共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In previous studies on plant cells, antibodies directed against intermediate filaments (IFs) have shown that IF antigens are distributed in one of two quite distinct forms. The first co-distributes with each of the four microtubule arrays (cortical, preprophase band, spindle and phragmoplast), while the second form is associated with cytoplasmic paracrystalline fibrillar bundles (FBs) of 10 nm filaments. Conditions allowing one form to be labelled with antibody have generally proved unsuitable for labelling of the other; this has prevented the simultaneous visualization of the two forms of IF antigen in plants and the study of any possible physical relationships between them at the electron microscopic level. In this paper, we show that ME 101, which recognizes an epitope in the N-terminal portion of all classes of intermediate filaments, stains both forms of plant IF antigen simultaneously in tobacco suspension cells using immunofluorescence or immunogold labelling techniques. These cells contain in their cortex short (ca. l m) fibrillar bundles which stain with ME 101. These bundles appear to be independent of the microtubule-associated epitope which stains in a continuous linear manner with ME 101. When protoplasts are either cleaved open on grids or sequentially extracted with detergents prior to critical point drying, the short fibrillar bundles are specifically labelled by ME 101 tagged with colloidal gold. ME 101 also co-distributed with underlying linear filaments, which appeared to be microtubules. In addition to these structures, the cortex also contains a meshwork of variably-sized fine filaments but these are not labelled with ME 101 nor with an antibody raised against the plant cytoskeleton, which recognizes cytokeratin 8. These results confirm that the fibrillar bundles and the microtubule-associated form of plant IF antigens are present simultaneously rather than experimentally-interconvertible, and that they appear to be physically unconnected.Abbreviations DAPI
4,6-diamidino-2-phenylindole
- FB
fibrillar bundle
- FITC
fluorescein isothiocyanate
- IF
intermediate filaments
- MTSB
microtubule stabilizing buffer
- TBS
Tris-buffered-saline 相似文献
2.
Bär H Kostareva A Sjöberg G Sejersen T Katus HA Herrmann H 《Experimental cell research》2006,312(9):1554-1565
We recently demonstrated that inherited disease-causing mutations clustered in the alpha-helical coiled-coil "rod" domain of the muscle-specific intermediate filament (IF) protein desmin display a wide range of inhibitory effects on regular in vitro assembly. In these studies, we showed that individual mutations exhibited phenotypes that were not, with respect to the severity of interference, predictable by our current knowledge of the structural design of IF proteins. Moreover, the behavior of some mutated proteins in a standard tissue culture cell expression system was found to be even more complex. Here, we systematically investigate the behavior of these disease mutants in four different cell types: three not containing desmin or the related IF protein vimentin and the standard fibroblast line 3T3, which has an extensive vimentin system. The ability of the mutants to form filaments in the vimentin-free cells varies considerably, and only the mutants forming IFs in vitro generate extended filamentous networks. Furthermore, these latter mutants integrate into the 3T3 vimentin network but all the others do not. Instead, they cause the endogenous network of 3T3 vimentin to reorganize into perinuclear bundles. In addition, most of these assembly-deficient mutant desmins completely segregate from the vimentin system. Instead, the small round to fibrillar particles formed distribute independently throughout the cytoplasm as well as between the collapsed vimentin filament arrays in the perinuclear area. 相似文献
3.
