首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we tested the hypothesis that the elongation 1A (eEF1A) family regulates the cell surface density of the M4 subtype of the muscarinic acetylcholine receptors (mAChR) following agonist-induced internalization. Here, we show that mouse brains lacking eEF1A2 have no detectable changes in M4 expression or localization. We, however, did discover that eEF1A1, the other eEF1A isoform, is expressed in adult neurons contrary to previous reports. This novel finding suggested that the lack of change in M4 expression and distribution in brains lacking eEF1A2 might be due to compensatory effects of eEF1A1. Supporting this theory, we demonstrate that the overexpression of either eEF1A1 or eEF1A2 inhibits M4 recovery to the cell surface after agonist-induced internalization in PC12 cells. Furthermore, eEF1A1 or eEF1A2 had no effect on the recovery of the M1 subtype in PC12 cells. These results demonstrate the novel ability of the eEF1A family to specifically regulate the M4 mAChR.  相似文献   

2.
RGS proteins serve as GTPase-activating proteins and/or effector antagonists to modulate Galpha signaling events. In live cells, members of the B/R4 subfamily of RGS proteins selectively modulate G protein signaling depending on the associated receptor (GPCR). Here we examine whether GPCRs selectively recruit RGS proteins to modulate linked G protein signaling. We report the novel finding that RGS2 binds directly to the third intracellular (i3) loop of the G(q/11)-coupled M1 muscarinic cholinergic receptor (M1 mAChR; M1i3). This interaction is selective because closely related RGS16 does not bind M1i3, and neither RGS2 nor RGS16 binds to the G(i/o)-coupled M2i3 loop. When expressed in cells, RGS2 and M1 mAChR co-localize to the plasma membrane whereas RGS16 does not. The N-terminal region of RGS2 is both necessary and sufficient for binding to M1i3, and RGS2 forms a stable heterotrimeric complex with both activated G(q)alpha and M1i3. RGS2 potently inhibits M1 mAChR-mediated phosphoinositide hydrolysis in cell membranes by acting as an effector antagonist. Deletion of the N terminus abolishes this effector antagonist activity of RGS2 but not its GTPase-activating protein activity toward G(11)alpha in membranes. These findings predict a model where the i3 loops of GPCRs selectively recruit specific RGS protein(s) via their N termini to regulate the linked G protein. Consistent with this model, we find that the i3 loops of the mAChR subtypes (M1-M5) exhibit differential profiles for binding distinct B/R4 RGS family members, indicating that this novel mechanism for GPCR modulation of RGS signaling may generally extend to other receptors and RGS proteins.  相似文献   

3.
In this study we examine signaling pathways linking the M(1) subtype of muscarinic acetylcholine receptor (M(1) mAChR) to activation of extracellular signal-regulated kinases (ERK) 1 and 2 in neuronal PC12D cells. We first show that activation of ERK1/2 by the M(1) mAChR agonist carbachol takes place primarily via a Ras-independent pathway that depends largely upon Rap1, another small GTP-binding protein in the Ras family. Rap1 in turn activates B-Raf, an upstream activator of ERK1/2. Consistent with these results, carbachol was found to activate Rap1 more potently than Ras. Similar to other small GTP-binding proteins, activation of Rap1 requires a guanine nucleotide exchange factor (GEF) to promote its conversion from the GDP- to GTP-bound form. Using specific antibodies, we show that a recently identified Rap1 GEF, calcium- and diacylglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), is expressed in PC12D cells and that carbachol stimulates the formation of a complex containing CalDAG-GEFI, Rap1, and activated B-Raf. Finally, we show that expression of CalDAG-GEFI antisense RNA largely blocks carbachol-stimulated activation of hemagglutinin (HA)1-tagged B-Raf and formation of the CalDAG-GEFI/Rap1/HA1-tagged B-Raf complex. Together, these data define a novel signaling pathway for M(1) mAChR, where increases in Ca(2+) and diacylglycerol stimulate the sequential activation of CalDAG-GEFI, Rap1, and B-Raf, resulting in the activation of MEK and ERK1/2.  相似文献   

