首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penela P  Elorza A  Sarnago S  Mayor F 《The EMBO journal》2001,20(18):5129-5138
G-protein-coupled receptor kinase 2 (GRK2) plays a key role in the regulation of G-protein-coupled receptors (GPCRs). GRK2 expression is altered in several pathological conditions, but the molecular mechanisms that modulate GRK2 cellular levels are largely unknown. We recently have described that GRK2 is degraded rapidly by the proteasome pathway. This process is enhanced by GPCR stimulation and is severely impaired in a GRK2 mutant that lacks kinase activity (GRK2-K220R). In this report, we find that beta-arrestin function and Src-mediated phosphorylation of GRK2 are critically involved in GRK2 proteolysis. Overexpression of beta-arrestin triggers GRK2-K220R degradation based on its ability to recruit c-Src, since this effect is not observed with beta-arrestin mutants that display an impaired c-Src interaction. The presence of an inactive c-Src mutant or of tyrosine kinase inhibitors strongly inhibits co-transfected or endogenous GRK2 turnover, respectively, and a GRK2 mutant with impaired phosphorylation by c-Src shows a markedly retarded degradation. This pathway for the modulation of GRK2 protein stability puts forward a new feedback mechanism for regulating GRK2 levels and GPCR signaling.  相似文献   

2.
G protein-coupled receptor kinase 2 (GRK2) plays a fundamental role in the regulation of G protein-coupled receptors (GPCRs), and changes in GRK2 expression levels can have an important impact on cell functions. GRK2 is known to be degraded by the proteasome pathway. We have shown previously that β-arrestins participate in enhanced kinase turnover upon GPCR stimulation by facilitating GRK2 phosphorylation by c-Src or by MAPK or by recruiting the Mdm2 E3 ubiquitin ligase to the receptor complex. In this report, we have investigated how such diverse β-arrestin scaffold functions are integrated to modulate GRK2 degradation. Interestingly, we found that in the absence of GPCR activation, β-arrestins do not perform an adaptor role for GRK2/Mdm2 association, but rather compete with GRK2 for direct Mdm2 binding to regulate basal kinase turnover. Upon agonist stimulation, β-arrestins-mediated phosphorylation of GRK2 at serine 670 by MAPK facilitates Mdm2-mediated GRK2 degradation, whereas c-Src-dependent phosphorylation would support the action of an undetermined β-arrestin-recruited ligase in the absence of GPCR activation. The ability of β-arrestins to play different scaffold functions would allow coordination of both Mdm2-dependent and -independent processes aimed at the specific modulation of GRK2 turnover in different signaling contexts.  相似文献   

3.
4.
G protein-coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR function. Here we demonstrate that activation of epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase family, stimulates GRK2 activity and transregulates the function of G protein-coupled opioid receptors. Our data showed that EGF treatment promoted DOR internalization induced by DOR agonist and this required the intactness of GRK2-phosphorylation sites in DOR. EGF stimulation induced the association of GRK2 with the activated EGFR and the translocation of GRK2 to the plasma membrane. After EGF treatment, GRK2 was phosphorylated at tyrosyl residues. Mutational analysis indicated that EGFR-mediated phosphorylation occurred at GRK2 N-terminal tyrosyl residues previously shown as c-Src phosphorylation sites. However, c-Src activity was not required for EGFR-mediated phosphorylation of GRK2. In vitro assays indicated that GRK2 was a direct interactor and a substrate of EGFR. EGF treatment remarkably elevated DOR phosphorylation in cells expressing the wild-type GRK2 in an EGFR tyrosine kinase activity-dependent manner, whereas EGF-stimulated DOR phosphorylation was greatly decreased in cells expressing mutant GRK2 lacking EGFR tyrosine kinase sites. We further showed that EGF also stimulated internalization of mu-opioid receptor, and this effect was inhibited by GRK2 siRNA. These data indicate that EGF transregulates opioid receptors through EGFR-mediated tyrosyl phosphorylation and activation of GRK2 and propose GRK2 as a mediator of cross-talk from RTK to GPCR signaling pathway.  相似文献   

