首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The hair follicle (HF) is an important mini-organ of the skin, composed of many types of cells. Dermal papilla cells are important signalling components that guide the proliferation, upward migration and differentiation of HF stem cell progenitor cells to form other types of HF cells. Thymosin β4 (Tβ4), a major actin-sequestering protein, is involved in various cellular responses and has recently been shown to play key roles in HF growth and development. Endogenous Tβ4 can activate the mouse HF cycle transition and affect HF growth and development by promoting the migration and differentiation of HF stem cells and their progeny. In addition, exogenous Tβ4 increases the rate of hair growth in mice and promotes cashmere production by increasing the number of secondary HFs (hair follicles) in cashmere goats. However, the molecular mechanisms through which Tβ4 promotes HF growth and development have rarely been reported. Herein, we review the functions and mechanisms of Tβ4 in HF growth and development and describe the endogenous and exogenous actions of Tβ4 in HFs to provide insights into the roles of Tβ4 in HF growth and development.  相似文献   

4.
ObjectivesThere are significant clinical challenges associated with alopecia treatment, including poor efficiency of related drugs and insufficient hair follicles (HFs) for transplantation. Skin‐derived precursors (SKPs) exhibit great potential as stem cell‐based therapies for hair regeneration; however, the proliferation and hair‐inducing capacity of SKPs gradually decrease during culturing.Materials and MethodsWe describe a 3D co‐culture system accompanied by kyoto encyclopaedia of genes and genomes and gene ontology enrichment analyses to determine the key factors and pathways that enhance SKP stemness and verified using alkaline phosphatase assays, Ki‐67 staining, HF reconstitution, Western blot and immunofluorescence staining. The upregulated genes were confirmed utilizing corresponding recombinant protein or small‐interfering RNA silencing in vitro, as well as the evaluation of telogen‐to‐anagen transition and HF reconstitution in vivo.ResultsThe 3D co‐culture system revealed that epidermal stem cells and adipose‐derived stem cells enhanced SKP proliferation and HF regeneration capacity by amphiregulin (AREG), with the promoted stemness allowing SKPs to gain an earlier telogen‐to‐anagen transition and high‐efficiency HF reconstitution. By contrast, inhibitors of the phosphoinositide 3‐kinase (PI3K) and mitogen‐activated protein kinase (MAPK) pathways downstream of AREG signalling resulted in diametrically opposite activities.ConclusionsBy exploiting a 3D co‐culture model, we determined that AREG promoted SKP stemness by enhancing both proliferation and hair‐inducing capacity through the PI3K and MAPK pathways. These findings suggest AREG therapy as a potentially promising approach for treating alopecia.  相似文献   

5.
Hair cycle disturbances are common in dogs and comparable to some alopecic disorders in humans. A normal hair cycle is maintained by follicular stem cells which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the bulge area in humans and dogs, the shared particularity of compound hair follicles as well as similarities in follicular biomarker expression, the dog is a promising model to study human hair cycle and stem cell disorders. To gain insight into the spatial distribution of follicular keratinocytes with stem cell potential in canine compound follicles, we microdissected hair follicles in anagen and telogen from skin samples of freshly euthanized dogs. The keratinocytes isolated from different locations were investigated for their colony forming efficiency, growth and differentiation potential as well as clonal growth. Our results indicate that i) compound and single hair follicles exhibit a comparable spatial distribution pattern with respect to cells with high growth potential and stem cell-like characteristics, ii) the lower isthmus (comprising the bulge) harbors most cells with high growth potential in both, the anagen and the telogen hair cycle stage, iii) unlike in other species, colonies with highest growth potential are rather small with an irregular perimeter and iv) the keratinocytes derived from the bulbar region exhibit characteristics of actively dividing transit amplifying cells. Our results now provide the basis to conduct comparative studies of normal dogs and those with hair cycle disorders with the possibility to extend relevant findings to human patients.  相似文献   

