameria system the best strategy for modelling biotic interactions was to include the interacting species model‐predicted values. However, the results were less consistent than those for Bombus species, and most models including biotic interactions showed no significant improvement over abiotic models. Our results are consistent with previous studies showing that biotic interactions can be important in structuring species distributions at regional scales. However, correlations between species distributions are not necessarily indicative of interactions. Therefore, choosing the correct biotic information, based on biological and ecological knowledge, is critical to improve the accuracy of species distribution models and forecast distribution change.  相似文献   

12.
Organic geochemical analyses are presented for a fossil Liriodendron sp. from the Miocene, Clarkia Flora of Northern Idaho. Flavonoid profiles determined for the fossil and two extent species of Liriodendron (L. chinense and L. tulipifera) confirm the generic status of the fossil material, but owing to a generic uniformity in flavonoid composition, fail to resolve taxonomic affinities at the species level. Steroid and other cycloalkane-alkene profiles indicate that the fossil taxon has a greater chemical similarity with L. chinense than L. tulipifera, despite the general leaf outline similarity between the fossil species and extent L. tulipifera. The morphologic and chemical data are interpreted as evidence for mosaic evolution within the genus, and the non-canalization of character states in some Miocene species.  相似文献   

13.
The genus Macaca: a review of taxonomy and evolution   总被引:1,自引:0,他引:1  
  相似文献   

14.
Reconstructing evolutionary patterns and their underlying processes is a central goal in biology. Yet many analyses of deep evolutionary histories assume that data from the fossil record is too incomplete to include, and rely solely on databases of extant taxa. Excluding fossil taxa assumes that character state distributions across living taxa are faithful representations of a clade's entire evolutionary history. Many factors can make this assumption problematic. Fossil taxa do not simply lead‐up to extant taxa; they represent now‐extinct lineages that can substantially impact interpretations of character evolution for extant groups. Here, we analyze body mass data for extant and fossil canids (dogs, foxes, and relatives) for changes in mean and variance through time. AIC‐based model selection recovered distinct models for each of eight canid subgroups. We compared model fit of parameter estimates for (1) extant data alone and (2) extant and fossil data, demonstrating that the latter performs significantly better. Moreover, extant‐only analyses result in unrealistically low estimates of ancestral mass. Although fossil data are not always available, reconstructions of deep‐time organismal evolution in the absence of deep‐time data can be highly inaccurate, and we argue that every effort should be made to include fossil data in macroevolutionary studies.  相似文献   

15.
It is essential to accurately model species distributions and biodiversity in response to many ecological and conservation challenges. The primary means of reliable decision-making on conservation priority are the data on the distributions and abundance of species. However, finding data that is accurate and reliable for predicting species distribution could be challenging. Data could come from different sources, with different designs, coverage, and potential sampling biases. In this study, we examined the emerging methods of modelling species distribution that integrate data from multiple sources such as systematic or standardized and casual or occasional surveys. We applied two modelling approaches, “data-pooling” and “ model-based data integration” that each involves combining various datasets to measure environmental interactions and clarify the distribution of species. Our paper demonstrates a reliable data integration workflow that includes gathering information on model-based data integration, creating a sub-model of each dataset independently, and finally, combining it into a single final model. We have shown that this is a more reliable way of developing a model than a data pooling strategy that combines multiple data sources to fit a single model. Moreover, data integration approaches could improve the poor predictive performance of systematic small datasets, through model-based data integration techniques that enhance the predictive accuracy of Species Distribution Models. We also identified, consistent with previous research, that machine learning algorithms are the most accurate techniques to predict bird species distribution in our heterogeneous study area in the western Swiss Alps. In particular, tree-dependent ensembles of Random Forest (RF) contribute to a better understanding of the interactions between species and the environment.  相似文献   

