首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Induction and repair of DNA breaks following irradiation with NIRS cyclotron neutrons were studied in cultured mammalian cells (L5178Y) in comparison to those following gamma-rays. The yield of the total single-strand breaks, 3'OH terminals and sites susceptible to S1 endonuclease following fast neutrons was found to be approximately 50 per cent of that following gamma-irradiation. On the other hand, the yield of double-strand breaks was slightly higher after fast neutrons than after gamma-rays. The percentage of the total single-strand breaks remaining unrejoined at 3 hours after post-irradiation incubation was found to be distinctly higher after the fast neutrons than after gamma-rays. The neutron-induced damage appears to carry a higher proportion of alkali-labile lesions compared to gamma-rays. It was concluded that the increase in the yield of double-strand breaks and of unrejoinable breaks is responsible for a high r.b.e. of the cyclotron neutrons.  相似文献   

2.
L Fabry  C Coton 《Mutation research》1985,149(3):475-483
Cytosine arabinoside (ara-C), an inhibitor of DNA synthesis and repair, has been used to study the mechanisms of formation of chromosomal aberrations after exposure to low- and high-LET radiation. When G0 human lymphocytes were exposed either to gamma-rays or to d(50 MeV)-Be neutrons and immediately treated with ara-C for increasing periods of time, the frequency of aberrations (dicentrics) increased sharply. For gamma-rays, the enhancement increased with the duration of the treatment up to 5 h, whereas for neutrons, an ara-C treatment lasting for 5 h was no more effective than treatment for 3 h. These results were confirmed by the second experiment in which ara-C was administered for 3 h with an increasing time delay following irradiation. Since no increase in the dicentric frequency was observed when ara-C was administered 5 h after gamma-irradiation, it is suggested that the induced breaks rejoined within that time. For neutrons, the data were conflicting since the repair was completed within 3 h after a dose of 0.5 Gy, and in approximately 5 h after a dose of 2.0 Gy. From both experiments, it appears that gamma-rays and fast neutrons produce similar types of lesions, as ara-C increased the frequencies of aberrations induced by both types of radiation. However, the ara-C treatment resulted in a smaller increase in aberrations following neutron irradiation. According to the enzymatic nature of break formation and the mode of action of ara-C on the polymerase activity, it is suggested that, in addition to double-strand breaks, single-strand breaks could be the lesions involved in the repair processes inhibited by ara-C. Single-strand breaks formed directly or by secondary reactions would, therefore, be one of the major lesions responsible for the aberrations produced by gamma and neutron radiations.  相似文献   

3.
Induction and repair of double- and single-strand DNA breaks have been measured after decays of 125I and 3H incorporated into the DNA and after external irradiation with 4 MeV electrons. For the decay experiments, cells of wild type Escherichia coli K-12 were superinfected with bacteriophage lambda DNA labelled with 5'-(125I)iodo-2'-deoxyuridine or with (methyl-3H)thymidine and frozen in liquid nitrogen. Aliquots were thawed at intervals and lysed at neutral pH, and the phage DNA was assayed for double- and single-strand breakage by neutral sucrose gradient centrifugation. The gradients used allowed measurements of both kinds of breaks in the same gradient. Decays of 125I induced 0.39 single-strand breaks per double-strand break. No repair of either break type could be detected. Each 3H disintegration caused 0.20 single-strand breaks and very few double-strand breaks. The single-strand breaks were rapidly rejoined after the cells were thawed. For irradiation with 4 MeV electrons, cells of wild type E. coli K-12 were superinfected with phage lambda and suspended in growth medium. Irradiation induced 42 single-strand breaks per double-strand break. The rates of break induction were 6.75 x 10(-14) (double-strand breaks) and 2.82 x 10(-12) (single-strand breaks) per rad and per dalton. The single-strand breaks were rapidly repaired upon incubation whereas the double-strand breaks seemed to remain unrepaired. It is concluded that double-strand breaks in superinfecting bacteriophage lambda DNA are repaired to a very small extent, if at all.  相似文献   

