首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
Src homology 2 (SH2) domains mediate phosphotyrosine (pY)-dependent protein:protein interactions involved in signal transduction pathways. We have found that the SH2 domains of the 85-kDa alpha subunit (p85) of phosphatidylinositol 3-kinase (PI3 kinase) bind directly to the serine/threonine kinase A-Raf. In this report we show that the p85 SH2:A-Raf interaction is phosphorylation-independent. The affinity of the p85 C-SH2 domain for A-Raf and phosphopeptide pY751 was similar, raising the possibility that a p85:A-Raf complex may play a role in the coordinated regulation of the PI3 kinase and Raf-MAP kinase pathways. We further show that the p85 C-SH2 domain contains two distinct binding sites for A-Raf; one overlapping the phosphotyrosine-dependent binding site and the other a separate phosphorylation-independent site. This is the first evidence for a second binding site on an SH2 domain, distinct from the phosphotyrosine-binding pocket.  相似文献   

2.
Phosphatidylinositol (PI) 3-kinase is a heterodimer consisting of an 85-kDa subunit (p85) and 110-kDa subunit (p110). The 85-kDa noncatalytic subunit, which contains two Src homology 2 (SH2) domains, one SH3 domain, and a domain homologous to the carboxy terminus of the breakpoint cluster region gene product, is known to mediate the association of the PI 3-kinase complex with activated growth factor receptors. We previously demonstrated that the C-terminal SH2 domain of p85 is responsible for the interaction of PI 3-kinase with phosphorylated platelet-derived growth factor receptor. To define the region in p85 that directs the complex formation with the PI 3-kinase catalytic subunit, a series of truncated p85 mutants was analyzed for association with p110 in vivo. We found that a fragment of p85 containing the region between the two SH2 domains was sufficient to promote the interaction with p110 in vivo. The complex between the fragment of p85 and p110 had PI 3-kinase activity that was comparable in magnitude to the activity of p110 associated with full-length p85. The binding with p110 was abolished when this domain in p85 was disrupted. These results identify a novel structural and functional element that is responsible for localizing the catalytic subunit of PI 3-kinase.  相似文献   

3.
Weber T  Schaffhausen B  Liu Y  Günther UL 《Biochemistry》2000,39(51):15860-15869
The N-terminal src homology 2 (SH2) domain of the p85 subunit of phosphoinositide 3-kinase (PI3K) has a higher affinity for a peptide with two phosphotyrosines than for the same peptide with only one. This unexpected result was not observed for the C-terminal SH2 from the same protein. NMR structural analysis has been used to understand the behavior of the N-SH2. The structure of the free SH2 domain has been compared to that of the SH2 complexed with a doubly phosphorylated peptide derived from polyomavirus middle T antigen (MT). The structure of the free SH2 domain shows some differences from previous NMR and X-ray structures. In the N-SH2 complexed with a doubly phosphorylated peptide, a second site for phosphotyrosine interaction has been identified. Further, line shapes of NMR signals showed that the SH2 protein-ligand complex is subject to temperature-dependent conformational mobility. Conformational mobility is also supported by the spectra of the ligand peptide. A binding model which accounts for these results is developed.  相似文献   