5.
We have reported that the platelet-derived growth factor receptor-beta (PDGFbeta) forms a novel signaling complex with G protein-coupled receptors (GPCR) (e.g. S1P(1) receptor) that enables more efficient activation of p42/p44 mitogen-activated protein kinase (MAPK) in response to PDGF and sphingosine 1-phosphate (S1P). We now demonstrate that c-Src participates in regulating the endocytosis of PDGFbeta receptor-GPCR complexes in response to PDGF. This leads to association of cytoplasmic p42/p44 MAPK with the receptor complex in endocytic vesicles. c-Src is regulated by G protein betagamma subunits and can interact with beta-arrestin. Indeed, the PDGF-dependent activation of p42/p44 MAPK was reduced by over-expression of the C-terminal domain of GRK2 (sequesters Gbetagamma subunits), the clathrin-binding domain of beta-arrestin and by inhibitors of c-Src and clathrin-mediated endocytosis. Moreover, PDGF and S1P induce the recruitment of c-Src to the PDGFbeta receptor-S1P(1) receptor complex. This leads to a G protein/c-Src-dependent tyrosine phosphorylation of Gab1 and accumulation of dynamin II at the plasma membrane, a step required for endocytosis of the PDGFbeta receptor-GPCR complex. These findings provide important information concerning the molecular organisation of novel receptor tyrosine kinase (RTK)-GPCR signal relays in mammalian cells.  相似文献   

6.
GRK2 is a member of the G protein-coupled receptor kinase (GRK) family, which phosphorylates the activated form of a variety of G protein-coupled receptors (GPCR) and plays an important role in GPCR modulation. It has been recently reported that stimulation of the mitogen-activated protein kinase cascade by GPCRs involves tyrosine phosphorylation of docking proteins mediated by members of the Src tyrosine kinase family. In this report, we have investigated the possible role of c-Src in modulating GRK2 function. We demonstrate that c-Src can directly phosphorylate GRK2 on tyrosine residues, as shown by in vitro experiments with purified proteins. The phosphorylation reaction exhibits an apparent K(m) for GRK2 of 12 nM, thus suggesting a physiological relevance in living cells. Consistently, overexpression of the constitutively active c-Src Y527F mutant in COS-7 cells leads to tyrosine phosphorylation of co-expressed GRK2. In addition, GRK2 can be detected in phosphotyrosine immunoprecipitates from HEK-293 cells transiently transfected with this Src mutant. Interestingly, phosphotyrosine immunoblots reveal a rapid and transient increase in GRK2 phosphorylation upon agonist stimulation of beta(2)-adrenergic receptors co-transfected with GRK2 and wild type c-Src in COS-7 cells. This tyrosine phosphorylation is maximal within 5 min of isoproterenol stimulation and reaches values of approximately 5-fold over basal conditions. Furthermore, GRK2 phosphorylation on tyrosine residues promotes an increased kinase activity toward its substrates. Our results suggest that GRK2 phosphorylation by c-Src is inherent to GPCR activation and put forward a new mechanism for the regulation of GPCR signaling.  相似文献   

7.
Key participants in G protein-coupled receptor (GPCR) signaling are the mitogen-activated protein kinase (MAPK) signaling cascades. The mechanisms involved in the activation of the above cascades by GPCRs are not fully elucidated. A prototypic GPCR that has been widely used to study these signaling mechanisms is the receptor for gonadotropin-releasing hormone (GnRHR), which serves as a key regulator of the reproductive system. Here we expressed GnRHR in COS7 cells and found that GnRHR transmits its signals to MAPKs mainly via G alpha i, EGF receptor without the involvement of Hb-EGF, and c-Src, but independently of PKCs. The main pathway that leads to JNK activation downstream of the EGF receptor involves a sequential activation of c-Src and phosphatidylinositol 3-kinase (PI3K). ERK activation by GnRHR is mediated by the EGF receptor, which activates Ras either directly or via c-Src. Besides the main pathway, the dissociated G beta gamma and beta-arrestin may initiate additional, albeit minor, pathways that lead to MAPK activation in the transfected COS7 cells. The pathways detected are significantly different from those in other cell lines bearing GnRHR, indicating that GnRH can utilize various signaling mechanisms for the activation of MAPK cascades. The unique pathway elucidated here in which c-Src and PI3K are sequentially activated downstream of the EGF receptor may serve as a prototype of signaling mechanisms by GnRHR and by additional GPCRs in various cell types.  相似文献   

