首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Type 1 diabetes is a T cell-mediated disease in which B cells serve critical Ag-presenting functions. In >95% of type 1 diabetic patients the B cell response to the glutamic acid decarboxylase 65 (GAD65) autoantigen is exclusively directed at conformational epitopes residing on the surface of the native molecule. We have examined how the epitope specificity of Ag-presenting autoimmune B cell lines, derived from a type 1 diabetic patient, affects the repertoire of peptides presented to DRB1*0401-restricted T cell hybridomas. The general effect of GAD65-specific B cells was to enhance Ag capture and therefore Ag presentation. The enhancing effect was, however, restricted to T cell determinants located outside the B cell epitope region, because processing/presentation of T cell epitopes located within the autoimmune B cell epitope were suppressed in a dominant fashion. A similar effect was observed when soluble Abs formed immune complexes with GAD65 before uptake and processing by splenocytes. Thus, GAD65-specific B cells and the Abs they secrete appear to modulate the autoimmune T cell repertoire by down-regulating T cell epitopes in an immunodominant area while boosting epitopes in distant or cryptic regions.  相似文献   

2.
The 65-kDa mycobacterial heat shock protein (Bhsp65) has been invoked in the pathogenesis of both adjuvant arthritis (AA) in the Lewis rat (RT.1(l)) and human rheumatoid arthritis. Arthritic Lewis rats in the late phase of AA show diversification of the T cell response to Bhsp65 C-terminal determinants (BCTD), and pretreatment of naive Lewis rats with a mixture of peptides representing these neoepitopes affords protection against AA. However, the fine specificity and physiologic significance of the BCTD-directed T cell repertoire, and the role of homologous self (rat) hsp65 (Rhsp65), if any, in spreading of the T cell response to Bhsp65 have not yet been examined. We observed that T cells primed by peptides comprising BCTD can adoptively transfer protection against AA to the recipient Lewis rats. However, these T cells can be activated by preprocessed (peptide) form of BCTD, but not native Bhsp65, showing that BCTD are cryptic epitopes. The BCTD-reactive T cells can be activated by the naturally generated (dominant) C-terminal epitopes of both exogenous and endogenous Rhsp65 and vice versa. Furthermore, certain individual peptides constituting BCTD and their self homologs can also induce protection against AA. These results support a model for the diversification of T cell response to Bhsp65 during the course of AA involving up-regulation of the display of cryptic BCTD coupled with spontaneous induction of T cell response to the cross-reactive dominant C-terminal epitopes of Rhsp65. The identification of disease-regulating cryptic determinants in Ags implicated in arthritis provides a novel approach for immunotherapy of rheumatoid arthritis.  相似文献   

3.
Abs can tune the responses of Ag-specific T cells by influencing the nature of the epitope repertoire displayed by APCs. We explored the interaction between human self-reactive T cells and human monoclonal autoantibodies from combinatorial Ig-gene libraries derived from autoimmune thyroiditis patients and specific for the main autoantigen thyroid peroxidase (TPO). All human mAbs extensively influenced the T cell epitope repertoire recognized by different TPO-specific T cell clones. The action of the human mAbs was complex, because sometimes the same Ab suppressed or enhanced the epitopes recognized by the 10 different TPO-specific T cell clones. The human mAbs could modulate the epitope repertoire when TPO was added exogenously and when expressed constitutively on the surface of APCs. However, they could not unmask an immunodominant cryptic TPO epitope. In this study, we show that human autoantibodies influence the activity of self-reactive T cells and prove their relevance in concealing or exposing epitopes recognized by self-reactive T cells. However, our results further stress the biological significance of the immunodominant cryptic epitope we have defined and its potential importance in the evolution of autoimmunity.  相似文献   