4.
The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors.  相似文献   

5.
CD4 serves as a receptor for major histocompatibility complex class II antigens and as a receptor for the human immunodeficiency virus type 1 (HIV-1) viral coat protein gp120. It is coupled to the protein-tyrosine kinase p56lck, an interaction necessary for an optimal response of certain T cells to antigen. In addition to the protein-tyrosine kinase domain, p56lck possesses Src homology 2 and 3 (SH2 and SH3) domains as well as a unique N-terminal region. The mechanism by which p56lck generates intracellular signals is unclear, although it has the potential to interact with various downstream molecules. One such downstream target is the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase), which has been found to bind to activated pp60src and receptor-tyrosine kinases. In this study, we verified that PI 3-kinase associates with the CD4:p56lck complex as judged by the presence of PI 3-phosphate generated from anti-CD4 immunoprecipitates and detected by high-pressure liquid chromatographic analysis. However, surprisingly, CD4-p56lck was also found to associate with another lipid kinase, phosphatidylinositol 4-kinase (PI 4-kinase). The level of associated PI 4-kinase was generally higher than PI 3-kinase activity. HIV-1 gp120 and antibody-mediated cross-linking induced a 5- to 10-fold increase in the level of CD4-associated PI 4- and PI 3-kinases. The use of glutathione S-transferase fusion proteins carrying Lck-SH2, Lck-SH3, and Lck-SH2/SH3 domains showed PI 3-kinase binding to the SH3 domain of p56lck, an interaction facilitated by the presence of an adjacent SH2 domain. PI 4-kinase bound to neither the SH2 nor the SH3 domain of p56lck. CD4-p56lck contributes PI 3- and PI 4-kinase to the activation process of T cells and may play a role in HIV-1-induced immune defects.  相似文献   

6.
7.
Phosphoinositide 3-kinase (PI 3-kinase) is a key signaling enzyme implicated in a variety of receptor-stimulated cell responses. Stimulation of receptors possessing (or coupling to) protein-tyrosine kinase activates heterodimeric PI 3-kinases, which consist of an 85-kDa regulatory subunit (p85) containing Src-homology 2 (SH2) domains and a 110-kDa catalytic subunit (p110 alpha or p110 beta). Thus, this form of PI 3-kinases could be activated in vitro by a phosphotyrosyl peptide containing a YMXM motif that binds to the SH2 domains of p85. Receptors coupling to alpha beta gamma-trimeric G proteins also stimulate the lipid kinase activity of a novel p110 gamma isoform, which is not associated with p85, and thereby is not activated by tyrosine kinase receptors. The activation of p110 gamma PI 3-kinase appears to be mediated through the beta gamma subunits of the G protein (G beta gamma). In addition, rat liver heterodimeric PI 3-kinases containing the p110 beta catalytic subunit are synergistically activated by the phosphotyrosyl peptide plus G beta gamma. Such enzymatic properties were also observed with a recombinant p110 beta/p85 alpha expressed in COS-7 cells. In contrast, another heterodimeric PI 3-kinase consisting of p110 alpha and p85 in the same rat liver, together with a recombinant p110 alpha/p85 alpha, was not activated by G beta gamma, though their activities were stimulated by the phosphotyrosyl peptide. Synergistic activation of PI 3-kinase by the stimulation of the two major receptor types was indeed observed in intact cells, such as chemotactic peptide (N-formyl-Met-Leu-Phe) plus insulin (or Fc gamma II) receptors in differentiated THP-1 and CHO cells and adenosine (A1) plus insulin receptors in rat adipocytes. Thus, PI 3-kinase isoforms consisting of p110 beta catalytic and SH2-containing (p85 or its related) regulatory subunits appeared to function as a 'cross-talk' enzyme between the two signal transduction pathways mediated through tyrosine kinase and G protein-coupled receptors.  相似文献   

8.
Using the association between the pp60c-src/polyoma virus middle T antigen (mT) complex and phosphatidylinositol 3'-kinase (PI 3-kinase) as a prototype for phosphoprotein-SH2 domain interactions, we tested whether a nonhydrolyzable phosphonopeptide would inhibit association. (Phosphonomethyl)-phenylalanine (Pmp) is a nonnatural analogue of phosphotyrosine in which the > C-O-PO3H2 moiety is replaced by > C-CH2-PO3H2. We synthesized a 13 amino acid phosphonopeptide (mT-Pmp315), a related phosphopeptide (mT-pY315), and an unmodified sequence (mT-Y315), all corresponding to the pp60c-src-phosphorylated site of the mT which is within a YMXM motif common to proteins that bind to and activate PI 3-kinase. Only the phosphonopeptide persistently blocked the in vitro association of the baculovirus-expressed pp60c-src/mT complex with cytosolic PI 3-kinase activity. Sustained inhibition of association by the phosphopeptide required the additional presence of vanadate, a potent protein tyrosine phosphatase (PTPase) inhibitor. The phosphopeptide and L-phosphonopeptide bound tightly (KD approximately 10-20 nM) and specifically to isolated SH2 domains of PI 3-kinase p85, demonstrating that the mechanism of inhibited association is competitive binding to PI 3-kinase SH2 domains. We conclude that the appropriate phosphonopeptide sequence inhibits the interaction between a tyrosine-phosphorylated protein and a cognate SH2 domain-containing protein and is resistant to the actions of PTPases. Proteolytically stable phosphonopeptide derivatives should be useful inhibitors of protein-protein interactions when introduced into cells and may provide a basis for the rational design of a new class of chemotherapeutic agent.  相似文献   