4.
Sphingosine 1-phosphate (S1P) has many important roles in mammalian cells, including contributing to the control of cell survival and proliferation. S1P is generated by sphingosine kinases (SKs), of which two mammalian isoforms have been identified (SK1 and SK2). To gain a better understanding of SK regulation, we have used a yeast two-hybrid screen to identify SK1-interacting proteins and established elongation factor 1A (eEF1A) as one such protein that associates with both SK1 and SK2. We show the direct interaction of eEF1A with the SKs in vitro, whereas the physiological relevance of this association was demonstrated by co-immunoprecipitation of the endogenous proteins from cell lysates. Although the canonical role of eEF1A resides in protein synthesis, it has also been implicated in other roles, including regulating the activity of some signaling enzymes. Thus, we examined the potential role of eEF1A in regulation of the SKs and show that eEF1A is able to directly increase the activity of SK1 and SK2 approximately 3-fold in vitro. Substrate kinetics demonstrated that eEF1A increased the catalytic rate of both SKs, while having no observable effect on substrate affinities of these enzymes for either ATP or sphingosine. Overexpression of eEF1A in quiescent Chinese hamster ovary cells increased cellular SK activity, whereas a small interfering RNA-mediated decrease in eEF1A levels in MCF7 cells substantially reduced cellular SK activity and S1P levels, supporting the in vivo physiological relevance of this interaction. Thus, this study has established a novel mechanism of regulation of both SK1 and SK2 that is mediated by their interaction with eEF1A.  相似文献   

5.
6.
The translation elongation factor 1 complex (eEF1) plays a central role in protein synthesis, delivering aminoacyl-tRNAs to the elongating ribosome. The eEF1A subunit, a classic G-protein, also performs roles aside from protein synthesis. The overexpression of either eEF1A or eEF1B alpha, the catalytic subunit of the guanine nucleotide exchange factor, in Saccharomyces cerevisiae results in effects on cell growth. Here we demonstrate that overexpression of either factor does not affect the levels of the other subunit or the rate or accuracy of protein synthesis. Instead, the major effects in vivo appear to be at the level of cell morphology and budding. eEF1A overexpression results in dosage-dependent reduced budding and altered actin distribution and cellular morphology. In addition, the effects of excess eEF1A in actin mutant strains show synthetic growth defects, establishing a genetic connection between the two proteins. As the ability of eEF1A to bind and bundle actin is conserved in yeast, these results link the established ability of eEF1A to bind and bundle actin in vitro with nontranslational roles for the protein in vivo.  相似文献   

7.
Translation elongation is the stage of protein synthesis in which the translation factor eEF1A plays a pivotal role that is dependent on GTP exchange. In vertebrates, eEF1A can exist as two separately encoded tissue-specific isoforms, eEF1A1, which is almost ubiquitously expressed, and eEF1A2, which is confined to neurons and muscle. The GTP exchange factor for eEF1A1 is a complex called eEF1B made up of subunits eEF1Bα, eEF1Bδ and eEF1Bγ. Previous studies have cast doubt on the ability of eEF1B to interact with eEF1A2, suggesting that this isoform might use a different GTP exchange factor. We show that eEF1B subunits are all widely expressed to varying degrees in different cell lines and tissues, and at different stages of development. We show that ablation of any of the subunits in human cell lines has a small but significant impact on cell viability and cycling. Finally, we show that both eEF1A1 and eEF1A2 colocalise with all eEF1B subunits, in such close proximity that they are highly likely to be in a complex.  相似文献   

8.
The protein synthesis elongation factor 1A (eEF1A) is a multifunctional protein in eukaryotic cells. In maize (Zea mays L.) endosperm eEF1A co-localizes with actin around protein bodies, and its accumulation is highly correlated with the protein-bound lysine (Lys) content. We purified eEF1A from maize kernels by ammonium sulfate precipitation, ion-exchange, and chromatofocusing. The identify of the purified protein was confirmed by microsequencing of an endoproteinase glutamic acid-C fragment and by its ability to bundle actin. Using purified eEF1A as a standard, we found that this protein contributes 0.4% of the total protein in W64A+ endosperm and approximately 1% of the protein in W64Ao2. Because eEF1A contains 10% Lys, it accounts for 2.2% of the total Lys in W64A+ and 2.3% of the Lys in W64Ao2. However, its concentration predicts 90% of the Lys found in endosperm proteins of both genotypes, indicating that eEF1A is a key component of the group of proteins that determines the nutritional quality of the grain. This notion is further supported by the fact that in floury2, another high-Lys mutant, the content of eEF1A increases with the dosage of the floury2 gene. These data provide the biochemical basis for further investigation of the relationship between eEF1A content and the nutritional quality of cereals.  相似文献   