Nuclear and cytoplasmic intermediate filament (IF) proteins segregate into two independent cellular networks by mechanisms that are poorly understood. We examined the role of a 42 amino acid (aa) insert unique to vertebrate lamin rod domains in the coassembly of nuclear and cytoplasmic IF proteins by overexpressing chimeric IF proteins in human SW13+ and SW13- cells, which contain and lack endogenous cytoplasmic IF proteins, respectively. The chimeric IF proteins consisted of the rod domain of human nuclear lamin A/C protein fused to the amino and carboxyl-terminal domains of the mouse neurofilament light subunit (NF-L), which contained or lacked the 42 aa insert. Immunofluorescence microscopy was used to follow assembly and targeting of the proteins in cells. Chimeric proteins that lacked the 42 aa insert colocalized with vimentin, whereas those that contained the 42 aa insert did not. When overexpressed in SW13- cells, chimeric proteins containing the 42 aa formed very short or broken cytoplasmic filaments, whereas chimeric proteins that lacked the insert assembled efficiently into long, stable cytoplasmic filaments. To examine the roles of other structural motifs in intracellular targeting, we added two additional sequences to the chimera, a nuclear localization signal (NLS) and a CAAX motif, which are found in nuclear IF proteins. Addition of an NLS alone or an NLS in combination with the CAAX motif to the chimera with the 42 aa insert resulted in cagelike filament that assembled close to the nuclear envelope and nuclear lamina-like targeting, respectively. Our results suggest that the rod domains of eukaryotic nuclear and cytoplasmic IF proteins, which are related to each other, are still compatible upon deletion of the 42 aa insert of coassembly. In addition, NF-L end domains can substitute for the corresponding lamin domains in nuclear lamina targeting. 相似文献
4.
5.
6.
Plodinec M Loparic M Suetterlin R Herrmann H Aebi U Schoenenberger CA 《Journal of structural biology》2011,174(3):476-484
The contribution of the intermediate filament (IF) network to the mechanical response of cells has so far received little attention, possibly because the assembly and regulation of IFs are not as well understood as that of the actin cytoskeleton or of microtubules. The mechanical role of IFs has been mostly inferred from measurements performed on individual filaments or gels in vitro. In this study we employ atomic force microscopy (AFM) to examine the contribution of vimentin IFs to the nanomechanical properties of living cells under native conditions. To specifically target and modulate the vimentin network, Rat-2 fibroblasts were transfected with GFP-desmin variants. Cells expressing desmin variants were identified by the fluorescence microscopy extension of the AFM instrument. This allowed us to directly compare the nanomechanical response of transfected and untransfected cells at high spatial resolution by means of AFM. Depending on the variant desmin, transfectants were either softer or stiffer than untransfected fibroblasts. Expression of the non-filament forming GFP-DesL345P mutant led to a collapse of the endogenous vimentin network in the perinuclear region that was accompanied by localized stiffening. Correlative confocal microscopy indicates that the expression of desmin variants specifically targets the endogenous vimentin IF network without major rearrangements of other cytoskeletal components. By measuring functional changes caused by IF rearrangements in intact cells, we show that IFs play a crucial role in mechanical behavior not only at large deformations but also in the nanomechanical response of individual cells. 相似文献
7.
Long-distance propagation of forces in a cell 总被引:4,自引:0,他引:4
A fundamental question in the field of mechanotransduction is how forces propagate inside a cell. Recent experiments have shown that a force of a physiological magnitude, applied via a focal adhesion, can propagate a long distance into the cell. This observation disagrees with existing models that regard the cell as a homogeneous body. We show that this "action at a distance" results from the inhomogeneity in the cell: a prestressed and stiff actin bundle guides the propagation of forces over long distances. Our models highlight the enormous ratios of the prestress and the modulus of the actin bundle to the modulus of the cytoskeleton network. For a normal cell, the models predict that forces propagate over characteristic lengths comparable to the size of the cell. The characteristic lengths can be altered, however, by treatments of the cell. We provide experimental evidence and discuss biological implications. 相似文献
8.
The cytoskeleton is a dynamic three-dimensional structure mainly located in the cytoplasm. It is involved in many cell functions such as mechanical signal transduction and maintenance of cell integrity. Among the three cytoskeletal components, intermediate filaments (the cytokeratin in epithelial cells) are the best candidates for this mechanical role. A model of the establishment of the cytokeratin network of an epithelial cell is proposed to study the dependence of its structural organization on extracellular mechanical environment. To implicitly describe the latter and its effects on the intracellular domain, we use mechanically regulated protein synthesis. Our model is a hybrid of a partial differential equation of parabolic type, governing the evolution of the concentration of cytokeratin, and a set of stochastic differential equations describing the dynamics of filaments. Each filament is described by a stochastic differential equation that reflects both the local interactions with the environment and the non-local interactions via the past history of the filament. A three-dimensional simulation model is derived from this mathematical model. This simulation model is then used to obtain examples of cytokeratin network architectures under given mechanical conditions, and to study the influence of several parameters. 相似文献
9.