8.
The beta(2)-adrenergic receptor (beta(2)-AR) negatively regulates T cell activity through the activation of the G(s)/adenylyl cyclase/cAMP pathway. beta(2)-AR desensitization, which can be induced by its phosphorylation, may have important consequences for the regulation of T cell function in asthma. In the present study we demonstrate that the C-C chemokine thymus and activation-regulated chemokine (TARC) impairs the ability of beta(2)-agonist fenoterol to activate the cAMP downstream effector cAMP-responsive element binding protein (CREB) in freshly isolated human T cells. The TARC-induced activation of Src kinases resulted in membrane translocation of both G protein-coupled receptor kinase (GRK) 2 and beta-arrestin. Moreover, TARC was able to induce Src-dependent serine phosphorylation of the beta(2)-AR as well as its association with GRK2 and beta-arrestin. Finally, in contrast to CREB, phosphorylation of Src and extracellular signal-regulated kinase was enhanced by fenoterol upon TARC pretreatment. In summary, we show for the first time that TARC exposure impairs beta(2)-AR function in T cells. Our data suggest that this is mediated by Src-dependent activation of GRK2, resulting in receptor phosphorylation, binding to beta-arrestin, and a switch from cAMP-dependent signaling to activation of the MAPK pathway. We propose that aberrant T cell control in the presence of endogenous beta-agonists promotes T cell-mediated inflammation in asthma.  相似文献   

9.
G protein-coupled receptor kinases (GRKs) mediate agonist-induced phosphorylation and desensitization of various G protein-coupled receptors (GPCRs). We investigate the role of GRK2 on epidermal growth factor (EGF) receptor signaling, including EGF-induced extracellular signal-regulated kinase and mitogen-activated protein kinase (ERK/MAPK) activation and EGFR internalization. Immunoprecipitation and immunofluorescence experiments show that EGF stimulates GRK2 binding to EGFR complex and GRK2 translocating from cytoplasm to the plasma membrane in human embryonic kidney 293 cells. Western blotting assay shows that EGF-induced ERK/MAPK phosphorylation increases 1.9-fold, 1.1-fold and 1.5fold (P〈0.05) at time point 30, 60 and 120 min, respectively when the cells were transfected with GRK2,suggesting the regulatory role of GRK2 on EGF-induced ERK/MAPK activation. Flow cytometry experiments show that GRK2 overexpression has no effect on EGF-induced EGFR internalization, however, it increases agonist-induced G protein-coupled δ5 opioid receptor internalization by approximately 40% (P〈0.01). Overall,these data suggest that GRK2 has a regulatory role in EGF-induced ERK/MAPK activation, and that the mechanisms underlying the modulatory role of GRK2 in EGFR and GPCR signaling pathways are somewhat different at least in receptor internalization.  相似文献   

10.
11.
Once internalized, some G protein-coupled receptors (GPCRs) can recycle back to the cell surface, while some of them are delivered to lysosomes for degradation. Because recycling and degradation represent two opposing receptor fates, understanding the mechanisms that determine post-endocytic fate of GPCRs is of great importance. Our recent work has verified that agonist-induced internalization of delta-opioid receptor (DOR) employs both phosphorylation-dependent and -independent mechanisms in HEK293 cells. To investigate whether these two internalization mechanisms work differently in receptor regulation, we monitored receptor post-endocytic fates using flow cytometry, surface receptor biotinylation and radioligand binding assays. Results showed that the internalized wild type DOR could either recycle to the cell surface or be degraded. Mutant DOR M4/5/6, which lacks all three G protein-coupled receptor kinase 2 (GRK2) phosphorylation sites, could also internalize upon agonist challenge although in a reduced level as compared with the wild type counterpart. However, the internalized mutant DOR could not recycle back to the cell surface and all mutant DOR was degraded after internalization. Inhibition of GRK2 expression by GRK2 RNAi also strongly attenuated recycling of DOR. Furthermore, overexpression of GRK2, which significantly increased receptor phosphorylation and internalization, also targeted more internalized receptors to the recycling pathway. These data suggest that GRK2-catalyzed receptor phosphorylation is critically involved in DOR internalization and recycling, and the phosphorylation-independent internalization leads to receptor degradation. Data obtained from beta-arrestin1 and beta-arrestin2 RNAi experiments indicated that both beta-arrestin1 and beta-arrestin2 participate in phosphorylation-dependent internalization and the subsequent recycling of DOR. However, phosphorylation-independent internalization and degradation of DOR were strongly blocked by beta-arrestin2 RNAi, but not beta-arrestin1 RNAi. Taken together, these data demonstrate for the first time that GRK2 phosphorylation-dependent internalization mediated by both beta-arrestin1 and beta-arrestin2 leads DOR to recycle, whereas GRK2-independent internalization mediated by beta-arrestin2 alone leads to receptor degradation. Thus, the post-endocytic fate of internalized DOR can be regulated by GRK2-catalyzed receptor phosphorylation as well as distinct beta-arrestin isoforms.  相似文献   