4.
J C Fox 《Mutation research》1990,235(2):41-47
The repair of ionising-radiation-induced DNA double-strand break type damage was measured by Kohn neutral elution in an X-ray-sensitive mutant of V79-4, irs1. This was done in order to investigate further the likelihood that irs1 carries a defect which leads to error-prone repair of DNA damage, and not simply a reduced ability to rejoin DNA double-strand breaks. The mutant displayed an equal increase in sensitivity to the lethal effects of neutrons, as compared to X-rays. Both irs1 and V79-4 showed an increased sensitivity to the killing effects of neutrons of around 2 at 10% survival. irs1 also showed an exponential survival after either X-rays or neutrons. The induction of DNA double-strand breaks was measured in both cell lines over a dose range of 10-40 Gy using Kohn neutral filter elution. Induction of breaks by X-rays in irs1 seemed to increase slightly with dose, relative to induction in V79-4, so that at 40 Gy 1.5 times more DNA double-strand breaks were measured in irs1 cells than in V79-4. Neutron irradiation resulted in a more similar level of induction in either strain after 10-40 Gy. This difference in induction of damage may be due to a different cell-cycle composition in either cell line. The rejoining of X-ray induced double-strand breaks showed a very similar pattern (on a percentage rejoined basis) in both cell lines, although from the induction data at 40 Gy, the dose at which rejoining was measured, fewer breaks were rejoined in V79-4 but also fewer breaks remained unsealed. Neutron-induced breaks, however, were rejoined more efficiently in irs1 again on a percentage basis, but also in absolute terms since similar induction was seen after 40 Gy. This data, together with the differences seen in the rejoining of X-ray compared to neutron induced breaks, may indirectly support the proposal that irs1 is a misrepair mutant.  相似文献   

5.
Using the in vitro human diploid fibroblast model, we tested theories of aging which hypothesize that either accumulation of DNA damage or decreased DNA repair capacity is causally related to cellular senescence. Between population doubling level (PDL) 32 and 71, fetal lung-derived normal diploid human fibroblasts (IMR 90) were assayed for both DNA single-strand breaks (SSBs, spontaneous and induced by 6 Gy) and DNA double-strand breaks (DSBs, spontaneous and induced by 100 Gy). After gamma-irradiation cells were kept on ice unless undergoing repair incubation at 37 degrees C for 7.5-120 min or 18-24 h. To assay DNA strand breaks we used the filter elution technique in conjunction with a fluorometric determination of DNA which is not biased in favor of proliferating aging cells as are radioactive labelling methods. We found no change with in vitro age in the accumulation of spontaneous SSBs or DSBs, nor in the kinetics or completeness of DNA strand rejoining after gamma-irradiation. Cells at varying PDLs rejoined approx. 90% of SSBs and DSBs after 60 min repair incubation and 100% after 18-24 h repair incubation. We conclude that aging and senescence as measured by proliferative lifespan in IMR 90 cells are neither accompanied nor caused by accumulation of DNA strand breaks or by diminished capacity to rejoin gamma-radiation-induced SSBs or DSBs in DNA.  相似文献   

6.
We investigated the repair kinetics of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) in unstimulated normal human peripheral blood lymphocytes (HPBL). SSBs and DSBs induced by gamma-irradiation (at 0 degree C) were assayed without radiolabel by alkaline and neutral filter elution, respectively. Incubation of irradiated cells at 37 degrees C for various lengths of time demonstrated that the percent DNA rejoined increased until it reached a plateau at approximately 60 min; this repair plateau underwent no substantial change when incubation continued for 20-24 h. The level of the plateau indicated how closely the elution profile of DNA from cells irradiated and incubated (experimental) resembled the elution profile of DNA from unirradiated cells (control). After 6 Gy and 60 min incubation, the alkaline elution profile of DNA from experimental cells from 5 donors was indistinguishable from that seen in DNA from control cells, suggesting that rejoining of SSBs was complete. In contrast after 100 Gy and 60 min incubation the neutral elution profile of DNA from cells from the same donors demonstrated that, compared to DNA from control cells, rejoining of DSBs was approximately two-thirds complete. In the range of 2-8 Gy, 85-104% of SSBs were rejoined after 60 min incubation; in the range of 30-120 Gy, 46-80% of DSBs were rejoined after 60 min incubation. These unexpected results stand in contrast to our previous studies with confluent normal human diploid fibroblasts (HDF), in which rejoining of both SSBs and DSBs was greater than 90% complete by 60 min repair incubation and 100% complete after 18-24 h.  相似文献   