9.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

10.
Src homology 2 (SH2) domains exist in many intracellular proteins and have well characterized roles in signal transduction. SH2 domains bind to phosphotyrosine (Tyr(P))-containing proteins. Although tyrosine phosphorylation is essential for protein-SH2 domain interactions, the binding specificity also derives from sequences C-terminal to the Tyr(P) residue. The high affinity and specificity of this interaction is critical for precluding aberrant cross-talk between signaling pathways. The p85alpha subunit of phosphoinositide 3-kinase (PI 3-kinase) contains two SH2 domains, and it has been proposed that in competition with Tyr(P) binding they may also mediate membrane attachment via interactions with phosphoinositide products of PI 3-kinase. We used nuclear magnetic resonance spectroscopy and biosensor experiments to investigate interactions between the p85alpha SH2 domains and phosphoinositides or inositol polyphosphates. We reported previously a similar approach when demonstrating that some pleckstrin homology domains show binding specificity for distinct phosphoinositides (Salim, K., Bottomley, M. J., Querfurth, E., Zvelebil, M. J., Gout, I., Scaife, R., Margolis, R. L., Gigg, R., Smith, C. I., Driscoll, P. C., Waterfield, M. D., and Panayotou, G. (1996) EMBO J. 15, 6241-6250). However, neither SH2 domain exhibited binding specificity for phosphoinositides in phospholipid bilayers. We show that the p85alpha SH2 domain Tyr(P) binding pockets indiscriminately accommodate phosphoinositides and inositol polyphosphates. Binding of the SH2 domains to Tyr(P) peptides was only poorly competed for by phosphoinositides or inositol polyphosphates. We conclude that these ligands do not bind p85alpha SH2 domains with high affinity or specificity. Moreover, we observed that although wortmannin blocks PI 3-kinase activity in vivo, it does not affect the ability of tyrosine-phosphorylated proteins to bind to p85alpha. Consequently phosphoinositide products of PI 3-kinase are unlikely to regulate signaling through p85alpha SH2 domains.  相似文献   

11.
SH2 domains provide fundamental recognition sites in tyrosine kinase-mediated signaling pathways which, when aberrant, give rise to disease states such as cancer, diabetes, and immune deficiency. Designing specific inhibitors that target the SH2 domain-binding site, however, have presented a major challenge. Despite well over a decade of intensive research, clinically useful SH2 domain inhibitors have yet to become available. A better understanding of the structural, dynamic, and thermodynamic contributions to ligand binding of individual SH2 domains will provide some insight as to whether inhibitor development is possible. We report the first high resolution solution structure of the apo-v-Src SH2 domain. This is accompanied by the analysis of backbone dynamics and pK(a) values within the apo- and peptide-bound states. Our results indicate that the phosphotyrosine (pY) pocket is tightly structured and hence not adaptable to exogenous ligands. On the other hand, the pocket which accommodates residues proximal and C-terminal of the pY (pY + 3) or so-called specificity determining region, is a large dynamic-binding surface. This appears to allow a high level of promiscuity in binding. Binding of a series of synthetic, phosphotyrosyl, peptidomimetic compounds designed to explore interactions in the pY + 3 pocket further demonstrates the ability of the SH2 domain to accommodate diverse ligands. The thermodynamic parameters of these interactions show dramatic enthalpy/entropy compensation. These data suggest that the v-Src SH2 domain does not have a highly specific secondary-binding site, which clearly presents a major hurdle to design selective inhibitors.  相似文献   

