首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Owen  Jeffrey S.  Wang  Ming Kuang  Sun  Hai Lin  King  Hen Biau  Wang  Chung Ho  Chuang  Chin Fang 《Plant and Soil》2003,251(1):167-174
We used the buried bag incubation method to study temporal patterns of net N mineralization and net nitrification in soils at Ta-Ta-Chia forest in central Taiwan. The site included a grassland zone, (dominant vegetation consists of Yushania niitakayamensis and Miscanthus transmorrisonensis Hayata) and a forest zone (Tsuga chinensis var. formosana and Yushania niitakamensis). In the grassland, soil concentration NH4 + in the organic horizon (0.1–0.2 m) ranged from 1.0 to 12.4 mg N kg–1 soil and that of NO3 varied from 0.2 to 2.1 mg N kg–1 soil. In the forest zone, NH4 + concentration was between 2.8 and 25.0 mg N kg–1 soil and NO3 varied from 0.2 to 1.3 mg N kg–1 soil. There were lower soil NH4 + concentrations during the summer than other seasons. Net N mineralization was higher during the summer while net nitrification rates did not show a distinct seasonal pattern. In the grassland, net N mineralization and net nitrification rates were between –0.1 and 0.24 and from –0.04 to 0.04 mg N kg–1 soil day–1, respectively. In the forest zone, net N mineralization rates were between –0.03 and 0.45 mg N kg–1 soil day–1 and net nitrification rates were between –0.01 and 0.03 mg N kg–1 soil day–1. These differences likely result from differing vegetation communities (C3 versus C4 plant type) and soil characteristics.  相似文献   

2.
Crowley  D. E.  Wu  C. L.  Gries  D.  Brünn  S.  Parker  D. R. 《Plant and Soil》2002,241(1):57-65
A laboratory method was developed that allows determination of in situ net nitrification with high sensitivity and at high temporal resolution. Nitrate in soils is quantitatively converted into nitrous oxide under strictly anaerobic conditions in the presence of 10 kPa acetylene by the soil endogenous denitrifier population, with the N2O detected by a gas chromatograph equipped with a 63Ni electron capture detector. Thus, even low net nitrification rates, i.e. small net increases in soil nitrate concentrations can easily be detected. Comparison of results using this method with results obtained using the classical in situ incubation method (buried bag soil incubation) revealed excellent agreement. Application of the new method allowed both determination of the seasonal pattern of net nitrification as well as correlation analysis between in situ NO and N2O flux rates and in situ net nitrification rates of the forest soils studied. Regardless of the forest site studied (spruce, spruce limed, beech), and during each year of a 3 years period (1995–1997), net nitrification varied strongly with season and was least during winter and greatest during summer. The long-term annual, mean rate of net nitrification for the untreated spruce site, the limed spruce site and the beech site were 1.54 ± 0.27 mg N kg–1 sdw d–1, 1.92 ± 0.23 mg N kg–1 sdw d–1 and 1.31 ± 0.23 mg N kg–1 sdw d–1, respectively. In situ rates of nitrification and NO and N2O emission were strongly correlated for all sites suggesting that nitrification was the dominate source of NO as well as N2O.  相似文献   