7.
Human adenovirus type 2 (Ad 2) was irradiated with 137Cs gamma rays in the liquid state at 0 degree C. DNA breaks were correlated with the inactivation of several viral functions and compared to results obtained previously for irradiation of Ad 2 under frozen conditions at -75 degrees C. Irradiation at 0 degree C induced 170 +/- 20 single-strand breaks and 2.6 +/- 0.4 double-strand breaks/Gy/10(12) Da in the viral DNA. Viral adsorption to human KB cells was inactivated with a D0 of 9.72 +/- 1.18 kGy, whereas the inactivation of Ad 2 plaque formation had a D0 of 0.99 +/- 0.14 or 1.1 +/- 0.29 kGy when corrected for the effect of radiation on virus adsorption. For the adsorbed virus, an average of 4.3 +/- 1.7 single-strand and 0.065 +/- 0.02 double-strand breaks were induced in the viral DNA per lethal hit. In contrast, irradiation of Ad 2 at -75 degrees C results in 2.6- to 3.4-fold less DNA breakage per Gy and a 5.6-fold increase in D0 for plaque formation of the adsorbed virus. Furthermore, although host cell reactivation (HCR) of Ad 2 viral structural antigen production for irradiated virus was substantially reduced in the xeroderma pigmentosum fibroblast strain (XP25RO) compared to normal strains for irradiation at -75 degrees C (57% HCR), it was only slightly reduced compared to normal for irradiation at 0 degree C (88% HCR). These results indicate that the spectrum of DNA damage is both quantitatively and qualitatively different for the two conditions of irradiation.  相似文献   

8.
Five recently established cell lines of human carcinoma of the cervix of varying radiosensitivity have been used to determine whether the induction or rejoining of DNA double-strand breaks (dsb) shows any correlation with radiosensitivity or radiation recovery capacity. Double-strand DNA breaks have been measured using neutral filter elution at pH 9.6. The number of breaks induced immediately after irradiation with doses of 10 to 40 Gy 60Co gamma rays appeared to show some correlation with radiosensitivity particularly after 10 Gy; the two more radiosensitive lines incurred more breaks than the more radioresistant lines. In addition, the shape of the induction curve with dose was linear for the two sensitive lines but curvilinear for the resistant lines. Despite the dose scales being different, this mirrored their respective cell survival curve shapes. After 30 or 50 Gy irradiation, rejoining of breaks appeared to be rapid and almost complete within 60 min at 37 degrees C for the three resistant lines. However, for the sensitive lines, one line (HX160c) in particular exhibited a reduced rate of dsb rejoining. In addition, a residual level of dsb was present in this line even after allowing rejoining for 3 h. While induction and rejoining of DNA dsb therefore appears to be a factor in determining radiosensitivity, at doses relevant to cellular survival (up to 10 Gy), the greater induction of DNA dsb in radiosensitive lines may play a significant role in determining the cellular response to ionizing radiation.  相似文献   

9.
Six CHO mutants have previously been described as being sensitive to ionizing radiation and bleomycin treatment, with little or no cross sensitivity to UV-radiation (Jeggo and Kemp, 1983). Their ability to rejoin single- and double-strand breaks has been examined here. Using two techniques, gradient sedimentation and alkaline elution, no difference could be observed between wild-type and mutant strains in the initial number of single-strand breaks induced, the rate of rejoining, or the final level of single-strand breaks rejoined. Thus, a major inability to rejoin single-strand breaks is not the basis for sensitivity in these mutants. In contrast, all 6 mutants showed a decreased ability to rejoin the double-strand breaks induced by gamma-irradiation as measured by neutral elution. Rejoining of half of the breaks occurred in 37 min in wild-type cells and reached a maximum level of 72% after 2 h. All the mutants showed a decreased rate of rejoining, and the final level was 17% of that observed in the wild-type in the most defective mutant, and ranged from 35 to 69% in the other 5 mutants. These are the first mammalian cell mutants to be described with a defect in double-strand break rejoining.  相似文献   