Abstract: The goldfish visual pathway displays a remarkable capacity for continuous neurogenesis, plasticity, and regeneration. The intermediate filament protein composition of this system differs from that of higher vertebrates, which lack the capacity for continued nerve growth and development. In an effort to determine how intermediate filament proteins are regulated during nerve growth, we isolated and characterized cDNA and genomic clones representing the goldfish neurofilament medium (NF-M) protein. The tissue-specific expression of goldfish NF-M mRNA was analyzed by RNase protection assays and by in situ hybridization. The expression of goldfish NF-M is qualitatively the same as in other species. Although the intermediate filament protein composition of the goldfish visual pathway is unusual when compared with higher vertebrates, the goldfish NF-M protein is similar to higher vertebrate NF-M proteins. In addition, the organization of the goldfish NF-M gene is identical to the NF-M genes in all other vertebrate species. In contrast, the promoter region of the goldfish NF-M gene has several potential regulatory sequences that are not found in the promoter regions of higher vertebrate NF-M genes. 相似文献
10.
Werner Götz Michael Kasper Gösta Fischer Rainer Herken 《Cell and tissue research》1995,280(2):455-462
In order to characterize human notochordal tissue we investigated notochords from 32 human embryos and fetuses ranging between the 5th and 13th gestational week, using immunohistochemistry to detect intermediate filament proteins cytokeratin, vimentin and desmin, the cytokeratin subtypes 7, 8, 18, 19 and 20, epithelial membrane antigen (EMA), and adhesion molecules pan-cadherin and E-cadherin. Strong immunoreactions could be demonstrated for pan-cytokeratin, but not for desmin or EMA. Staining for pan-cadherin and weak staining for E-cadherin was found on cell membranes of notochordal cells. Also it was demonstrated that notochordal cells of all developmental stages contain the cytokeratins 8, 18 and19, but not 7 or 20. Some cells in the embryonic notochord also contained some vimentin. Vimentin reactivity increased between the 8th and 13th gestational week parallel to morphological changes leading from an epithelial phenotype to the chorda reticulum which represents a mesenchymal tissue within the intervertebral disc anlagen. This coexpression reflects the epithelial-mesenchymal transformation of the notochord, which also loses E-cadherin expression during later stages. Our findings cannot elucidate a histogenetic germ layer origin of the human notochord but demonstrate its epithelial character. Thus, morphogenetic inductive processes between the human notochord and its surrounding vertebral column anlagen can be classified as epithelial-mesenchymal interactions. 相似文献
11.
Neurofilaments (NF) are the most abundant cytoskeletal component of large myelinated axons from adult central and peripheral nervous system. Here, we provide an overview of the complementary approaches, including biochemistry, cell biology and transgenic technology that were used to investigate the assembly, axonal transport and functions of NF in normal and pathological situations. Following their synthesis and assembly in the cell body, NFs are transported along the axon. This process is finely regulated via phosphorylation of the carboxy-terminal part of the two high-molecular-weight subunits of NF. The correct formation of an axonal network of NF is crucial for the establishment and maintenance of axonal calibre and consequently for the optimisation of conduction velocity. The frequent disorganisation of NF network observed in several neuropathologies support their contribution. However, despite the presence of NF mutations found in some patients, the exact relations between these mutations, the abnormal NF organisation and the pathological process remain a challenging field of investigation. 相似文献
12.
Lu H Zimek A Chen J Hesse M Büssow H Weber K Magin TM 《European journal of cell biology》2006,85(8):803-811
We have recently demonstrated that the keratin K3 gene, which is active in the suprabasal human corneal epithelium, is missing in the genome of the mouse. We show that a normal K3 gene exists in a wide variety of mammals while in rodents the gene is converted to a pseudogene with a very strong sequence drift. The availability of K5-/- mice provides a unique opportunity to investigate type-specific keratin function during corneal differentiation in the absence of both K5 and K3. Here, we report that the deletion of K5, which in wild-type mice forms a cytoskeleton with K12, does neither cause keratin aggregation nor cytolysis in the cornea. This is due to the induction of K4 in corneal epithelial cells, normally restricted to corneal stem stem cells residing in the limbus. Using a combination of antibodies and RT-PCR, we identified additional keratins expressed in the mouse cornea including K23 which was previously thought to be specific for pancreatic carcinomas. This reflects an unexpected complexity of keratin expression in the cornea. Our data suggest that in the absence of mechanical stress, corneal differentiation does not depend on distinct keratin pairs, supporting a concept of functional redundancy, at least for certain keratins. 相似文献
13.