9.
Most G protein-coupled receptors (GPCRs), including the M(1) muscarinic acetylcholine receptor (mAChR), internalize in clathrin-coated vesicles, a process that requires dynamin GTPase. The observation that some GPCRs like the M(2) mAChR and the angiotensin AT(1A) receptor (AT(1A)R) internalize irrespective of expression of dominant-negative K44A dynamin has led to the proposal that internalization of these GPCRs is dynamin-independent. Here, we report that, contrary to what is postulated, internalization of M(2) mAChR and AT(1A)R in HEK-293 cells is dynamin-dependent. Expression of N272 dynamin, which lacks the GTP-binding domain, or K535M dynamin, which is not stimulatable by phosphatidylinositol 4, 5-bisphosphate, strongly inhibits internalization of M(1) and M(2) mAChRs and AT(1A)Rs. Expression of kinase-defective K298M c-Src or Y231F,Y597F dynamin (which cannot be phosphorylated by c-Src) reduces M(1) mAChR internalization. Similarly, c-Src inhibitor PP1 as well as the generic tyrosine kinase inhibitor genistein strongly inhibit M(1) mAChR internalization. In contrast, M(2) mAChR internalization is not (or is only slightly) reduced by expression of these constructs or treatment with PP1 or genistein. Thus, dynamin GTPases are not only essential for M(1) mAChR but also for M(2) mAChR and AT(1A)R internalization in HEK-293 cells. Our findings also indicate that dynamin GTPases are differentially regulated by c-Src-mediated tyrosine phosphorylation.  相似文献   

10.
Eukaryotic elongation factor 2 (eEF2) is a member of the GTP-binding translation elongation factor family that is essential for protein synthesis. eEF2 kinase (eEF2K) is a structurally and functionally unique protein kinase in the calmodulin-mediated signaling pathway. eEF2K phosphorylates eEF2, thereby inhibiting eEF2 function under stressful conditions. eEF2K regulates numerous processes, such as protein synthesis, cell cycle progression, and induction of autophagy and apoptosis in cancer cells. This review will demonstrate the mechanisms underlying eEF2K activity in cancer cells under different stresses, such as nutrient deprivation, hypoxia, and DNA damage via eEF2 regulation. In vivo, in vitro, and clinical studies indicated that eEF2K may be a novel biomarker and therapeutic target for cancer.  相似文献   

11.
Eukaryotic translation elongation factor 1A (eEF1A) is a guanine-nucleotide binding protein, which transports aminoacylated tRNA to the ribosomal A site during protein synthesis. In a yeast two-hybrid screening of a human skeletal muscle cDNA library, a novel eEF1A binding protein, immunoglobulin-like and fibronectin type III domain containing 1 (IGFN1), was discovered, and its interaction with eEF1A was confirmed in vitro. IGFN1 is specifically expressed in skeletal muscle and presents immunoglobulin I and fibronectin III sets of domains characteristic of sarcomeric proteins. IGFN1 shows sequence and structural homology to myosin binding protein-C fast and slow-type skeletal muscle isoforms. IGFN1 is substantially upregulated during muscle denervation. We propose a model in which this increased expression of IGFN1 serves to down-regulate protein synthesis via interaction with eEF1A during denervation.  相似文献   

12.
The eukaryotic translation elongation factor 1A (eEF1A), besides to its canonical role in protein synthesis, is also involved in several other cellular processes, depending on changes in cellular location, cell type, concentration of ligands, substrates or cofactors. Therefore eEF1A is a moonlighting protein that participates to a network of molecular interactions involving its structural domains. Since the identification of novel protein–protein interactions represents important tasks in post-genomic era, the interactome of eEF1A1 M-domain was investigated by using a proteomic approach. To this purpose, the eEF1A1 M-domain was fused with glutathione-S-transferase (GST) and Strep-tag (ST) at it’s N- and C-terminal, respectively. The recombinant protein (GST-M-ST) was purified and incubated with a mouse embryo lysate by applying an affinity chromatography strategy. The interacting proteins were separated by SDS-PAGE and identified by peptide mass fingerprinting using MALDI-TOF mass spectrometry. Besides the known partners, the pool of interacting proteins contained sorbin, a polypeptide of 153 amino acids present in SH3 domain-containing adaptor proteins, such as SORBS2. This interaction was also assessed by Western blot on immunoprecipitate from mouse embryo or H1355 cell lysates with anti-eEF1A or anti-SORBS2 antibodies and on eEF1A1-His pull-down from H1355 cell lysate with antibody anti-SORBS2. Furthermore, the interaction between eEF1A and SORBS2 was also confirmed by confocal microscopy and FRET analysis. Interestingly, a co-localization of SORBS2 and eEF1A was evidenced at level of plasma membrane, thus suggesting the involvement of eEF1A1 in novel key signal transduction complexes.  相似文献   