3.
The field metabolic rates (FMR) and rates of water flux were measured in two species of varanid lizards over five periods of the year in tropical Australia. The energetics of these species were further investigated by directly measuring activity (locomotion) and body temperatures of free-ranging animals by radiotelemetry, and by measuring standard metabolic rate (over a range of body temperatures) and activity metabolism in the laboratory. Seasonal differences in the activity and energetics were found in these goannas despite similar, high daytime temperatures throughout the year in tropical Australia. Periods of inactivity were associated with the dry times of the year, but the onset of this period of inactivity differed with respect to habitat even within the same species. Varanus gouldii, which inhabit woodlands only, were inactive during the dry and late dry seasons. V. panoptes that live in the woodland had a similar seasonal pattern of activity, but V. panoptes living near the floodplain of the South Alligator River had their highest levels of activity during the dry season when they walked long distances to forage at the receding edge of the floodplain. However, during the late dry season, after the floodplain had dried completely, they too became inactive. For V. gouldii, the rates of energy expenditure were 196 kJ kg–1 day–1 for active animals and 66 kJ kg–1 day–1 for inactive animals. The rates of water influx for these groups were respectively 50.7 and 19.5 ml kg–1 day–1. For V. panoptes, the rates of energy expenditure were 143 kJ kg–1 day–1 for active animals and 56 kJ kg–1 day–1 for inactive animals. The rates of water influx for these two groups were respectively 41.4 and 21.0 ml kg–1 day–1. We divided the daily energy expenditure into the proportion of energy that lizards used when in burrows, out of burrows but inactive, and in locomotion for the two species during the different seasons. The time spent in locomotion by V. panoptes during the dry season is extremely high for a reptile (mean of 3.5 h/day spent walking), and these results provide an ecological correlate to the high aerobic capacity found in laboratory measurements of some species of varanids.  相似文献   

4.
Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day–1 tree–1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour.Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s–1 that is equivalent to 112 mmol m–2 s–1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m–2 s–1 at the top and 150 mmol m–2 s–1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was –27.76±0.27 (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.This paper is dedicated to Prof. Dr. O.L. Lange on the occasion of his 65th birthday  相似文献   

5.
The production of aboveground tissue of three alder species (Alnus crispa (Ait.) Pursh,A. rugosa (Du Roi) Spreng. andA. glutinosa (L) Gaertn.) on four sites ranged from 0.4 t ha–1 yr–1 to 4.0 t ha–1 yr–1 after four growing seasons. Large differences were observed among the four sites studied and among species. Soil nutrient levels affected the biomass production and foliar symptoms of P and Mg deficiency occurred withA. crispa andA. rugosa. Because of their poor aboveground biomass production (0.4–1.4 t ha–1 yr–1),A. crispa andA. rugosa should be used mainly as nurse trees. For its higher potential for biomass production (up to 4.0 t ha–1 yr–1), and its apparent higher ability to use P and Mg on deficient sites,A. glutinosa should be used preferably toA. crispa andA. rugosa for the production of biomass.  相似文献   

6.
Research in pristine forests provides a necessary reference of energy and nutrient cycling in absence of anthropogenic influence. Therefore two unpolluted watersheds in the Cordillera de Piuchué of southern Chile (42 °30 S) were chosen for detailed ecosystem analysis. The goals of this study were to quantify the distribution of the living biomass in the research watershed and to document topographic gradients in the vegetation. Across a small spatial gradient from ravine bottom to ridgetop (approximately 60 m in elevation and < 300 m in length) in the Cordillera de Piuchué watersheds, there were significant shifts in vegetation composition, structure, and biomass. Based on sampling in 18, 100 m2 plots, we identified three distinct community associations: a Fitzroya forest at the bottom of the watershed, a mid-slope Pilgerodendron-Tepualia transition zone, and a ridgetop moorland community. The Fitzroya forest was dominated by a cohort of approximately 400 year-old Fitzroya cupressoides trees. Both tree basal area (138 m2/ha) and total live biomass (656 Mg ha–1) reached a maximum in this vegetation type. The Pilgerodendron-Tepualia forest consisted of smaller, shorter, and younger trees with dominance shared by Pilgerodendron uviferum, Tepualia stipularis, and to a lesser extent, F. cupressoides. Basal area and biomass were half that of the Fitzroya forest (69.5 m2 ha–1; 350 Mg ha–1) but tree density was 65% greater. The moorland can best be described as an open community of mosses and cushion plants that included low stature individuals of P. uviferum, F. cupressoides, and T. stipularis. The size and age structure of F. cupressoides in the bottomland forest suggest that the current cohort of adult trees was established following a catastrophic disturbance and that F. cupressoides is unable to regenerate under its own canopy. In contrast, the size structure of the tree populations in the Pilgerodendron-Tepualia zone indicates that all the constituent tree species, except F. cupressoides, are able to reproduce at least at some microsites in the understory. The watershed-level means for live biomass were 306 Mg ha–1 of aboveground tree biomass, 25 Mg ha–1 of large root biomass (diameter ge 1 cm), and 46 Mg ha–1 of small root biomass (diameter < 1 cm).  相似文献   