10.
The induction of single- and double-strand breaks in DNA by gamma-rays has been measured. The maximum number of nucleotide pairs (a) between two independently induced single-strand breaks in opposite strands of the DNA which cannot prevent the occurrence of a double-strand break was found to amount to about 16. This value did not differ significantly for the four types of bacteriophage DNA investigated (T4, T7 and PM2 DNA, and replicative form DNA of phage phiX174) and was the same in 10(-2) M phosphate buffer containing 0, 0.5 or 1 M NaCl. In 10(-3) M phosphate buffer a was 34 nucleotide pairs. Evidence is presented that the relatively large value of a has to be ascribed at least partly to a temporal local denaturation accompanying the induction of a single-strand scission. A contribution of base damage that labilizes the DNA-helix, between two single-strand breaks to the high value of a can not be excluded.  相似文献   

11.
Using the neutral filter elution technique, the induction of DNA double-strand breaks (dsb) has been measured in 250 kVp X-irradiated V79-379A Chinese hamster cells irradiated under air or nitrogen. The dose-effect curves for induced dsb were curvilinear, mirroring cell survival curves, such that there was an approximately linear relationship between induced dsb and lethal lesions (-In (cell survival)) which was independent of oxygen. With cells irradiated with 2.3 MeV neutrons or 238Pu alpha-particles the correlations between lethal events and dsb, although also approximately linear, do not match those for X-rays. With neutrons there is approximately a 2.5-fold reduction in the level of dsb induction per lethal event. Thus either the apparently linear relationships found are spurious, and there is no general correlation between induced dsb and lethal effect, or there are qualitative differences between neutron, alpha-particle and X-ray induced dsb that give them differing probabilities of cell kill.  相似文献   

12.
Human lymphocytes exposed to low doses of ionizing radiation from incorporated tritiated thymidine or from X-rays become less susceptible to the induction of chromatid breaks by high doses of X-rays. This response can be induced by 0.01 Gy (1 rad) of X-rays, and has been attributed to the induction of a repair mechanism that causes the restitution of X-ray-induced chromosome breaks. Because the major lesions responsible for the induction of chromosome breakage are double-strand breaks in DNA, attempts have been made to see if the repair mechanism can affect various types of clastogenic lesions induced in DNA by chemical mutagens and carcinogens. When cells exposed to 0.01 Gy of X-rays or to low doses of tritiated thymidine were subsequently challenged with high doses of tritiated thymidine or bleomycin, which can induce double-strand breaks in DNA, or mitomycin C, which can induce cross-links in DNA, approximately half as many chromatid breaks were induced as expected. When, on the other hand, the cells were challenged with the alkylating agent methyl methanesulfonate (MMS), which can produce single-strand breaks in DNA, approximately twice as much damage was found as was induced by MMS alone. The results indicate that prior exposure to 0.01 Gy of X-rays reduces the number of chromosome breaks induced by double-strand breaks, and perhaps even by cross-links, in DNA, but has the opposite effect on breaks induced by the alkylating agent MMS. The results also show that the induced repair mechanism is different from that observed in the adaptive response that follows exposure to low doses of alkylating agents.  相似文献   

13.
Survival and induction of DNA double-strand breaks were studied in cells of Saccharomyces cerevisiae irradiated under oxic or anoxic conditions with 30 MeV electrons. A linear relationship between DNA double-strand breakage and dose was found in both cases. The o.e.r.-value for colony forming ability was found to be 1.9 +/- 0.2, whereas the o.e.r.-value for DNA double-strand breakage was 3.0 +/- 0.1. These results are not inconsistent with the idea that DNA double-strand breaks are involved in killing of yeast cells. The frequency of induction of DNA double-strand breaks was found to be 0.74 x 10(-11) double-strand breaks per g/mol per Gy when cells were irradiated under oxygen and 0.24 x 10(-11) double-strand breaks per g/mol per Gy under nitrogen.  相似文献   

