首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Abstract The effect of temperature on CH4 production, turnover of dissolved H2, and enrichment of H2-utilizing anaerobic bacteria was studied in anoxic paddy soil and sediment of Lake Constance. When anoxic paddy soil was incubated under an atmosphere of H2/CO2, rates of CH4 production increased 25°C, but decreased at temperatures lower than 20°C. Chloroform completely inhibited methano-genesis in anoxic paddy soil and lake sediment, but did not or only partially inhibit the turnover of dissolved H2, especially at low incubation temperatures. Cultures with H2 as energy source resulted in the enrichment of chemolithotrophic homoacetogenic bacteria whenever incubation temperatures were lower than 20°C. Hydrogenotrophic methanogens could only be enriched at 30°C from anoxic paddy soil. A homoacetogen  相似文献   

2.
1. Sediments from hypereutrophic Lake Vallentunasjön were enriched with Microcystis colonies from the lake water, thereby simulating the conditions after the autumn sedimentation. Release of phosphorus to the overlying lake water was followed during 2–3 weeks in the laboratory. X-ray microanalysis of individual Microcystis and bacterial cells, and chemical phosphorus fractionation, were used to assess the phosphorus pool size in different fractions of the sediment. 2. Benthic Microcystis colonies, most of these having survived within the sediment for 1 year or more, were less susceptible to decomposition, and the specific growth rate of bacteria in their mucilage was lower than for other sediment bacteria. 3. Pelagic Microcystis colonies from late August were resistant to decomposition, when placed on the sediments. When Microcystis colonies from a declining pelagic population in October were added to the sediments, however, a substantial fraction of these colonies was decomposed. The specific growth rate of mucilage bacteria was five times higher than for other sediment bacteria. 4. Release of molybdate-reactive phosphorus to the overlying lake water was larger from sediment cores enriched with Microcystis colonies than from control cores. Chemical phosphorus fractionation showed a decrease in organic-bound phosphorus (residual P). 5. X-ray microanalysis showed that the phosphorus bound in Microcystis cells decreased by -0.300 mg g?1 DW in the October experiment, due both to a decrease in biomass (i.e. mineralization) and to a decrease in phosphorus content in the remaining cells. Heterotrophic bacteria increased their cellular concentration of phosphorus. The net release of phosphorus from the Microcystis and bacterial pools corresponded to 74% of the decrease of organic-bound phosphorus in the chemical phosphorus fractionation, and to 65% of the decrease of total phosphorus in the upper 0–1 cm of the sediment. 6. Benthic bacteria and cyanobacteria may thus contribute significantly to changes in phosphorus content and turnover of the sediment by changes in their biomass, turnover rate and cellular phosphorus content.  相似文献   

3.
【目的】棒酸(Clavulanic acid)是棒状链霉菌(Streptomyces clavuligerus)产生的β-内酰胺酶抑制剂,其合成过程中产生副产物脲,旨在探讨脲对棒酸合成的影响。【方法】通过发酵过程中脲和铵盐添加实验、阻断脲酶活性以及pH梯度实验研究脲对棒酸合成影响。【结果】脲添加实验结果表明:低浓度脲降低棒酸产量,当添加脲浓度达到20 mmol/L时,完全抑制棒酸合成。由于脲酶可以把脲水解为铵离子,导致铵离子浓度及pH提高,因此,通过阻断棒状链霉菌脲酶活性,可以更准确地反映脲对棒酸合成的影响。结果发现,脲酶敲除株发酵液中脲大量积累,浓度高达10 mmol/L,但棒酸产量没有明显降低,说明在该浓度下脲自身并不能抑制棒酸合成。添加脲降低野生菌棒酸产量,可能是脲被水解为铵离子或其引起的pH变化所致。而棒酸发酵液添加铵盐的结果显示铵离子对棒酸产量没有抑制作用;另外,pH梯度实验证实不同pH对棒酸产量影响较大。【结论】排除了脲和铵离子对棒酸合成的抑制作用,证实了脲酶水解脲导致pH提高是脲添加导致野生菌棒酸产量降低的真正原因,为进一步阐明棒酸合成调控机制提供了根据。  相似文献   