7.
Litterfall from a Melaleuca forest was investigated as part of chemical cycling studies on the Magela Creek floodplain in tropical, northern Australia. The forest contained two species of tree, Melaleuca cajaputi and Melaleuca viridiflora, with a combined average density of 294 trees ha–1. The M. viridiflora trees had diameter breast height measurements ranging from 11.8 to 62.0 cm, median class 25.1–30.0cm and a mean value of 29.2±1.0 cm, compared to 13.0 to 66.3 cm, 30.1–35.0cm and 33.5±1.0cm for M. cajaputi trees. A regression model between tree height, diameter breast height and fresh weight was determined and used to calculate average tree weights of 775±1.6kg for M. viridiflora and 1009±1.6kg for M. cajaputi, and a total above-ground fresh weight of 263±0.3t ha–1. The weight of litter recorded each month on the ground beneath the tree canopy ranged from 582±103 to 2176±376 g m–2 with a monthly mean value of 1105±51 g m–2. The coefficient of variation of 52% on this mean indicates the large spatial and temporal variability in litter distribution over the study site. This variability was greatly affected by the pattern of water flow and litter transport during the Wet season. Litterfall from the trees was evaluated using two techniques - nets and trays. The results from these techniques were not significantly different with annual litterfall collected in the nets being 705 ± 25 g m–2 and in the trays 716±49 g m–2. The maximum monthly amount of litterfall, 108 ±55g m–2, occurred during the Dry season months of June–July. Leaf material comprised 70% of the total annual weight of litter, 480±29 g m–2 in the nets and 495 ± 21 g m–2 in the trays. The tree density and weight of litter suggest that the Melaleuca forests are highly productive and contribute a large amount of material to the detrital/debris turnover cycle on the floodplain.  相似文献   

8.
Planted silvo-pastoral systems are formed by sparing selected native trees when land is cleared for pasture establishment, or by planting selected species – often known agroforestry species – into the establishing pasture. Isolated trees within pastures and savannas are often associated with `resource islands', characterized by higher fertility and organic matter levels under the tree canopies. We here examine the processes underlying the differences in fertility and organic matter in a buffel grass (Cenchrus ciliaris L.) pasture that contained two tree species (Ziziphus joazeiro Mart., Spondias tuberosa Arruda Cam.) preserved from the native thorn forest and a planted agroforestry species (Prospois juliflora Swartz D.C). The objective is to distinguish effects of soil variability from those induced by the presence of trees or the planting of pasture. The 13C signatures of the original (largely C3) vegetation, the preserved and planted trees, and the planted C4 grass were used to distinguish the provenance of organic matter in the top soil (0–15 cm). This allowed the conclusion that all trees maintained C3 derived C at the original thorn forest level, while lower levels under pasture were due to mineralisation of organic matter. The net rates of forest-derived C loss under pasture varied with soil type amounting to between 25 and 50% in 13 years after pasture establishment. Only on Alfisol, C inputs from the pasture compensated for the C3-C losses. Analysis of organic and inorganic P fractions indicated Z. joazeiro and P. juliflora enriched the soil under their canopy with P, whereas S. tuberosa had no positive effect on fertility. A combination of ANOVA and spatial analysis and mapping was used to show vegetation effects.  相似文献   

9.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

10.
Kim  C.-G.  Bell  J. N. B.  Power  S. A. 《Plant and Soil》2003,257(2):443-449
The effects of Cd on the growth and distribution of Cd and mineral nutrients within plant tissues were investigated for Pinus sylvestris L. seedlings grown in mineral forest soil with increasing levels of Cd addition (0–100 mg kg–1). Approximately 20% of added Cd was found to be extractable from sandy loam forest soil. Root growth was less affected by Cd than shoot growth, which showed a significant reduction in the 100 mg Cd kg–1 treatment. Cadmium accumulated in roots up to 325 mg kg–1. Decreased concentrations of K in needles and Ca in stems with increasing Cd levels suggest a disturbance of mineral nutrition as a result of Cd addition.  相似文献   