14.
The human fibroblasts were gamma-irradiated with low doses (0.07-0.21 Gy). After a short time interval (3 h), a study was made of the postirradiation viability of cells (by the trypan blue dye exclusion method); post-N-methyl-N'-nitro-nitrosoguanidine-DNA synthesis (by 3H-thymidine incorporation immediately after the mutagen treatment) and postirradiation induction of DNA single-strand breaks (by alkaline elution of cells lysed on the membrane filters). The preirradiation of cells with low doses of gamma-rays was shown to render the cells resistance to induction of DNA breaks by the following exposure to gamma-radiation. The survival rate increased; DNA synthesis was resistant to alkylation damage in these cells, as compared to nonirradiated cells.  相似文献   

15.
Ionizing radiation is a potent inducer of DNA damage because it causes single- and double-strand breaks, alkali-labile sites, base damage, and crosslinks. The interest in ionizing radiation is due to its environmental and clinical implications. Single-strand breaks, which are the initial damage induced by a genotoxic agent, can be used as a biomarker of exposure, whereas the more biologically relevant double-strand breaks can be analyzed to quantify the extent of damage. In the present study the effects of 137Cs γ-radiation at doses of 1, 5, and 10 Gray on DNA and subsequent repair by C3H10T1/2 cells (mouse embryo fibroblasts) were investigated. Two versions of the comet assay, a sensitive method for evaluating DNA damage, were implemented: the alkaline one to detect single-strand breaks, and the neutral one to identify double-strand breaks. The results show a good linear relation between DNA damage and radiation dose, for both single-strand and double-strand breaks. A statistically significant difference with respect to controls was found at the lowest dose of 1 Gy. Heterogeneity in DNA damage within the cell population was observed as a function of radiation dose. Repair kinetics showed that most of the damage was repaired within 2 h after irradiation, and that the highest rejoining rate occurred with the highest dose (10 Gy). Single-strand breaks were completely repaired 24 h after irradiation, whereas residual double-strand breaks were still present. This finding needs further investigation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Experimental evidence is presented for the involvement of DNA double-strand breaks in the formation of radiation-induced chromosomal aberrations. When X-irradiated cells were post-treated with single-strand specific Neurospora crassa endonuclease (NE), the frequencies of all classes of aberration increased by about a factor 2. Under these conditions, the frequencies of DNA double-strand breaks induced by X-rays (as determined by neutral sucrose-gradient centrifugation), also increased by a factor of 2. The frequency of chromosomal aberrations induced by fast neutrons (which predominantly induce DNA double-strand breaks) was not influenced by post-treatment with NE. Inhibition of poly(ADP-ribose) polymerase, an enzyme that uses DNA with double-strand breaks as an optimal template, by 3-aminobenzamide also increased the frequencies of X-ray-induced chromosomal aberrations, which supports the idea that DNA double-strand breaks are important lesions for the production of chromosomal aberrations induced by ionizing radiation.  相似文献   

17.
DNA recombinational repair, and an increase in its capacity induced by DNA damage, is believed to be the major mechanism that confers resistance to killing by ionizing radiation in yeast. We have examined the nature of the DNA lesions generated by ionizing radiation that induce this mechanism, using two different end points: resistance to cell killing and ability of the error-free recombinational repair system to compete for other DNA lesions and thereby suppress chemical mutation. Under the various conditions examined in this study, the "maximum" inducible radiation resistance was increased approximately 1.5- to 3-fold and suppression of mutation about 10-fold. DNA lesions produced by low-LET gamma rays at doses greater than about 20 Gy given in oxygen were shown to be more efficient, per unit dose, at inducing radioresistance to killing than were lesions produced by neutrons (high-LET radiation). This suggests that DNA single-strand breaks are more important lesions in the induction of radioresistance than DNA double-strand breaks. Oxygen-modified lesions produced by gamma rays (low-LET radiation) were particularly efficient as induction signals. DNA damage due to hydroxyl radicals (OH.) derived from the radiolytic decomposition of H2O produced lesions that strongly induced this DNA repair mechanism. Similarly, OH. derived from aqueous electrons (e-aq) in the presence of N2O also efficiently induced the response. Cells induced to radioresistance to killing with high-LET radiation did not suppress N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-generated mutations as well as cells induced with low-LET radiation, supporting the conclusion that the type of DNA damage produced by low-LET radiation is a better inducer of recombinational repair. Surprisingly, however, cells induced with gamma radiation in the presence of N2O that became radioresistant to killing were unable to suppress MNNG mutations. This result indicates that OH. generated via e-aq (in N2O) may produce unusual DNA lesions which retard normal repair and render the system unavailable to compete for MNNG-generated lesions. We suggest that the repairability of these unique lesions is restricted by either their chemical nature or topological accessibility. Attempted repair of these lesions has lethal consequences and accounts for N2O radiosensitization of repair-competent but not incompetent cells. We conclude that induction of radioresistance in yeast by ionizing radiation responds variably to different DNA lesions, and these affect the availability of the induced recombinational repair system to deal with subsequent damage.  相似文献   