4.
Ag processing is a critical step in defining the repertoire of epitope-specific immune responses. In the present study, HIV-1 p55Gag Ag was synthesized as a DNA plasmid with either lysosomal-associated membrane protein-1 (LAMP/gag) or human dendritic cell-LAMP (DC-LAMP/gag) and used to immunize mice. Analysis of the cellular trafficking of these two chimeras demonstrated that both molecules colocalized with MHC class II molecules but differed in their overall trafficking to endosomal/lysosomal compartments. Following DNA immunization, both chimeras elicited potent Gag-specific T and B cell immune responses in mice but differ markedly in their IL-4 and IgG1/IgG2a responses. The DC-LAMP chimera induced a stronger Th type 1 response. ELISPOT analysis of T cell responses to 122 individual peptides encompassing the entire p55gag sequence (15-aa peptides overlapping by 11 residues) showed that DNA immunization with native gag, LAMP/gag, or DC-LAMP/gag induced responses to identical immunodominant CD4+ and CD8+ peptides. However, LAMP/gag and DC-LAMP/gag plasmids also elicited significant responses to 23 additional cryptic epitopes that were not recognized after immunization with native gag DNA. The three plasmids induced T cell responses to a total of 39 distinct peptide sequences, 13 of which were induced by all three DNA constructs. Individually, DC-LAMP/gag elicited the most diverse response, with a specific T cell response against 35 peptides. In addition, immunization with LAMP/gag and DC-LAMP/gag chimeras also promoted Ab secretion to an increased number of epitopes. These data indicate that LAMP-1 and DC-LAMP Ag chimeras follow different trafficking pathways, induce distinct modulatory immune responses, and are able to present cryptic epitopes.  相似文献   

5.
Autoimmune myocarditis does not require B cells for antigen presentation.   总被引:2,自引:0,他引:2  
T cells constitute the pathogenic effector cell population in autoimmune myocarditis in BALB/c mice. Using mice rendered deficient for B cells by a targeted disruption to the IgM transmembrane domain or by treatment with anti-IgM Ab from birth, we asked whether B cells are a critical APC in the induction of autoimmune myocarditis. B cell-deficient mice immunized with cardiac myosin develop myocarditis comparable in incidence and severity to that in wild-type mice, suggesting that autoreactive T cells that cause myocarditis in BALB/c mice are activated by macrophages or dendritic cells. Since it does not appear that presentation of cryptic epitopes is critical for the breakdown of self tolerance, potentially pathogenic T cells recognizing dominant myosin epitopes must have escaped tolerization. Either anatomic sequestration of cardiac myosin peptide-MHC complexes or subthreshold presentation of cardiac myosin peptides by conventional APC can explain the survival of these autoreactive T cells.  相似文献   

6.
7.
《Future virology》2010,5(3):273-286
Picornaviruses are small, non-enveloped, single stranded, positive sense RNA viruses which cause multiple diseases including myocarditis/dilated cardiomyopathy, type 1 diabetes, encephalitis, myositis, orchitis and hepatitis. Although picornaviruses directly kill cells, tissue injury primarily results from autoimmunity to self antigens. Viruses induce autoimmunity by: aborting deletion of self-reactive T cells during T cell ontogeny; reversing anergy of peripheral autoimmune T cells; eliminating T regulatory cells; stimulating self-reactive T cells through antigenic mimicry or cryptic epitopes; and acting as an adjuvant for self molecules released during virus infection. Most autoimmune diseases (SLE, rheumatoid arthritis, Grave's disease) predominate in females, but diseases associated with picornavirus infections predominate in males. T regulatory cells are activated in infected females because of the combined effects of estrogen and innate immunity.  相似文献   

8.
Efficient induction of self tolerance is critical for avoiding autoimmunity. The T cells specific for the well-processed and -presented (dominant) determinants of a native self protein are generally tolerized in the thymus, whereas those potentially directed against the inefficiently processed and presented (cryptic) self epitopes escape tolerance induction. We examined whether the crypticity of certain determinants of mouse lysozyme-M (ML-M) could be attributed to the nonavailability of a proteolytic site, and whether it could be reversed to immunodominance by engraftment of a novel cleavage site in the flanking region of the epitope. Using site-directed mutagenesis, we created the dibasic motif (RR or RK; R = arginine, K = lysine), a target of intracellular proteases, in the region adjoining one of the three cryptic epitopes (46-61, 66-79, or 105-119) of ML-M. Interestingly, the mutated lysozyme proteins, but not unmutated ML-M, were immunogenic in mice. The T cell response to the altered lysozyme was attributable to the efficient processing and presentation of the previously cryptic epitope, and this response was both epitope and MHC haplotype specific. In addition, the anti-self T cell response was associated with the generation of autoantibodies against self lysozyme. However, the results using one of three mutated lysozymes suggested that the naturally processed, dibasic motif-marked epitope may not always correspond precisely to the cryptic determinant within a synthetic peptide. This is the first report describing the circumvention of self tolerance owing to the targeted reversal of crypticity to dominance in vivo of a specific epitope within a native self Ag.  相似文献   

9.