Robert K. Druger Edward M. Levine Eric Glasgow Paul S. Jones Nisson Schechter 《Differentiation; research in biological diversity》1992,52(1):33-43
We report the cDNA sequence and predicted amino acid sequence of a novel type I keratin, designated as GK50, and show that keratin expression in the goldfish optic nerve is highly complex. The GK50 protein is one of at least three type I keratins expressed in goldfish optic nerve based on both antibody reactivity and blot-binding to the type II keratin ON3. After optic nerve crush in situ hybridization shows a localized increase in GK50 mRNA expression in the crush zone. This is in contrast to ON3 mRNA which shows a localized increase that is limited to the proximal and distal margins of the crush zone, suggesting a diversity of keratin expression in different cell types of the goldfish optic nerve. 相似文献
14.
Smith FJ Porter RM Corden LD Lunny DP Lane EB McLean WH 《Biochemical and biophysical research communications》2002,297(4):818-827
Keratins are cytoplasmic intermediate filament proteins expressed by epithelial cells. Keratin 7 (K7) is expressed in a wide range of epithelial structures in humans. We have cloned and fully sequenced the human and mouse K7 genes and mRNAs, and the K7 mRNA from the marsupial Potorous tridactylis, from which the widely used simple epithelial cell lines PtK1 and PtK2 are derived. Percentage identity plots comparing the mouse and human genomic sequences revealed a number of conserved CpG islands associated with the K7 gene. There was considerable conservation of introns between the two species, which may indicate the presence of intronic regulatory elements. Only the most proximal 500bp of the promoter was conserved, although an additional conserved sequence island was found 2-3kb upstream. Protein sequence comparisons between the three species allowed identification of conserved regions of the keratin variable domains that may be candidates for protein-protein interactions and/or regulatory modification. From the mouse sequence, we generated a polyclonal rabbit antibody specific for murine K7. This antibody was used to perform a survey of K7 expression in the mouse. The expression pattern was similar to the reported human distribution, with substantial expression observed in lung, bladder, mesothelium, hair follicle, and ductal structures. We also noted previously unreported expression of K7 in the gastrointestinal tract and filiform papillae of the tongue and specific K7 expression in a range of "hard" epithelial tissues. The distribution of K7 in mouse and availability of genomic sequence from the 129/Sv mouse strain will allow the generation and analysis of transgenic mice expressing mutant forms of K7 and to predict the phenotype of human genetic disorders caused by mutations in this keratin. 相似文献
15.
16.
Elaine M. Klinge Yolande R. Sylvestre Irwin M. Freedberg Miroslav Blumenberg 《Journal of molecular evolution》1987,24(4):319-329
Summary Intermediate filaments are composed of a family of proteins that evolved from a common ancestor. The proteins consist of three domains: a central, alpha-helical domain similar in all intermediate filaments, bracketed by two domains that are variable in length and structure. Within the intermediate-filament family, several subfamilies have been recognized by immunologic and nucleic acid hybridization techniques. In this paper we present the sequence of the genomic DNA coding for a 65-kilodalton human keratin and compare it with the sequences of other intermediate-filament proteins. While the central, alpha-helical domains of these proteins show homologies that indicate a common ancestor, the sequences of the variable terminal domains indicate that the variable domains evolved through a series of tandem duplications and possibly by gene-conversion mechanisms. 相似文献
17.