18.
Ionizing radiation induces bistranded clustered damages--two or more abasic sites, oxidized bases and strand breaks on opposite DNA strands within a few helical turns. Since clusters are refractory to repair and are potential sources of double-strand breaks (DSBs), they are potentially lethal and mutagenic. Although induction of single-strand breaks (SSBs) and isolated lesions has been studied extensively, little is known about the factors affecting induction of clusters other than DSBs. To determine whether the type of incident radiation could affect the yields or spectra of specific clusters, we irradiated genomic T7 DNA, a simple 40-kbp linear, blunt-ended molecule, with ion beams [iron (970 MeV/nucleon), carbon (293 MeV/nucleon), titanium (980 MeV/nucleon), silicon (586 MeV/nucleon), protons (1 GeV/nucleon)] or 100 kVp X rays and then quantified DSBs, Fpg-oxypurine clusters and Nfo-abasic clusters using gel electrophoresis, electronic imaging and number average length analysis. The yields (damages/Mbp Gy(-1)) of all damages decreased with increasing linear energy transfer (LET) of the radiation. The relative frequencies of DSBs compared to abasic and oxybase clusters were higher for the charged particles-including the high-energy, low-LET protons-than for the ionizing photons.  相似文献   

19.
The induction of DNA strand breaks by fission neutrons was studied in aqueous plasmid (pBR322) DNA under aerobic conditions for a wide range of hydroxyl radical (*OH) scavenger concentrations and was compared to the induction of strand breaks by 6OCo gamma rays. Strand breaks were measured using agarose gel electrophoresis coupled with sensitive 32P-based phosphor imaging. Yields are reported for DNA single-strand breaks (SSBs) and double-strand breaks formed linearly with dose (alphaDSBs). The fraction of alphaDSBs that were dependent on the multiply damaged site (MDS) or clustered damage mechanism was also calculated using a model. G values for SSBs and alphaDSBs declined with increasing *OH scavenging capacity. However, with increasing *OH scavenging capacities, the decrease in yields of strand breaks for fission neutrons was not as pronounced as for gamma rays. The percentage of alphaDSBs for gamma rays was dependent on *OH scavenging capacity, appearing negligible at low scavenging capacities but increasing at higher scavenging capacities. In contrast, fission neutrons induced high percentages of alphaDSBs that were approximately independent of *OH scavenging capacity. The levels of alphaDSBs formed by the MDS mechanism after exposure to fission neutrons are consistent with the expected distinctive features of high-LET energy deposition events and track structure. The results also confirm observations made by others that even for low-LET radiation, the MDS mechanism contributes significantly to DNA damage at cell-like scavenging conditions.  相似文献   

20.
Biochemical changes in lymphocyte plasma membranes were studied 3 and 18 h after whole-body exposure of rats to neutrons and gamma-rays at doses from 2 to 6 Gy. It was shown that fast neutrons, with an average energy of 1.5-2.0 MeV, increased the rate of lipid peroxidation more markedly than gamma-rays did. In addition, there was an increase in the number of free aminogroups on the thymocyte surface. Dose- and time-dependent parameters of changes in the aminogroup content on the cellular surface were quantitatively different after the effect of radiation with different LET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号