4.
Summary A series of laboratory incubation experiments was conducted to provide information about the effects of soil temperature on the nitrogen interchange in forest raw humus after addition of different forms of nitrogen fertilizers enriched with the N15-isotope.A positive correlation between temperature and immobilization of nitrogen (non-extractable inN KCl) added as urea-N15, was found at temperatures of 4°, 12°, and 20°C. When ammonium was added as the source of nitrogen the data indicated a gradual and continual immobilization of tracer nitrogen throughout the entire 90 days experimental period at temperatures of 4° and 12°C. At an incubation temperature of 20°C the amount of immobilized tracer nitrogen reached a relatively low but almost constant level within 10 days.A positive correlation between incubation temperature and the overall nitrogen turnover was found in the raw humus after the nitrate application. Within 3 days of incubation significant net re-mineralization of added tracer nitrate nitrogen took place at the highest temperature (20°C) used. The data show a negative correlation between incubation temperature and net accumulated nitrite-nitrate nitrogen after addition of urea, while no significant amount of nitrite-nitrate was detected in the humus after the ammonium application.At temperatures of 4° and 12°C the nitrogen added as ammonium as compared with nitrate was more rapidly used in supplying the needs of the micro-organisms decomposing forest raw humus. However, the results reveal that in spite of the presence of ammonium in the system, nitrate nitrogen is included in the pathway of the internal nitrogen cycle. Compared with the ammonium and the nitrate treatment the preferential utilization of nitrogen added as urea generally increased with increasing incubation time and temperature.Contribution from the Forest Soil Fertilization Research Group, Vollebekk, Norway. This work was supported by the Agricultural Research Council of Norway.  相似文献   

5.
The views that catabolism of protein leads to net production of acid and that urinary excretion of ammonium ion represents an equimolar excretion of proton are not compatible with basic chemical relationships (Atkinson, D.E., and Camien, M.N. (1982) Curr. Top. Cell. Regul. 21, 261-302). Metabolism of protein produces significant amounts of base (bicarbonate), which is disposed of in the synthesis of urea. In perfused rat liver and in isolated rat hepatocytes, the rate of urea synthesis increases with increase in pH but is not affected by change in the concentration of bicarbonate when pH is held constant. An increase in the concentration of ammonium ion in the suspending medium causes an increase in the rate of urea synthesis by hepatocytes when lactate is the energy source, as previously reported by others, but causes a decrease in the rate of urea synthesis during incubation with glucose or with no added energy source. The rate of urea synthesis decreases when glucose is added to lactate medium. All of these observations are consistent with the view that disposal of bicarbonate is a major function of urea synthesis, and that regulation of the rate of ureagenesis is an important factor in the maintenance of pH homeostasis.  相似文献   

6.
A method is described for the determination of the net and total rates of NH(4) production and NH(4) incorporation at different depths in an anoxic marine sediment. N-NH(4) was added to the sediment NH(4) pool, and the N content was assayed after 0, 2, and 5 days of incubation. The pool size changed during incubation; this change in pool size is incorporated into a model which predicts the dynamics of N-NH(4) dilution. A simple microdiffusion of NH(3) was followed by an emission spectrometry analysis of N content. This procedure avoided all problems of cross-contamination. The model was tested and rates were measured in four sediment cores, at seven different depths. The high correlation coefficients (mean, 0.96 for the 0- to 2-, 2- to 4-, 4- to 6-, and 6- to 8-cm sediment fractions) indicated that the model was correct and that the measured rates were valid. The immediate distribution of N-NH(4) between interstitial and exchangeable NH(4) pools indicated that it was the combined pool that was turning over. In the 0- to 2-cm fraction at 17 degrees C the net rate of NH(4) production was 274 (standard deviation, 31) nmol cm day, and the mean total rate of NH(4) production was 309 (standard deviation, 39) nmol cm day; both rates decreased to <1% of these values in the 12- to 14-cm fractions.  相似文献   