12.
Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor.  相似文献   

13.
SH2 (src-homology 2) domains define a newly recognized binding motif that mediates the physical association of target phosphotyrosyl proteins with downstream effector enzymes. An example of such phosphoprotein-effector coupling is provided by the association of phosphatidylinositol 3-kinase (PI 3-kinase) with specific phosphorylation sites within the PDGF receptor, the c-Src/polyoma virus middle T antigen complex and the insulin receptor substrate IRS-1. Notably, phosphoprotein association with the SH2 domains of p85 also stimulates an increase in catalytic activity of the PI 3-kinase p110 subunit, which can be mimicked by phosphopeptides corresponding to targeted phosphoprotein phosphorylation sites. To investigate how phosphoprotein binding to the p85 SH2 domain stimulates p110 catalytic activation, we have examined the differential effects of phosphotyrosine and PDGF receptor-, IRS-1- and c-Src-derived phosphopeptides on the conformation of an isolated SH2 domain of PI 3-kinase. Although phosphotyrosine and both activating and non-activating phosphopeptides bind to the SH2 domain, activating phosphopeptides bind with higher affinity and induce a qualitatively distinct conformational change as monitored by CD and NMR spectroscopy. Amide proton exchange and protease protection assays further show that high affinity, specific phosphopeptide binding induces non-local dynamic SH2 domain stabilization. Based on these findings we propose that specific phosphoprotein binding to the p85 subunit induces a change in SH2 domain structure which is transmitted to the p110 subunit and regulates enzymatic activity by an allosteric mechanism.  相似文献   

14.
Phosphoinositide second messengers, generated from the action of phosphoinositide 3-kinase (PI3K), mediate an array of signaling pathways through the membrane recruitment and activation of downstream effector proteins. Although pleckstrin domains of many target proteins have been shown to bind phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and/or phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) with high affinity, published data concerning the phosphoinositide binding specificity of Src homology 2 (SH2) domains remain conflicting. Using three independent assays, we demonstrated that the C-terminal (CT-)SH2 domain, but not the N-terminal SH2 domain, on the PI3K p85alpha subunit displayed discriminative affinity for PIP(3). However, the binding affinity diminished precipitously when the acyl chain of PIP(3) was shortened. In addition, evidence suggests that the charge density on the phosphoinositol ring represents a key factor in determining the phosphoinositide binding specificity of the CT-SH2 domain. In light of the largely shared structural features between PIP(3) and PI(4,5)P(2), we hypothesized that the PIP(3)-binding site on the CT-SH2 domain encompassed a sequence that recognized PI(4,5)P(2). Based on a consensus PI(4,5)P(2)-binding sequence (KXXXXXKXKK; K denotes Arg, Lys, and His), we proposed the sequence (18)RNKAENLLRGKR(29) as the PIP(3)-binding site. This binding motif was verified by using a synthetic peptide and site-directed mutagenesis. More importantly, neutral substitution of flanking Arg(18) and Arg(29) resulted in a switch of ligand specificity of the CT-SH2 domain to PI(4,5)P(2) and PI(3,4)P(2), respectively. Together with computer modeling, these mutagenesis data suggest a pseudosymmetrical relationship in the recognition of the phosphoinositol head group at the binding motif.  相似文献   