12.
The endocytic pathway of the secretin receptor, a class II GPCR, is unknown. Some class I G protein-coupled receptors (GPCRs), such as the beta(2)-adrenergic receptor (beta(2)-AR), internalize in clathrin-coated vesicles and this process is mediated by G protein-coupled receptor kinases (GRKs), beta-arrestin, and dynamin. However, other class I GPCRs, for example, the angiotensin II type 1A receptor (AT(1A)R), exhibit different internalization properties than the beta(2)-AR. The secretin receptor, a class II GPCR, is a GRK substrate, suggesting that like the beta(2)-AR, it may internalize via a beta-arrestin and dynamin directed process. In this paper we characterize the internalization of a wild-type and carboxyl-terminal (COOH-terminal) truncated secretin receptor using flow cytometry and fluorescence imaging, and compare the properties of secretin receptor internalization to that of the beta(2)-AR. In HEK 293 cells, sequestration of both the wild-type and COOH-terminal truncated secretin receptors was unaffected by GRK phosphorylation, whereas inhibition of cAMP-dependent protein kinase mediated phosphorylation markedly decreased sequestration. Addition of secretin to cells resulted in a rapid translocation of beta-arrestin to plasma membrane localized receptors; however, secretin receptor internalization was not reduced by expression of dominant negative beta-arrestin. Thus, like the AT(1A)R, secretin receptor internalization is not inhibited by reagents that interfere with clathrin-coated vesicle-mediated internalization and in accordance with these results, we show that secretin and AT(1A) receptors colocalize in endocytic vesicles. This study demonstrates that the ability of secretin receptor to undergo GRK phosphorylation and beta-arrestin binding is not sufficient to facilitate or mediate its internalization. These results suggest that other receptors may undergo endocytosis by mechanisms used by the secretin and AT(1A) receptors and that kinases other than GRKs may play a greater role in GPCR endocytosis than previously appreciated.  相似文献   

13.
G-protein-coupled-receptor kinase 2 (GRK2) plays a key role in the modulation of G-protein-coupled-receptor (GPCR) signaling by both phosphorylating agonist-occupied GPCRs and by directly binding to activated Galphaq subunits, inhibiting downstream effectors activation. The GRK2/Galphaq interaction involves the N-terminal region of the kinase that displays homology to regulators of G-protein signaling (RGS) proteins. We have previously reported that upon GPCR stimulation, GRK2 can be phosphorylated by c-Src on tyrosine residues that are present in the RGS-homology (RH) region of this kinase. Here, we demonstrate that c-Src kinase activity increases the interaction between GRK2 and Galphaq. Tyrosine phosphorylation of GRK2 appears to be critically involved in the modulation of this interaction since the stimulatory effect of c-Src is not observed with a GRK2 mutant with impaired tyrosine phosphorylation (GRK2 Y13,86,92F), whereas a mutant that mimics GRK2 tyrosine phosphorylation in these residues displays an increased interaction with Galphaq. As evidence for a physiological role of this modulatory mechanism, activation of the muscarinic receptor M1, a Galphaq-coupled receptor, promotes an increase in GRK2/Galphaq co-immunoprecipitation that parallels the enhanced GRK2 phosphorylation on tyrosine residues. Moreover, c-Src activation enhances inhibition of the Galphaq/phospholipase Cbeta signaling pathway in intact cells, in a GRK2-tyrosine-phosphorylation-dependent manner. Our results suggest a feedback mechanism by which phosphorylation of GRK2 by c-Src increases both GRK2 kinase activity towards GPCRs and its specific interaction with Galphaq subunits, leading to a more rapid switch off of Galphaq-mediated signaling.  相似文献   