13.
PASKIN links energy flux and protein synthesis in yeast, regulates glycogen synthesis in mammals, and has been implicated in glucose-stimulated insulin production in pancreatic beta-cells. Using newly generated monoclonal antibodies, PASKIN was localized in the nuclei of human testis germ cells and in the midpiece of human sperm tails. A speckle-like nuclear pattern was observed for endogenous PASKIN in HeLa cells in addition to its cytoplasmic localization. By yeast two-hybrid screening, we identified the multifunctional eukaryotic translation elongation factor eEF1A1 as a novel interaction partner of PASKIN. This interaction was mapped to the PAS A and kinase domains of PASKIN and to the C-terminus of eEF1A1 using mammalian two-hybrid and GST pull-down assays. Kinase assays, mass spectrometry and site-directed mutagenesis revealed PASKIN auto-phosphorylation as well as eEF1A1 target phosphorylation mainly but not exclusively at Thr432. Wild-type but not kinase-inactive PASKIN increased the in vitro translation of a reporter cRNA. Whereas eEF1A1 did not localize to the nucleus, it co-localizes with PASKIN to the cytoplasm of HeLa cells. The two proteins also showed a remarkably similar localization in the midpiece of the sperm tail. These data suggest regulation of eEF1A1 by PASKIN-dependent phosphorylation in somatic as well as in sperm cells.  相似文献   

14.
A series of mutations in the highly conserved N(153)KMD(156)GTP-binding motif of the Saccharomyces cerevisiae translation elongation factor 1A (eEF1A) affect the GTP-dependent functions of the protein and increase misincorporation of amino acids in vitro. Two critical regulatory processes of translation elongation, guanine nucleotide exchange and translational fidelity, were analyzed in strains with the N153T, D156N, and N153T/D156E mutations. These strains are omnipotent suppressors of nonsense mutations, indicating reduced A site fidelity, which correlates with changes either in total translation rates in vivo or in GTPase activity in vitro. All three mutant proteins also show an increase in the K(m) for GTP. An in vivo system lacking the guanine nucleotide exchange factor eukaryotic elongation factor 1Balpha (eEF1Balpha) and supported for growth by excess eEF1A was used to show the two mutations with the highest K(m) for GTP restore most but not all growth defects found in these eEF1Balpha deficient-strains to near wild type. An increase in K(m) alone, however, is not sufficient for suppression and may indicate eEF1Balpha performs additional functions. Additionally, eEF1A mutations that suppress the requirement for guanine nucleotide exchange may not effectively perform all the functions of eEF1A in vivo.  相似文献   

15.
We have investigated how the cholinergic system of epidermal keratinocytes (KC) controls migratory function of these cells. Several molecular subtypes of muscarinic acetylcholine receptors (mAChRs) have been detected in KC. Early results suggested that M(4) is the predominant mAChR regulating cell motility. To determine muscarinic effects on lateral migration of KC, we used an agarose gel keratinocyte outgrowth system (AGKOS) which provides for measurements of the response of large cell populations (> 10(4) cells). Muscarine produced a dose-dependent stimulatory effect on cell migration (p < 0.05). This activity was abolished by atropine, which decreased migration distance when given alone. To identify the mAChR subtype(s) mediating these muscarinic effects, we substituted atropine with subtype-selective antagonists. Tropicamide (M(4)-selective) was more effective at decreasing the migration distance than pirenzepine and 4-DAMP at nanomolar concentrations. We then compared lateral migration of KC obtained from M(4) mAChR knockout mice with that of wild-type murine KC, using AGKOS. In the absence of M(4) mAChR, the migration distance of KC was significantly (p < 0.05) decreased. These results indicate that the M(4) mAChR plays a central role in mediating cholinergic control of keratinocyte migration by endogenous acetylcholine produced by these cells.  相似文献   

16.
Numerous models of molecular evolution have been formulated to describe the forces that shape sequence divergence among homologous proteins. These models have greatly enhanced our understanding of evolutionary processes. Rarely are such models empirically tested in the laboratory, and even more rare, are such models exploited to generate novel molecules useful for synthetic biology. Here, we experimentally demonstrate that the heterotachy model of evolution captures signatures of functional divergence among homologous elongation factors (EFs) between bacterial EF-Tu and eukaryotic eEF1A. These EFs are GTPases that participate in protein translation by presenting aminoacylated-tRNAs to the ribosome. Upon release from the ribosome, the EFs are recharged by nucleotide exchange factors EF-Ts in bacteria or eEF1B in eukaryotes. The two nucleotide exchange factors perform analogous functions despite not being homologous proteins. The heterotachy model was used to identify a set of sites in eEF1A/EF-Tu associated with eEF1B binding in eukaryotes and another reciprocal set associated with EF-Ts binding in bacteria. Introduction of bacterial EF-Tu residues at these sites into eEF1A protein efficiently disrupted binding of cognate eEF1B as well as endowed eEF1A with the novel ability to bind bacterial EF-Ts. We further demonstrate that eEF1A variants, unlike yeast wild-type, can function in a reconstituted in vitro bacterial translation system.  相似文献   