15.
Src homology 3 (SH3) domains are small noncatalytic protein modules capable of mediating protein-protein interactions. We previously demonstrated that the association of a ligand peptide RLP1 (RKLPPRPSK) causes environmental and structural changes of Trp55 and some of seven Tyr residues in the phosphatidylinositol 3-kinase (PI3K) SH3 domain by circular dichroism (CD) and 235-nm excited UV resonance Raman (UVRR) spectroscopies [Okishio, N., et al. (2000) Biopolymers 57, 208-217]. In this work, the affected Tyr residues were identified as Tyr12, Tyr14, and Tyr73 by the CD analysis of a series of mutants, in which every single Tyr residue was replaced by a Phe residue. Among these three residues, Tyr14 was found to be a main contributor to the UVRR spectral change upon the RLP1 binding. Interestingly, CD and UVRR analyses revealed that RLP1 associates with the Y14F and Y14H mutants in different ways. These results suggest that Tyr14 plays a crucial role in the ligand recognition, and the amino acid substitution at Tyr14 affects the mode of PI3K SH3-ligand interaction. Our findings give an insight into how SH3 domains can produce diversity and specificity to transduce signaling within cells.  相似文献   

16.
The Src SH2 domain binds pYEEI-containing phosphopeptides in an extended conformation with a hydrophobic pocket, which includes ThrEF1, binding Ile(pY +3). Mutating ThrEF1 to tryptophan switches specificity to an Asn(pY +2) requirement, yielding a biological mimic of the Grb2 SH2 domain. Here we show that the Src ThrEF1Trp SH2 domain mutant binds pYVNV phosphopeptides in a beta turn conformation, which, despite differing conformations of the interacting tryptophan, closely resembles the native Grb2/pYVNV cognate peptide binding mode. The ThrEF1Trp substitution therefore switches specificity by physically occluding the pTyr +3 binding pocket and by providing additional interaction surface area for Asn(pY +2). This demonstrates structurally how novel SH2 domain specificities may rapidly evolve through single amino acid substitutions and suggests how new signaling pathways may develop.  相似文献   

17.
Circular dichroism and fluorescence spectroscopy were used to investigate the structure of the p85 alpha subunit of the PI 3-kinase, a closely related p85 beta protein, and a recombinant SH2 domain-containing fragment of p85 alpha. Significant spectral changes, indicative of a conformational change, were observed on formation of a complex with a 17 residue peptide containing a phosphorylated tyrosine residue. The sequence of this peptide is identical to the sequence surrounding Tyr751 in the kinase-insert region of the platelet-derived growth factor beta-receptor (beta PDGFR). The rotational correlation times measured by fluorescence anisotropy decay indicated that phosphopeptide binding changed the shape of the SH2 domain-containing fragment. The CD and fluorescence spectroscopy data support the secondary structure prediction based on sequence analysis and provide evidence for flexible linker regions between the various domains of the p85 proteins. The significance of these results for SH2 domain-containing proteins is discussed.  相似文献   

18.
Phosphoinositide 3-kinases (PI 3-kinases) have critical roles in diverse cellular signaling processes and in protein trafficking. In contrast to the class I PI 3-kinases alpha, beta, and delta which bind via src homology 2 (SH2) domains of adaptor proteins to tyrosine kinase receptors, the mechanism of recruitment of the PI 3-kinase gamma to membranes is unknown. We report in vitro experiments using immobilized proteins and small unilamellar vesicles which suggest an involvement of anionic phospholipids in membrane association of PI 3-kinase gamma. Furthermore we provide evidence that the enzyme displays beside the catalytic center a phospholipid binding domain which is essential for enzyme activity.  相似文献   

19.
The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.  相似文献   

20.
The structural proteins of HIV and Ebola display PTAP peptide motifs (termed 'late domains') that recruit the human protein Tsg101 to facilitate virus budding. Here we present the solution structure of the UEV (ubiquitin E2 variant) binding domain of Tsg101 in complex with a PTAP peptide that spans the late domain of HIV-1 p6(Gag). The UEV domain of Tsg101 resembles E2 ubiquitin-conjugating enzymes, and the PTAP peptide binds in a bifurcated groove above the vestigial enzyme active site. Each PTAP residue makes important contacts, and the Ala 9-Pro 10 dipeptide binds in a deep pocket of the UEV domain that resembles the X-Pro binding pockets of SH3 and WW domains. The structure reveals the molecular basis of HIV PTAP late domain function and represents an attractive starting point for the design of novel inhibitors of virus budding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号