11.
The ability ofPseudomonas fluorescens, Escherichia coli andAcinetobacter radioresistenns to remove phosphate during growth was related to the initial biomass as well as to growth stages and bacterial species. Phosphate was removed by these bacteria under favourable conditions as well as under unfavourable conditions of growth. Experiments showed a relationship between a high initial cell density and phosphate uptake. More phosphate was released than removed when low initial cell densities (102–105 cells ml–1) were used. At a high initial biomass concentration (108 cells ml–1), phosphate was removed during the lag phase and during logarthmic growth byP. fluorescens. Escherichia coli. at high initial biomass concentrations (107 cells ml–1), accumulated most of the phosphate during the first hour of the lag phase and/or during logarithmic growth and in some cases removed a small quantily of phosphate during the stationary growth phase.Acinetobacter radioresistens, at high initial cell densities (106, 107 cells ml–1) removed most of phosphate during the first hour of the lag phase and some phosphate during the stationary growth phase.Pseudomonas fluorescens removed phosphate more thanA. radioresistens andE. coli with specific average ranges from 3.00–28.50 mg L–1 compared to average ranges of 4.92–17.14 mg L–1 forA. radioresistens and to average ranges of 0.50–8.50 mg L–1 forE. coli.  相似文献   

12.
Scrub mangrove wetlands colonize the intertidal zone of fossil lagoons located in carbonate continental margins along the Yucatan Peninsula of Mexico. These unique ecological types were investigated in October, 1994, by locating transects in several mangrove forests along the Caribbean coast of the peninsula. Four species of mangrove occurred at these sites including Rhizophora mangle, Avicennia germinans, Laguncularia racemosa, Conocarpus erecta. This is one of the first examples of a species rich scrub forest. The mangroves fell into three height categories: short scrub less than 1.5 m, tall scrub to 3.0 m, and basin forests between 4.5 and 6 m. Average height, diameter (dbh), basal area, and complexity index generally increased from short scrub to basin forests. Basal area, ranged from 0.16 m2 ha–1 in a short scrub forest intermixed with Cladium jamaicense to 12.9 m2 ha–1 in a basin forest. Density ranged from 1520 trees ha–1 to over 25,000 trees ha–1 in a short scrub forest dominated by R. mangle. The complexity index ranged from 0.01 to 8.3. Height, dbh, basal area, and complexity index were positively related. A number of trees were growing as sprouts from larger downed trunks, suggesting that hurricanes, such as Gilbert that occurred in 1988, are important in controlling the structure of these forests. These forests appear isolated from the sea, but are influenced by groundwater exchange occurring at the land-margin zone.  相似文献   

13.
One-year-old Prunus avium L. were grown under greenhouse conditions in a Countesswells soil in all combinations of 2 pH and 2 P levels. The soil, obtained from a long-term liming and fertilizer experiment, provided pH values throughout the experiment of 3.75–3.99 (pH 1) and 4.81–5.41 (pH 2). The P treatments had 0.43% acetic acid extractable P of 31–44 g g-1 (P1) and 145–173 g g-1 (P2). The trees were harvested 92 (H1), 134 (H2), and 168 (H3) days after initiation of growth.Top (leaf+new stem) dry weight was significantly increased for pH 2 and P2 at H2 and H3. P2 also increased leaf weight (H1), the weight of the original stem-root (H2 and H3), and root length but decreased root diameter at both soil pHs (H2 and H3). Total tree uptake of N, P, K, Ca, and Mg was also increased by pH-P combinations which had significantly greater dry matter production and root length. Total Mn uptake decreased at pH2. Root nutrient inflows (uM m-1 day-1) were increased for Ca at pH2 and for P at P2. Mn inflow decreased at pH2 and at pH1 P2 although the increased root length associated with the latter treatmen resulted in increased total tree Mn uptake. In general, high nutrient inflows occurred in all trees at H1 and in severely stunted trees at pH1 P1; both had larger than average root diameters.  相似文献   