17.
The eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl-tRNAs to the ribosomal A-site during protein synthesis. To ensure a continuous supply of amino acids, cells harbor the kinase Gcn2 and its effector protein Gcn1. The ultimate signal for amino acid shortage is uncharged tRNAs. We have proposed a model for sensing starvation, in which Gcn1 and Gcn2 are tethered to the ribosome, and Gcn1 is directly involved in delivering uncharged tRNAs from the A-site to Gcn2 for its subsequent activation. Gcn1 and Gcn2 are large proteins, and these proteins as well as eEF1A access the A-site, leading us to investigate whether there is a functional or physical link between these proteins. Using Saccharomyces cerevisiae cells expressing His(6)-eEF1A and affinity purification, we found that eEF1A co-eluted with Gcn2. Furthermore, Gcn2 co-immunoprecipitated with eEF1A, suggesting that they reside in the same complex. The purified GST-tagged Gcn2 C-terminal domain (CTD) was sufficient for precipitating eEF1A from whole cell extracts generated from gcn2Δ cells, independently of ribosomes. Purified GST-Gcn2-CTD and purified His(6)-eEF1A interacted with each other, and this was largely independent of the Lys residues in Gcn2-CTD known to be required for tRNA binding and ribosome association. Interestingly, Gcn2-eEF1A interaction was diminished in amino acid-starved cells and by uncharged tRNAs in vitro, suggesting that eEF1A functions as a Gcn2 inhibitor. Consistent with this possibility, purified eEF1A reduced the ability of Gcn2 to phosphorylate its substrate, eIF2α, but did not diminish Gcn2 autophosphorylation. These findings implicate eEF1A in the intricate regulation of Gcn2 and amino acid homeostasis.  相似文献   

18.
19.
Legionella is a pathogenic Gram-negative bacterium that can multiply inside of eukaryotic cells. It translocates numerous bacterial effector proteins into target cells to transform host phagocytes into a niche for replication. One effector of Legionella pneumophila is the glucosyltransferase Lgt1, which modifies serine 53 in mammalian elongation factor 1A (eEF1A), resulting in inhibition of protein synthesis and cell death. Here, we demonstrate that similar to mammalian cells, Lgt1 was severely toxic when produced in yeast and effectively inhibited in vitro protein synthesis. Saccharomyces cerevisiae strains, which were deleted of endogenous eEF1A but harbored a mutant eEF1A not glucosylated by Lgt1, were resistant toward the bacterial effector. In contrast, deletion of Hbs1, which is also an in vitro substrate of the glucosyltransferase, did not influence the toxic effects of Lgt1. Serial mutagenesis in yeast showed that Phe(54), Tyr(56) and Trp(58), located immediately downstream of serine 53 of eEF1A, are essential for the function of the elongation factor. Replacement of serine 53 by glutamic acid, mimicking phosphorylation, produced a non-functional eEF1A, which failed to support growth of S. cerevisiae. Our data indicate that Lgt1-induced lethal effect in yeast depends solely on eEF1A. The region of eEF1A encompassing serine 53 plays a critical role in functioning of the elongation factor.  相似文献   

20.
The crystal structure of a complex between the protein biosynthesis elongation factor eEF1A (formerly EF-1alpha) and the catalytic C terminus of its exchange factor, eEF1Balpha (formerly EF-1beta), was determined to 1.67 A resolution. One end of the nucleotide exchange factor is buried between the switch 1 and 2 regions of eEF1A and destroys the binding site for the Mg(2+) ion associated with the nucleotide. The second end of eEF1Balpha interacts with domain 2 of eEF1A in the region hypothesized to be involved in the binding of the CCA-aminoacyl end of the tRNA. The competition between eEF1Balpha and aminoacylated tRNA may be a central element in channeling the reactants in eukaryotic protein synthesis. The recognition of eEF1A by eEF1Balpha is very different from that observed in the prokaryotic EF-Tu:EF-Ts complex. Recognition of the switch 2 region in nucleotide exchange is, however, common to the elongation factor complexes and those of Ras:Sos and Arf1:Sec7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号