7.
Sweat contains ammonia. However, neither its source nor factors affecting its concentration in the sweat are known. The aim of this study was to examine the effect of plasma concentrations of ammonia and urea on the concentration of ammonia in the sweat. Four groups of male volunteers were examined: one control, two after ingestion of ammonium chloride, three cirrhotic, hyperammonaemic, four uraemic. Sweat was collected from each subject from the palmar side of the forearm using gauze pads, after previous iontophoresis of pilocarpine. Ammonia and urea concentrations were determined in the sweat and in the plasma. It was found that elevated plasma ammonia concentration in healthy subjects after ingestion of ammonium chloride as well in the cirrhotic patients resulted in an increase of ammonia concentration in the sweat. High plasma and sweat urea concentration in the uraemic subjects did not affect the concentration of ammonia in the sweat. It was concluded that plasma ammonia was the principal source of ammonia in the sweat.  相似文献   

8.
Summary A laboratory study made with a sandy clay loam soil of pH 7.7 showed that hydrolysis of urea was slower when applied as urea supergranules (USG) than commercial urea prills. This resulted in maintenance of applied nitrogen as ammonium in the soil for a longer period. Nitrite concentration was also much less with USG. These three mechanisms are responsible for the higher efficiency of USG over urea prills.  相似文献   

9.
Communities of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB) grow slowly, which limits the ability to perform physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated SRB are affected by it. Here, we report on the growth of ANME-SRB in a membrane capsule bioreactor inoculated with Eckernförde Bay sediment that combines high-pressure incubation (10.1 MPa methane) and thorough mixing (100 rpm) with complete cell retention by a 0.2-μm-pore-size membrane. The results were compared to previously obtained data from an ambient-pressure (0.101 MPa methane) bioreactor inoculated with the same sediment. The rates of oxidation of labeled methane were not higher at 10.1 MPa, likely because measurements were done at ambient pressure. The subtype ANME-2a/b was abundant in both reactors, but subtype ANME-2c was enriched only at 10.1 MPa. SRB at 10.1 MPa mainly belonged to the SEEP-SRB2 and Eel-1 groups and the Desulfuromonadales and not to the typically found SEEP-SRB1 group. The increase of ANME-2a/b occurred in parallel with the increase of SEEP-SRB2, which was previously found to be associated only with ANME-2c. Our results imply that the syntrophic association is flexible and that methane pressure and sulfide concentration influence the growth of different ANME-SRB consortia. We also studied the effect of elevated methane pressure on methane production and oxidation by a mixture of methanogenic and sulfate-reducing sludge. Here, methane oxidation rates decreased and were not coupled to sulfide production, indicating trace methane oxidation during net methanogenesis and not anaerobic methane oxidation, even at a high methane partial pressure.  相似文献   

10.
Measurement of in situ rates of nitrification in sediment   总被引:1,自引:0,他引:1  
A method has been developed for the measurement of nitrification rates in intact sediment cores without disturbing the concentration gradients of oxygen and ammonium. N-serve (2-chloro-6-trichloromethyl-pyridine), a specific inhibitor of the autotrophic ammonium oxidation, was injected into a 0–2 cm surface layer of the sediment (20 ppm) and added to the water column of sediment cores (5 ppm). N-serve in these concentrations was sufficient to inhibit nitrification, but did not change the rate of ammonium production or incorporation in sediment suspensions, which were incubated aerobically and anaerobically. The ammonium accumulation in cores injected with N-serve was thus equal to the amount of ammonium which was oxidized to nitrate in the control cores. Nitrification rates were in the range of 0–3 mmol N m–2 –1  相似文献   

11.
Here we report on the biodiversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in sediment samples from the Xinyi River, Jinagsu Province (China). The biodiversity of aerobic ammonium-oxidizing bacteria in the sediment was assessed using the amoA gene as functional marker. The retrieved amoA clones were affiliated to environmental sequences from freshwater habitats. The closest cultivated relative was Nitrosomonas urea. Anaerobic ammonium-oxidizing (anammox) bacteria were studied using anammox and planctomycete-specific 16S rRNA gene primers. The sediments contained 16S rRNA genes and bacterial cells closely related to the known anammox bacterium Candidatus'Brocadia anammoxidans'. Anaerobic continuous flow reactors were set up to enrich anammox organisms from the sediments. After an adaptation period of about 25 days the reactors started to consume ammonium and nitrite, indicating that the anammox reaction was occurring with a rate of 41-58 nmol cm(-3) h(-1). Community analysis of the enrichments by quantitative fluorescence in situ hybridization showed an increase in the abundance of anammox bacteria from < 1% to 6 +/- 2% of the total population. Analysis of the 16S rRNA genes showed that the enriched anammox organisms were related to the Candidatus'Scalindua' genus.  相似文献   