Beaded filaments are the major cytoskeletal element of the eye lens and they are essential to the optical properties of the eye lens. They were discovered in 1972 by Harry Maisel and Margaret Perry and have since been found to comprise two novel intermediate filament proteins, CP49 and filensin. These proteins possess unique structure features and unusual assembly characteristics, which distinguish them from canonical IF proteins. Whilst CP49 is completely tailless, filensin has a rather short rod domain and extremely large C-terminal tail domain. In vitro, CP49 and filensin do not form IFs on their own. In vitro studies suggest that CP49 and filensin have a distinct coassembly mechanism. Whilst CP49 self-assembles into thick bundles of filaments, filensin only forms short fibrils, but when combined together they form filaments. The generation of gene knockouts by the targeted deletion of Bfsp1 and Bfsp2 that encode filensin and CP49, respectively, have been made to explore the function of beaded filaments in the lens. Our results suggest that the lens-specific beaded filaments are the key cytoskeletal element in organising and maintaining lens fibre cell architecture and are a key factor in determining the optical properties of the lens. We have also found that some common mouse strains contain a natural mutation in Bfsp2 that will effectively generate a CP49 knockout. This finding has important implications for lens research involving other gene knockouts maintained on a 129 background. It has also been observed that mutations in Bfsp2 are the genetic basis of inherited human cataract. Collectively, these data demonstrate that beaded filaments are fundamental to lens function. 相似文献
18.
Yifeng Jia Shiaw-Lin Wu Jeff S. Isenberg Shujia Dai John M. Sipes Lyndsay Field Bixi Zeng Russell W. Bandle Lisa A. Ridnour David A. Wink Ramani Ramchandran Barry L. Karger David D. Roberts 《Cell stress & chaperones》2010,15(2):165-181
Thiolutin is a dithiole synthesized by Streptomyces sp. that inhibits endothelial cell adhesion and tumor growth. We show here that thiolutin potently inhibits developmental angiogenesis in zebrafish and vascular outgrowth from tissue explants in 3D cultures. Thiolutin is a potent and selective inhibitor of endothelial cell adhesion accompanied by rapid induction of HSPB1 (Hsp27) phosphorylation. The inhibitory effects of thiolutin on endothelial cell adhesion are transient, potentially due to a compensatory increase in Hsp27 protein levels. Accordingly, heat shock induction of Hsp27 limits the anti-adhesive activity of thiolutin. Thiolutin treatment results in loss of actin stress fibers, increased cortical actin as cells retract, and decreased cellular F-actin. Mass spectrometric analysis of Hsp27 binding partners following immunoaffinity purification identified several regulatory components of the actin cytoskeleton that associate with Hsp27 in a thiolutin-sensitive manner including several components of the Arp2/3 complex. Among these, ArpC1a is a direct binding partner of Hsp27. Thiolutin treatment induces peripheral localization of phosphorylated Hsp27 and Arp2/3. Hsp27 also associates with the intermediate filament components vimentin and nestin. Thiolutin treatment specifically ablates Hsp27 interaction with nestin and collapses nestin filaments. These results provide new mechanistic insights into regulation of cell adhesion and cytoskeletal dynamics by Hsp27. 相似文献
19.
From the shark Scyliorhinus stellaris we cloned and sequenced a cDNA encoding a novel type I keratin, termed SstK10. By MALDI-MS peptide mass fingerprinting of cytoskeletal proteins separated on polyacrylamide gels, we assigned SstK10 to a 46-kDa protein which is the major epidermal type I ("IE") keratin in this fish and is specifically expressed in stratified epithelia. In a phylogenetic tree based on type I keratin sequences and with lamprey keratins applied as outgroup, SstK10 branches off in a rather basal position. This tree strongly supports the concept that teleost keratins and tetrapod keratins resulted from two independent gene radiation processes. The only exception is human K18 because its orthologs have been found in all jawed vertebrates (Gnathostomata) studied; in the tree, they form a common, most early branch, with the shark version, SstK18, in the most basal position. Thus, the sequences of SstK10 and SstK18 also favor the classical view of vertebrate evolution that considers the cartilaginous fishes as the most ancient living Gnathostomata. To determine the overall expression patterns of epidermal ("E") and simple epithelial ("S") keratins in this shark, we furthermore tested a panel of monoclonal anti-keratin antibodies by immunofluorescence microscopy of frozen tissue sections, and in immunoblots of cytoskeletal preparations, demonstrating that immunodetection of specific keratins is a convenient method to characterize epithelial tissues in shark. 相似文献