Background

Novel strategies are needed for the elicitation of broadly neutralizing antibodies to the HIV envelope glycoprotein, gp120. Experimental evidence suggests that combinations of antibodies that are broadly neutralizing in vitro may protect against challenge with HIV in nonhuman primates, and a small number of these antibodies have been selected by repertoire sampling of B cells and by the fractionation of antiserum from some patients with prolonged disease. Yet no additional strategies for identifying conserved epitopes, eliciting antibodies to these epitopes, and determining whether these epitopes are accessible to antibodies have been successful to date. The defining of additional conserved, accessible epitopes against which one can elicit antibodies will increase the probability that some may be the targets of broadly neutralizing antibodies.

Methodology/Principal Findings

We postulate that additional cryptic epitopes of gp120 are present, against which neutralizing antibodies might be elicited even though these antibodies are not elicited by gp120, and that many of these epitopes may be accessible to antibodies should they be formed. We demonstrate a strategy for eliciting antibodies in mice against selected cryptic, conformationally dependent conserved epitopes of gp120 by immunizing with multiple identical copies of covalently linked peptides (MCPs). This has been achieved with MCPs representing 3 different domains of gp120. We show that some cryptic epitopes on gp120 are accessible to the elicited antibodies, and some epitopes in the CD4 binding region are not accessible. The antibodies bind to gp120 with relatively high affinity, and bind to oligomeric gp120 on the surface of infected cells.

Conclusions/Significance

Immunization with MCPs comprised of selected peptides of HIV gp120 is able to elicit antibodies against conserved, conformationally dependent epitopes of gp120 that are not immunogenic when presented as gp120. Some of these cryptic epitopes are accessible to the elicited antibodies.  相似文献   

10.
Cytotoxic T cells (CTLs) play a key role in the control of Hepatitis B virus (HBV) infection and viral clearance. However, most of identified CTL epitopes are derived from HBV of genotypes A and D, and few have been defined in virus of genotypes B and C which are more prevalent in Asia. As HBV core protein (HBc) is the most conservative and immunogenic component, in this study we used an overlapping 9-mer peptide pool covering HBc to screen and identify specific CTL epitopes. An unconventional HLA-A2-restricted epitope HBc141–149 was discovered and structurally characterized by crystallization analysis. The immunogenicity and anti-HBV activity were further determined in HBV and HLAA2 transgenic mice. Finally, we show that mutations in HBc141–149 epitope are associated with viral parameters and disease progression in HBV infected patients. Our data therefore provide insights into the structure characteristics of this unconventional epitope binding to MHC-I molecules, as well as epitope specific CTL activity that orchestrate T cell response and immune evasion in HBV infected patients.  相似文献   

11.
During adaptive immune response, pathogen-specific CD8(+) T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8(+) T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8(+) T cells of H-2(a) infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8(+) T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8(+) T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development.  相似文献   

12.
CD8+ T cells play an important role in early HIV infection. However, HIV has the capacity to avoid specific CTL responses due to a high rate of mutation under selection pressure. Although the HIV proteins, gag and pol, are relatively conserved, these sequences generate low-affinity MHC-associated epitopes that are poorly immunogenic. Here, we applied an approach that enhanced the immunogenicity of low-affinity HLA-A2.1-binding peptides. The first position with tyrosine (P1Y) substitution enhanced the affinity of HLA-A2.1-associated peptides without altering their antigenic specificity. More importantly, P1Y variants efficiently stimulated in vivo native peptide-specific CTL that also recognized the corresponding naturally processed epitope. The potential to generate CTL against any low-affinity HLA-A2.1-associated peptide provides us with the necessary technique for identification of virus cryptic epitopes for development of peptide-based immunotherapy. Therefore, identification and modification of the cryptic epitopes of gal and pol provides promising candidates for HIV immunotherapy dependent upon efficient presentation by virus cells. Furthermore, this may be a breakthrough that overcomes the obstacle of immune escape caused by high rates of mutation. In this study, bioinformatics analysis was used to predict six low-affinity cryptic HIV gag and pol epitopes presented by HLA-A*0201. A HIV compound multi-CTL epitope gene was constructed comprising the gene encoding the modified cryptic epitope and the HIV p24 antigen, which induced a strong CD8+ T cell immune response regardless of the mutation. This approach represents a novel strategy for the development of safe and effective HIV prophylactic and therapeutic vaccines.  相似文献   