12.
Summary An experiment was conducted to permit an assessment of the effect of the N-carrier on the interchange of fertilizer-N in humus maintained under waterlogged conditions. The experiment was carried out at 4°; 12°; and 20°C; and the incubation varied from 0 to 90 days. N15-enriched urea, ammonium chloride and potassium nitrate were used. The incorporation of fertilizer-N into a non KCl-extractable fraction occurred relatively fast in the urea treatment regardless of the temperature. The highest recovery of tracer-N in the mentioned fraction was attained at 20°C after 90 days' incubation. The urea was hydrolyzed at a high rate, and within 30 days of fertilizer application the inorganic N15-pool was almost stabilized at a level in the vicinity of 60% of the added N at 12° and 20°C. Nitrogen added as ammonium was incorporated into the non-extractable fraction at a lower rate than was the N added in the form of urea. The data reveal a continual N-immobilization, but at 20°C a substantial net re-mineralization took place during the last part of the experiment. The nitrate treatment was followed by a sizeable temporary net immobilization of tracer-N. The extremely great changes in the inorganic N15-pool and the net re-mineralization of tracer-N were positively correlated with temperature and incubation time. Within 30 days, about 95% of the added nitrate-N had disappeared from the inorganic pool at 12° and 20°C. Approximately 7.6% of the added NO3-N was re-mineralized at 20°C after 90 days' incubation. The data reveal great losses of gaseous N from this waterlogged acid forest soil after treatment with nitrate. Contribution from the Forest Soil Fertilization Research Group, Vollebekk, Norway. This work was supported by the Agricultural Research Council of Norway.  相似文献   

13.
Summary Inhibitory effect of potassium chloride on nitrification of ammonium sulfate and urea in acid, neutral and calcareous soils was observed in an incubation study. In acidic soil, NO 3 –N production in soil treated with urea was retarded by addition of KCl. NO 3 –N concentration was much less even in comparison to control where ammonium sulfate and KCl were added together which might be due to cumulative effect of Cl and SO 4 –2 ions. In neutral and calcareous soils, nitrification inhibition was less conspicuous.  相似文献   

14.
Growth rates of the entire phytoplankton community of a brackish lagoon in northeastern Japan were estimated by measuring increasing chlorophyll a content in dialysis bags during the summer and early autumn of 1986. The chlorophyll a contents of lagoon water fluctuated between 20 and 200 mg m–3. At lower densities of phytoplankton (20–50 mg chl. a m–3), growth rates (the rate of increase of chlorophyll a) exceeded 1 turnover per day, while at higher densities (more than 50 mg chl. a m–3), the growth rate decreased rapidly. Tidal exchanges of chlorophyll a showed net exports of chlorophyll a from the lagoon to adjacent waters. The exchange rate of chlorophyll a was estimated to be 0.65 d–1. At about 140 mg m–3 of chlorophyll a concentration, the increase of chlorophyll in the lagoon water compensated for tidal export. Only a small proportion of primary production was consumed by zooplankton in the lagoon. There were also net exports of ammonium and phosphate from the lagoon. Nutrient flux from sediment exceeded the phytoplankton requirement and was the major source of the ammonium and phosphate exports from the lagoon. The low inorganic N/P atom supply ratio in the lagoon suggests that nitrogen is a major nutrient limiting phytoplankton growth.  相似文献   