16.
17.
The study of species co-occurrences has been central in community ecology since the foundation of the discipline. Co-occurrence data are, nevertheless, a neglected source of information to model species distributions and biogeographers are still debating about the impact of biotic interactions on species distributions across geographical scales. We argue that a theory of species co-occurrence in ecological networks is needed to better inform interpretation of co-occurrence data, to formulate hypotheses for different community assembly mechanisms, and to extend the analysis of species distributions currently focused on the relationship between occurrences and abiotic factors. The main objective of this paper is to provide the first building blocks of a general theory for species co-occurrences. We formalize the problem with definitions of the different probabilities that are studied in the context of co-occurrence analyses. We analyze three species interactions modules and conduct multi-species simulations in order to document five principles influencing the associations between species within an ecological network: (i) direct interactions impact pairwise co-occurrence, (ii) indirect interactions impact pairwise co-occurrence, (iii) pairwise co-occurrence rarely are symmetric, (iv) the strength of an association decreases with the length of the shortest path between two species, and (v) the strength of an association decreases with the number of interactions a species is experiencing. Our analyses reveal the difficulty of the interpretation of species interactions from co-occurrence data. We discuss whether the inference of the structure of interaction networks is feasible from co-occurrence data. We also argue that species distributions models could benefit from incorporating conditional probabilities of interactions within the models as an attempt to take into account the contribution of biotic interactions to shaping individual distributions of species.  相似文献   

18.
19.
Estimation of divergence times is usually done using either the fossil record or sequence data from modern species. We provide an integrated analysis of palaeontological and molecular data to give estimates of primate divergence times that utilize both sources of information. The number of preserved primate species discovered in the fossil record, along with their geological age distribution, is combined with the number of extant primate species to provide initial estimates of the primate and anthropoid divergence times. This is done by using a stochastic forwards-modeling approach where speciation and fossil preservation and discovery are simulated forward in time. We use the posterior distribution from the fossil analysis as a prior distribution on node ages in a molecular analysis. Sequence data from two genomic regions (CFTR on human chromosome 7 and the CYP7A1 region on chromosome 8) from 15 primate species are used with the birth-death model implemented in mcmctree in PAML to infer the posterior distribution of the ages of 14 nodes in the primate tree. We find that these age estimates are older than previously reported dates for all but one of these nodes. To perform the inference, a new approximate Bayesian computation (ABC) algorithm is introduced, where the structure of the model can be exploited in an ABC-within-Gibbs algorithm to provide a more efficient analysis.  相似文献   

20.
Climate change is expected to alter biotic interactions, and may lead to temporal and spatial mismatches of interacting species. Although the importance of interactions for climate change risk assessments is increasingly acknowledged in observational and experimental studies, biotic interactions are still rarely incorporated in species distribution models. We assessed the potential impacts of climate change on the obligate interaction between Aeshna viridis and its egg-laying plant Stratiotes aloides in Europe, based on an ensemble modelling technique. We compared three different approaches for incorporating biotic interactions in distribution models: (1) We separately modelled each species based on climatic information, and intersected the future range overlap (‘overlap approach’). (2) We modelled the potential future distribution of A. viridis with the projected occurrence probability of S. aloides as further predictor in addition to climate (‘explanatory variable approach’). (3) We calibrated the model of A. viridis in the current range of S. aloides and multiplied the future occurrence probabilities of both species (‘reference area approach’). Subsequently, all approaches were compared to a single species model of A. viridis without interactions. All approaches projected a range expansion for A. viridis. Model performance on test data and amount of range gain differed depending on the biotic interaction approach. All interaction approaches yielded lower range gains (up to 667% lower) than the model without interaction. Regarding the contribution of algorithm and approach to the overall uncertainty, the main part of explained variation stems from the modelling algorithm, and only a small part is attributed to the modelling approach. The comparison of the no-interaction model with the three interaction approaches emphasizes the importance of including obligate biotic interactions in projective species distribution modelling. We recommend the use of the ‘reference area approach’ as this method allows a separation of the effect of climate and occurrence of host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号