13.
We have studied T cell tolerance to defined determinants within ML-M using wild-type (WT; ML-M(+/+)) and LysMcre (ML-M(-/-)) C3H (H-2(k)) mice to determine the relative contribution of ML-M-derived epitopes vs those from other self Ags in selection of the ML-M-specific T cell repertoire. ML-M was totally nonimmunogenic in WT mice, but was rendered immunogenic in LysMcre mice. Most of the response to ML-M in LysMcre mice was directed to the immunodominant determinant region 105-119. This determinant is spontaneously displayed (without adding exogenous ML-M) by macrophages of WT, but not LysMcre, mice and is stimulatory for peptide 105-119 (p105-119)-primed T cells. Moreover, neonatal tolerization of LysMcre mice with p105-119 or ML-M abrogated the T cell response to subsequent challenge with ML-M or p105-119. Furthermore, p95-109 and p110-125 of ML-M were immunogenic in LysMcre mice, but not in WT mice, thereby representing subdominant, tolerance-inducing epitopes of ML-M. As expected, the T cell repertoire to cryptic ML determinants in WT mice was also intact in LysMcre mice. Furthermore, the pattern of response to the related homologue of ML-M, hen eggwhite lysozyme, was similar in these two groups of mice. Thus, several codominant T cell determinants within ML-M contribute significantly to tolerance induction, and the anti-cryptic T cell repertoire to ML-M was positively selected on non-ML-M self ligands. These results reveal that the induction of self tolerance to a multideterminant protein follows the quantitative hierarchy of self-determinant expression and are of relevance in understanding the pathogenesis of autoimmunity.  相似文献   

14.
Proteoglycan (PG) aggrecan, a major macromolecular component of cartilage, is highly immunogenic; it induces arthritis in genetically susceptible BALB/c mice. The present study maps the T-cell epitope repertoire of cartilage PG by identifying a total of 27 distinct T-cell epitopes. An epitope hierarchy, accounting for the different effector functions of PG-specific T cells, and determinant spreading, has been found. T-cell responses to four epitopes were associated with arthritis induction. Some of the T-cell epitopes were full T-cell activators, whereas a number of subdominant and cryptic epitopes proved to be partial activators in vitro, inducing either cytokine secretion or T-cell proliferation, but not both. A few T-cell epitopes of the core protein of cartilage PG were clearly recognized by T cells in PG-immunized arthritic animals, but the corresponding peptides did not induce T-cell responses when injected into naive BALB/c mice; thus these T-cell epitopes were designated as "conditionally immunogenic."  相似文献   

15.
Vaccines designed to elicit AIDS virus-specific CD8+ T cells should engender broad responses. Emerging data indicate that alternate reading frames (ARFs) of both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) encode CD8+ T cell epitopes, termed cryptic epitopes. Here, we show that SIV-specific CD8+ T cells from SIV-infected rhesus macaques target 14 epitopes in eight ARFs during SIV infection. Animals recognized up to five epitopes, totaling nearly one-quarter of the anti-SIV responses. The epitopes were targeted by high-frequency responses as early as 2 weeks postinfection and in the chronic phase. Hence, previously overlooked ARF-encoded epitopes could be important components of AIDS vaccines.CD8+ T cells control AIDS virus replication (5, 9, 17, 21); however, their role in prophylactic AIDS vaccines is topic for debate. CD8+ T cells recognize infected cells by the presence of virus-derived peptides bound to major histocompatibility complex class I (MHC-I) molecules on the cell surface. The nine defined human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) proteins have long been thought to be the sole sources of virus-derived, MHC-I bound epitopes because researchers assume the classical viral protein annotations to represent the totality of the viral translation products despite increasing evidence to the contrary. Our laboratory and others have shown that MHC-I-bound epitopes can be derived from translation of viral alternate reading frames (ARFs), termed cryptic epitopes (2, 4, 6, 10, 15, 16). Collectively, these data indicate that cryptic CD8+ T cell responses might be more common, and more important, than previously appreciated.Rhesus macaques infected with a molecularly cloned strain of SIV offer several important advantages for studying specific CD8+ T cell responses (22). Since the exact sequence of the inoculum is known, it is possible to track precisely the CD8+ T cell responses against all possible viral ARF translations. We used a gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay to screen SIVmac239-infected rhesus macaques in both the acute and chronic stages of infection for T cell responses against an overlapping peptide set (15-mers, overlapping by 11) spanning the entire potential ARF-encoded proteome in the “sense” direction. Altogether, we defined eight novel MHC-I epitope-containing translation products putatively ranging in length from 32 to 71 amino acids, each containing from one to five epitopes. We found that, in some animals, the cryptic epitope-directed response can be a dominant component of the total antiviral response, comprising nearly a quarter of the total response. Together, our data indicate that translation and immune recognition of viral ARFs are common features of AIDS virus infection.  相似文献   