15.
Abstract The bacterial colonization and development of the ectoenzymatic glucosidase activity and glucose uptake were followed together with bacterial growth (measured as thymidine incorporation) in laboratory experiments, using phytoplankton-derived particles incubated in rolling tanks. Bacterial colonization of the particles was rapid. In the particles, bacterial turnover rates (production/biomass) were low (0.02 to 0.14 d−1). In the ambient water, turnover rates increased from 0.1 d−1 to 23.3 d−1, until the end of the experiment. In the control, lacking any particles, turnover of bacteria ranged from 0.3 to 7.6 d−1. Similarly, glucose uptake rates, per bacterium, were 1 to 2 orders of magnitude lower for particle-attached bacteria than for their free-living counterparts. Generally, Km values for glucosidase activity declined, over the incubation period, in particles and free-living bacteria until 168 h, and slightly increased, thereafter, to values of approximately 0.1 μM. Particle-attached bacteria exhibited significantly lower uptake rates of both thymidine and glucose, per bacterium, throughout the incubation. The per-cell ectoenzymatic activity was similar in particle-associated and free-living bacteria during the initial phase of the experiment, but was significantly higher after ≈200 h. Dissolved total (TCHO), as well as monomeric carbohydrates (MCHO), declined continuously in both particles and ambient water; they remained constant in the control; TCHO comprised about 50% of the dissolved organic carbon (DOC) in the particles. In ambient water TCHO contribution to DOC varied, with only one exception, between 25 and 45%; and in the control, between 20 and 50%. The shift detectable in the relation between ectoenzymatic activity and uptake of glucose between free-living and attached bacteria over the incubation period may reflect changes in the physiological status of the bacteria. Received: 3 February 1997; Accepted: 6 November 1997  相似文献   

16.
The aim of this study was to evaluate the influence of Campusurus notatus Eaton 1868 (Ephemeroptera: Polimitarciydae) and the impact of bauxite tailings on ammonium (NH4+) and dissolved organic carbon (DOC) fluxes, oxygen uptake and bacterioplankton production in the sediment‐water interface of Lake Batata, a shallow Amazonian floodplain lake. Mesocosms were constructed from natural and impacted areas of Lake Batata, to reproduce the sediment‐water interface. The cores were incubated with 0 to 2,388 ind m–2 of Campsurus notatus nymphs, and the changes in NH4+, DOC, O2 concentration and bacterioplankton production in the overlying water column were measured. Ammonium efflux (F = 9.8, p < 0.05, multiple regression) and oxygen uptake (F = 11.8, p < 0.05) showed a significant correlation with the density of C. notatus in the cores with natural sediment. No differences on DOC release were observed in cores with natural or impacted sediment. In the cores incubated with natural sediment and nymphs of C. notatus, a significant increase (Two‐way ANOVA, p < 0.05) in bacterial production (0.44 μg C l–1 h–1) was observed after 3 hours of incubation. In cores incubated with sediment impacted by bauxite tailings, there was no difference in bacterial production with and without C. notatus. We conclude that C. notatus is an important bioturbator in Lake Batata, increasing the turnover rate of nitrogen (NH4+) at the sediment‐water interface and bacterial production in cores incubated with natural sediment. It is also clear that bauxite tailings reduce the nutrients turnover rates in impacted regions of Lake Batata and influence bacterial production.  相似文献   

17.
A monitoring program with a weekly sampling frequency over a 15-month period indicates that urea concentrations above a certain threshold level may trigger the blooms of Alexandrium catenella in Thau lagoon. However, urea concentrations were also sometimes related to ammonium and dissolved organic nitrogen concentrations, indicating that the role of urea may not be a direct one. An original approach is used to assess the relative contribution of several nitrogen sources (nitrate, nitrite, ammonium, urea) to growth of A. catenella by comparing nitrogen uptake rates to nitrogen-based growth rates estimated from dilution experiments during four blooms over a 4-year period (2001–2004) in Thau lagoon. Nitrate and nitrite contributed 0.1–14% and 0.1–5% respectively of growth requirements. Ammonium and urea were the main N sources fueling growth of A. catenella (30–100% and 2–59%, respectively). Indirect estimates indicated that an unidentified N source could also contribute significantly to growth at specific times. Concerning ammonium and urea uptake kinetics, half-saturation constants varied between 0.2 and 20 μgat N L−1 for ammonium and between 0.1 and 44 μgat N L−1 over the 4-year period, indicating that A. catenella can have a competitive advantage over other members of the phytoplankton even under low concentrations of ammonium and urea. However, the observed large changes in ammonium and urea uptake kinetics on a short time scale (days) during blooms preclude more precise estimates of those contributions to growth and require further investigation.  相似文献   