14.
G蛋白偶联受体激酶(G protein-coupled receptor kinase,GRK)特异地使活化的G蛋白偶联受体(G protein-coupled receptor,GPCR)发生磷酸化及脱敏化,从而终止后者介导的信号转导通路。研究表明,GRK的功能被高度调控,并具有下行调节GPCR的能力。调控GRK功能的机制包括两个层次:(1)多种途径调控激酶的亚细胞定位及活性,包括GPCR介导、G蛋白偶联、磷脂作用、Ca^2 结合蛋白调控、蛋白激酶C活化、MAPK反馈抑制、小窝蛋白抑制等;(2)调控GRK表达水平,主要体现在其与某些疾病的联系。  相似文献   

15.
G protein-coupled receptor kinase 2 (GRK2) and beta-arrestin 1 are key regulatory proteins that modulate the desensitization and resensitization of a wide variety of G protein-coupled receptors (GPCRs) involved in brain functions. In this report, we describe the postnatal developmental profile of the mRNA and protein levels of GRK2 and beta-arrestin 1 in rat brain. The expression levels of GRK2 and beta-arrestin 1 display a marked increase at the second and third week after birth, respectively, consistent with an involvement of these proteins in brain maturation processes. However, the expression attained at birth and during the first postnatal week with respect to adult values (45-70% for GRK2, approximately 30% for beta-arrestin 1) is relatively high compared to that reported for several GPCRs, indicating the existence of changes in the ratio of receptors to their regulatory proteins during brain development. On the other hand, we report that experimental hypothyroidism results in changes in the patterns of expression of GRK2 and beta-arrestin 1 in cerebral cortex, leading to a 25-30% reduction in GRK2 levels at several stages of development. Such changes could help to explain the alterations in GPCR signaling that occur during this pathophysiological condition.  相似文献   

16.
Extracellular calcium rapidly controls PTH secretion through binding to the G protein-coupled calcium-sensing receptor (CASR) expressed in parathyroid glands. Very little is known about the regulatory proteins involved in desensitization of CASR. G protein receptor kinases (GRK) and beta-arrestins are important regulators of agonist-dependent desensitization of G protein-coupled receptors. In the present study, we investigated their role in mediating agonist-dependent desensitization of CASR. In heterologous cell culture models, we found that the transfection of GRK4 inhibits CASR signaling by enhancing receptor phosphorylation and beta-arrestin translocation to the CASR. In contrast, we found that overexpression of GRK2 desensitizes CASR by classical mechanisms as well as through phosphorylation-independent mechanisms involving disruption of Galphaq signaling. In addition, we observed lower circulating PTH levels and an attenuated increase in serum PTH after hypocalcemic stimulation in beta-arrestin2 null mice, suggesting a functional role of beta-arrestin2-dependent desensitization pathways in regulating CASR function in vivo. We conclude that GRKs and beta-arrestins play key roles in regulating CASR responsiveness in parathyroid glands.  相似文献   