16.
17.
Thyroid autoimmune disorders comprise more than 30% of all organ-specific autoimmune diseases and are characterized by autoantibodies and infiltrating T cells. The pathologic role of infiltrating T cells is not well defined. To address this issue, we generated transgenic mice expressing a human T-cell receptor derived from the thyroid-infiltrating T cell of a patient with thyroiditis and specific for a cryptic thyroid-peroxidase epitope. Here we show that mouse major histocompatibility complex molecules sustain selection and activation of the transgenic T cells, as coexpression of histocompatibility leukocyte antigen molecules was not needed. Furthermore, the transgenic T cells had an activated phenotype in vivo, and mice spontaneously developed destructive thyroiditis with histological, clinical and hormonal signs comparable with human autoimmune hypothyroidism. These results highlight the pathogenic role of human T cells specific for cryptic self epitopes. This new 'humanized' model will provide a unique tool to investigate how human pathogenic self-reactive T cells initiate autoimmune diseases and to determine how autoimmunity can be modulated in vivo.  相似文献   

18.
In adenocarcinomas of the breast and pancreas, underglycosylation of the glycoprotein MUC1, also expressed by normal breast and pancreatic ductal epithelial cells, results in new protein epitopes to which the immune system mounts a cytotoxic T cell response. This cytotoxic immune response is directed primarily against epitopes on the tandem repeat domain of MUC1, and is unconventional in that it is major histocompatibility complex (MHC)-unrestricted. It is therefore necessary to investigate the molecular basis of this immune response in order to enhance and optimize it for immune therapy purposes. In the present study, we characterize new MUC1 transfected human lymphoblastoid cell lines C1R and T2, and a pig kidney epithelial line LLC-PK1, that express MUC1 with either two repeats (MUC1–2R) or 22 repeats (MUC1–22R), and use them as stimulators and targets for cytotoxic T cells (CTL)in vitro. We show that MUC1–2R is processed and glycosylated similarly to MUC1–22R. In contrast to MUC1–22R, MUC1–2R is not recognized by CTL on T2 and C1R cells known for no or low MHC class I expression. It is however recognized when expressed at high density on xenogeneic LLC-PK1 cells. We propose that in MHC-unrestricted recognition, a large number of MUC1 epitopes is necessary to effectively engage the T cell receptor, and that in the presence of a low number of epitopes, engagement of the CD8 co-receptor by MHC class I molecules may be required for completing the signal through the T cell receptor.  相似文献   

19.
Cytolytic CD8(+) T cells (CTL) are key to the immune response that controls virus infections and mediates disease protection. The ability of CTL to induce apoptosis of infected cells and/or limit viral replication is determined by recognition of processed viral peptide epitopes on the surface of the target cell. An understudied source of MHC class I-presented peptides is the aptly named "cryptic epitopes," defined by their nontraditional methods of generation, including derivation from alternative reading frames (ARFs). Although ARF-encoded epitopes have now been documented in a few systems, their potential functional relevance in vivo has been debated. In this study, we demonstrate the physiological significance of an ARF-derived CTL epitope in a retrovirus-induced disease model. We show that disease-susceptible CD8-deficient mice reconstituted with CTL specific for the retroviral ARF-derived SYNTGRFPPL epitope controlled an infection by the LP-BM5 retrovirus isolate, evidently at the level of viral clearance, resulting in protection of these mice from disease. These data indicate that ARF-derived epitopes are indeed relevant inducers of the immune system and demonstrate the importance of atypically generated peptides as functional Ag with a physiologic role in disease protection.  相似文献   

20.
T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1(214-224) epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号