14.
Summary Hydrogen evolution from root nodules has been reported to decrease the efficiency of the nitrogen fixing system. Mutants ofRhizobium meliloti andRhizobium leguminosarum were selected which were deficient in H2-uptake capacity (Hup). The relative efficiency of the nitrogen fixation for both species assessed with C2H2 reduction was 0.66.The hydrogen production was monitored using a simple root incubation method. As such, hydrogen production up to 3.83 and 15.57 ml.day–1.g–1 plant dry weight were recorded forPisum sativum — Rhizobium leguminosarum 4.20 Hup andMedicago sativa — Rhizobium meliloti 1.5 Hup respectively. In a closed container (250 ml), hydrogen concentrations up to 20% (v/v) could be reached in the root phase ofMedicago sativa in a time period of 320 hours.  相似文献   

15.
Eight forest sites representing a large range of climate, vegetation, and productivity were sampled in a transect across Oregon to study the relationships between aboveground stand characteristics and soil microbial properties. These sites had a range in leaf area index of 0.6 to 16 m2 m–2 and net primary productivity of 0.3 to 14 Mg ha–1 yr–1.Measurements of soil and forest floor inorganic N concentrations and in situ net N mineralization, nitrification, denitrification, and soil respiration were made monthly for one year. Microbial biomass C and anaerobic N mineralization, an index of N availability, were also measured. Annual mean concentrations of NH 4 + ranged from 37 to 96 mg N kg–1 in the forest floor and from 1.7 to 10.7 mg N kg–1 in the mineral soil. Concentrations of NO 3 were low ( < 1 mg N kg–1) at all sites. Net N mineralization and nitrification, as measured by the buried bag technique, were low on most sites and denitrification was not detected at any site. Available N varied from 17 to 101 mg N kg–1, microbial biomass C ranged from 190 to 1230 mg Ckg–1, and soil respiration rates varied from 1.3 to 49 mg C kg–1 day–1 across these sites. Seasonal peaks in NH 4 + concentrations and soil respiration rates were usually observed in the spring and fall.The soils data were positively correlated with several aboveground variables, including leaf area index and net primary productivity, and the near infrared-to-red reflectance ratio obtained from the airborne simulator of the Thematic Mapper satellite. The data suggest that close relationships between aboveground productivity and soil microbial processes exist in forests approaching semi-equilibrium conditions.Abbreviations IR infrared - LAI leaf area index - k c proportion of microbial biomass C mineralized to CO2 - NPP net primary productivity - TM Thematic Mapper  相似文献   

16.
The elemental content of rainfall (bulk deposition), throughfall and stemflow was measured inPinus radiata D. Don andEucalyptus forests in Gippsland, Victoria. Accessions in rainfall (mg m–2 year–1) averaged: organic-C 551, NO3 -N 96, NH4 +-N 62, total-N 303, K+ 382, Na+ 2250, Ca2+ 1170, and Mg2+ 678. The mean pH of rainfall was 5.9. Concentrations of all elements were greater in throughfall than in rainfall, and generally greater in stemflow than in throughfall. However, pH of pine throughfall was higher than that of rainfall, and pH of eucalypt throughfall was lower than that of rainfall. There was a net efflux of inorganic-N from pine crowns to rainfall, whilst in eucalypts there was generally net sorption of inorganic-N from rainfall. In both species organic-N was leached from the crowns and the net efflux of total-N from eucalypt crowns (50 mg m–2 year–1) averaged one-quarter of that in pines. Increases in the organic-C content of throughfall relative to rainfall in eucalypts were two to four times those in pines. Increases in the content of other elements in throughfall were comparable in pines and eucalypts and within the ranges K+ 615–1360, Na+ 480–-1840, Ca2+ 123–780 and Mg2+ 253–993 mg m–2 year–1. However, enrichment of Ca2+ may have been due to dust trapped in the canopies. Stemflow contributed significantly to the total amounts of elements reaching the forest floor in water.  相似文献   