17.
Arrestin proteins play a key role in the desensitization of G protein-coupled receptors (GPCRs). Recently we proposed a molecular mechanism whereby arrestin preferentially binds to the activated and phosphorylated form of its cognate GPCR. To test the model, we introduced two different types of mutations into beta-arrestin that were expected to disrupt two crucial elements that make beta-arrestin binding to receptors phosphorylation-dependent. We found that two beta-arrestin mutants (Arg169 --> Glu and Asp383 --> Ter) (Ter, stop codon) are indeed "constitutively active." In vitro these mutants bind to the agonist-activated beta2-adrenergic receptor (beta2AR) regardless of its phosphorylation status. When expressed in Xenopus oocytes these beta-arrestin mutants effectively desensitize beta2AR in a phosphorylation-independent manner. Constitutively active beta-arrestin mutants also effectively desensitize delta opioid receptor (DOR) and restore the agonist-induced desensitization of a truncated DOR lacking the critical G protein-coupled receptor kinase (GRK) phosphorylation sites. The kinetics of the desensitization induced by phosphorylation-independent mutants in the absence of receptor phosphorylation appears identical to that induced by wild type beta-arrestin + GRK3. Either of the mutations could have occurred naturally and made receptor kinases redundant, raising the question of why a more complex two-step mechanism (receptor phosphorylation followed by arrestin binding) is universally used.  相似文献   

18.
Oxidative mechanisms of injury are involved in many neurodegenerative diseases such as stroke, ischemia-reperfusion injury and multiple sclerosis. G protein-coupled receptor kinase 2 (GRK2) plays a key role in G protein-coupled receptor (GPCR) signaling modulation, and its expression levels are decreased after brain hypoxia/ischemia and reperfusion as well as in several inflammatory conditions. We report here that hydrogen peroxide downregulates GRK2 expression in C6 rat glioma cells. The hydrogen peroxide-induced decrease in GRK2 is prevented by a calpain protease inhibitor, but does not involve increased GRK2 degradation or changes in GRK2 mRNA level. Instead we show that hydrogen peroxide treatment impairs GRK2 translation in a process that requires Cdk1 activation and involves the mTOR pathway. This novel mechanism for the control of GRK2 expression in glial cells upon oxidative stress challenge may contribute to the modulation of GPCR signaling in different pathological conditions.  相似文献   

19.
G protein-coupled receptors form the largest family of membrane receptors and transmit diverse ligand signals to modulate various cellular responses. After activation by their ligands, some of these G protein-coupled receptors are desensitized, internalized (endocytosed), and down-regulated (degraded). In HEK 293 cells, the G(s)-coupled beta2-adrenergic receptor was postulated to initiate a second wave of signaling, such as the activation of the mitogen-activated protein kinase (MAPK) pathway after the receptor is internalized. The tyrosine kinase c-Src plays a critical role in these events. Here we used mouse embryonic fibroblast (MEF) cells deficient in Src family tyrosine kinases to examine the role of Src in beta2-adrenergic receptor signaling to the MAPK pathway and in receptor internalization. We found that in Src-deficient cells the beta2-adrenergic receptor could activate the MAPK pathway. However, the internalization of beta2-adrenergic receptors was blocked in Src-deficient MEF cells. Furthermore, we observed that in MEF cells deficient in beta-arrestin 2 the internalization of the beta2-adrenergic receptor was impaired, whereas the activation of the MAPK pathway by the beta2-adrenergic receptor was normal. Our data demonstrate that although Src and beta-arrestin 2 play essential roles in beta2-adrenergic receptor internalization, they are not required for the activation of the MAPK pathway by the beta2-adrenergic receptor. In other words, our finding suggests that receptor internalization is not required for beta2-adrenergic receptor signaling to the MAPK pathway in MEF cells.  相似文献   

20.
G protein-coupled receptors (GPCRs) are known to modulate intracellular effectors involved in cardiac function. We recently reported homocysteine (Hcy)-induced ERK-phosphorylation was suppressed by pertussis toxin (PTX), which suggested the involvement of GPCRs in initiating signal transduction. An activated GPCR undergoes down regulation via a known mechanism involving ERK, GRK2, beta-arrestin1: ERK activity increases; GRK2 activity increases; beta-arrestin1 is degraded. We hypothesized that Hcy treatment leads to GPCR activation and down regulation. Microvascular endothelial cells were treated with Hcy. Expression of phospho-ERK1 and phospho-GRK2 was determined using Western blot, standardized to ERK1, GRK2, and beta-actin. Hcy was shown to dephosphorylate GRK2, thereby enhancing the activity. The results provided further evidence that Hcy acts as an agonist to activate GPCRs, followed by their down regulation. Hcy was also shown to decrease the content of the following G proteins and other proteins: beta-arrestin1, Galpha(q/11), Galpha(12/13), G(i/o).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号