18.
Helicobacter pylori utilises urea for amino acid synthesis   总被引:2,自引:0,他引:2  
Abstract Helicobacter pylori has one of the highest urease activities of all known bacteria. Its enzymatic production of ammonia protects the organism from acid damage by gastric juice. The possibility that the urease activity allows the bacterium to utilise urea as a nitrogen source for the synthesis of amino acids was investigated. H. pylori (NCTC 11638) was incubated with 50 mM urea, enriched to 5 atom% excess 15N, that is the excess enrichment of 15N above the normal background, in the presence of either NaCl pH 6.0, or 0.2M citrate pH 6.0. E. coli (NCTC 9001) was used as a urease-negative control. 15N enrichment was detected by isotope ratio mass spectrometry. H. pylori showed intracellular incorporation of 15N in the presence of citrate buffer pH 6.0 but there was no significant incorporation of 15N in unbuffered saline or by E. coli in either pH 6.0 citrate buffer or unbuffered saline. The intracellular fate of the urea-nitrogen was determined by means of gas chromatography/mass spectrometry following incubation with 15N enriched 5 mM urea in the presence of either 0.2 M citrate buffer pH 6.0 or 0.2 M acetate buffer pH 6.0. After 5 min incubation in either buffer the 15n label appeared in glutamate, glutamine, phenylalanine, aspartate and alanine. It appears, therefore, that at pH and urea concentrations typical of the gastric mucosal surface, H. pylori utilises exogenous urea as a nitrogen source for amino acid synthesis. The ammonia produced by H. pylori urease activity thus facilitates the organism's nitrogen metabolism at neutral pH as well as protecting it from acid damage at low pH.  相似文献   

19.
脲酶抑制剂氢醌对土壤尿素氮转化的影响   总被引:11,自引:5,他引:11  
本文根据用标记和非标记尿素进行的培养试验,论述了氢醌对于尿素的水解、氨的释出和挥发、硝化和反硝化作用以及生物固持的影响。得出的结论是:氢醌的作用不仅在于延缓尿素的水解和减少随之而来的氨的挥发,更重要的,是影响了尿素水解产物进一步转化的进程,增强了尿素氮对于作物的有效持续供应和减少了它的总损失。本文认为,在脲酶抑制剂的研究中,着眼点当不仅在于它们的直接作用,而更需要涉及对尿素氮转化的一系列过程的影响。这样,才能对抑制剂的作用机理有更深入的了解,对它的作用效果有更全面的评价。  相似文献   

20.
In order to establish if the urea found in foetal fluids in sheep could be of foetal origin and whether there are changes in the ability of ovine liver to synthesise urea during foetal and postnatal development, the rates of urea production from ammonium and bicarbonate ions have been measured in liver and kidney slices from animals aged from 50 days conceptual age to 16 weeks after birth, and in pregnant and non-pregnant ewes. The activities of five enzymes directly involved in the biosynthesis of urea have also been determined.Urea was found to be synthesised by foetal liver from at least 50 days conceptual age at rates similar to those observed in adult ewes. Highest rates of urea synthesis per unit weight of liver were found immediately after birth. In the liver there were significant positive correlations between the rates of urea synthesis by slices and the activities of carbomoyl phosphate synthase (ammonia) (EC 2.7.2.5), argininosuccinate synthetase (EC 6.3.4.5) and argininosuccinate lyase EC 4.3.2.1). Ornithine carbomoyl transferase (EC 2.1.3.3) activity was highest in the livers of ruminating animals. Hepatic arginase activity (EC 3.5.3.1) was highest during the late foetal life and in the mature foetuses the activity was ten-fold greated than that in maternal liver.Urea was not synthesised from ammonia and bicarbonate in kidney slices and neither ornithine carbomoyl transferase activity nor argininosuccinate synthetase activity could be detected. The activity of renal arginase was at least 70 times less than that found in the liver and the highest activity was found in ruminating lambs.The changes observed in the activities of the urea cycle enzymes during development have been contrasted with those reported to occur in other species. It is concluded that there is no single factor regulating the activities of the five enzymes directly concerned with urea synthesis during development. The results support the hypothesis that in mammals the ability of the liver to synthesise urea in foetal life is related to renal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号