17.
The carrageenan-producing red algaKappaphycus alvarezii (Doty) Doty was brought to Vietnam from Japan in 1993. Branch fragments of this species were cultivated in a pond, lagoon, inlet and offshore in Vietnam for the first time. The best daily growth rate (DGR) of plants grown in the lagoon area attained 9–11 % day–1 in May to June (cold season). The water temperature and salinity in this area ranged from 27.2–32.4 °C and 31.4–33.7 °C, respectively. DGR of plants grown in the inlet ranged from 7 to 9% day–1 in June. Grazing by fish has been observed to occur in this area. The DGR of plants grown in the pond ranged from 5–6% in January–July, but decreased to less than 4% day–1 in August (hot season). K. alvarezii in Vietnam showed a carrageenan yield of 18.8–24.6% and gel strength of 1566–1712 g cm–2. These values are similar ones obtained fromK. alvarezii cultivated in the Philippines and Indonesia.  相似文献   

18.
Haematococcus pluvialis gave the highest astaxanthin accumulation rate (2.7 mg l–1 day–1) and total astaxanthin content ( 22.7 mg g–1 biomass). Astaxanthin accumulation in Neochloris wimmeri, Protosiphon botryoides, Scotiellopsis oocystiformis, Chorella zofingiensis and Scenedesmus vacuolatus was, respectively, 19.2, 14.3, 10.9, 6.8 and 2.7 mg astaxanthin g–1 biomass, respectively.  相似文献   

19.
Mitchell  R. L.  Burchett  M. D.  Pulkownik  A.  McCluskey  L. 《Plant and Soil》1988,112(2):195-199
The effect of soil-incorporated copper, tri-allate, and anthracene on the emergence and early growth of three Australian native species (Banksia ericifolia, Casuarina distyla andEucalyptus eximia) and three crop species (Avena sativa, Cucumis sativus andGlycine max), was assessed using OECD Test Guideline 208. The crop species are sensitive species used in overseas phytotoxicity testing, and their responses were compared with those of the native species. Seeds were grown in pots in a glasshouse in a sandy loam soil at the chemical concentrations of 0, 10, 100, 1000 and 2000 mg kg–1. LC50 and EC50 values were determined for each species. The most sensitive species was the monocotyledonA. sativa, while among the five dicotyledonsC. distyla was most sensitive. All three chemicals delayed emergence and affected seedling growth. The results indicate that the conditions of the OECD Test Guideline can be met under Australian conditions, but that the Guideline requires modification for use with Australian native species.  相似文献   

20.
The importance of heterotrophic nitrification was studied in soil from a mixed-conifer forest. Three sites in the forest were sampled: a clear cut area, a young stand and a mature stand. In the mature stand, the mineral soil (0–10 cm) and the organic layer were sampled separately. Gross rates of N mineralization and nitrification were measured by15NH 4 + and15NO 3 isotopic pool dilution, respectively. The rates of autotrophic and heterotrophic nitrification were distinguished by use of acetylene as a specific inhibitor of autotrophic nitrification. In samples supplemented with15NH 4 + and treated with acetylene, no15NO 3 was detectable showing that the acetylene treatment effectively blocked the autotrophic nitrification, and that NH 4 + was not a substrate for heterotrophic nitrification. In the clear cut area, autotrophic nitrification was the most important NO 3 generating process with total nitrification (45 ug N kg–1h–1) accounting for about one-third of gross N mineralization (140 ug N kg–1 h–1). In the young and mature forested sites, gross nitrification rates were largely unaffected by acetylene treatment indicating that heterotrophic nitrification dominated the NO 3 generating process in these areas. In the mature forest mineral and organic soil, nitrification (heterotrophic) was equal to only about 5% of gross mineralization (gross mineralization rates of 90 ug N kg–1 h–1 mineral; 550 ug N kg–1 h–1 organic). The gross nitrification rate decreased from the clear cut area to the young forest area to the mineral soil of the mature forest (45; 17; 4.5 ug kg–1 h–1 respectively). The15N isotope pool dilution method, combined with acetylene as an inhibitor of autotrophic nitrification provided an effective technique for assessing the importance of heterotrophic nitrification in the N-cycle of this mixed-conifer ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号