6.
An increasing number of studies show that platelet‐rich plasma (PRP) is effective for androgenic alopecia (AGA). However, the underlying cellular and molecular mechanisms along with its effect on hair follicle stem cells are poorly understood. In this study, we designed to induce platelets in PRP to release factors by calcium chloride (PC) or by sonication where platelet lysates (PS) or the supernatants of platelet lysate (PSS) were used to evaluate their effect on the hair follicle activation and regeneration. We found that PSS and PS exhibited a superior effect in activating telogen hair follicles than PC. In addition, PSS injection into the skin activated quiescent hair follicles and induced K15+ hair follicle stem cell proliferation in K14‐H2B‐GFP mice. Moreover, PSS promoted skin‐derived precursor (SKP) survival in vitro and enhanced hair follicle formation in vivo. In consistence, protein array analysis of different PRP preparations revealed that PSS contained higher levels of 16 growth factors (out of 41 factors analysed) than PC, many of them have been known to promote hair follicle regeneration. Thus, our data indicate that sonicated PRP promotes hair follicle stem cell activation and de novo hair follicle regeneration.  相似文献   

7.
c-Abl作为非受体酪氨酸激酶家族的成员,参与调节多个组织器官的发育过程,如神经、血管及骨骼等。c-Abl的异常激活也往往导致神经退行性疾病或肿瘤的发生。到目前为止,c-Abl在皮肤和毛发器官中的研究非常少。本研究首先分析了c-Abl基因在皮肤和毛囊中的动态表达情况,发现在毛囊上皮有丰富的表达,然后利用表皮特异性工具小鼠K14-Cre将c-Abl基因在表皮敲除,发现毛囊由静息期向生长期的转换略有加快。小鼠脱毛实验发现,当所有毛囊都从头开始再生时,突变鼠的毛囊起始比对照小鼠更快。这些结果均表明,在表皮敲除c-Abl基因能够导致毛发循环和毛囊再生的加快。进一步的研究发现,以上表型可能是c-Abl通过调节BMP信号通路造成的。我们的工作首次研究了c-Abl基因在皮肤毛囊中的动态表达,揭示了c-Abl通过BMP信号通路调节毛囊再生的机制。  相似文献   

8.
In early postnatal mouse skin, the NG2 proteoglycan is expressed in the subcutis, the dermis, the outer root sheath of hair follicles, and the basal keratinocyte layer of the epidermis. With further development, NG2 is most prominently expressed by stem cells in the hair follicle bulge region, as also observed in adult human skin. During telogen and anagen phases of the adult hair cycle, NG2 is also found in stem cell populations that reside in dermal papillae and the outer root sheaths of hair follicles. Ablation of NG2 produces alterations in both the epidermis and subcutis layers of neonatal skin. Compared with wild type, the NG2 null epidermis does not achieve its full thickness due to reduced proliferation of basal keratinocytes that serve as the stem cell population in this layer. Thickening of the subcutis is also delayed in NG2 null skin due to deficiencies in the adipocyte population.  相似文献   

9.
Treatment of excessive hair growth is an important issue in both dermatological and cosmetic practice. In contrast to treatments with medication, most physical methods are treatments that focus on the hair follicle. To obtain insight in the failure behavior of the anchorage of hairs, hairs were extracted (in vitro) from pig skin at a speed of 0.1mm/s, one at a time. The pulling force and tweezers displacement were recorded. The extracted hairs were classified with respect to the phase in the growing cycle: anagen (growing phase), telogen (resting phase) or other (catagen phase or unable to determine). The anagen hairs showed a different relation between the tweezers displacement and the pulling force than the telogen hairs. Moreover, the maximum force that could be applied before a hair was extracted proved to be lower for anagen hairs than for telogen hairs (0.36N, 1.8N, respectively). The extracted hair length, defined as the part of the hair that had been embedded in the skin which was extracted, was higher for anagen hairs than for telogen hairs (4.8mm, 3.0mm, respectively). Removing proximal skin tissue and the embedded parts of the anagen hair (root) resulted in a change of the extraction curves. The results indicate that two phenomena play a role in the anchorage of anagen hairs. We have proposed a model for the extraction of an anagen hair that has been based on these results: first the interface between hair and skin that is located around the inner root sheath (IRS) starts to fail, followed by failing of the hair itself in the region where the hair keratinizes.  相似文献   

10.
Alopecia impairs the physical and mental health of patients. We have previously shown that 8-week-old ob/ob mice have no reactivity to depilation, which is a stimulus that induces anagen transition in normal mice, while no hair cycle abnormalities have been reported in other studies until mice reach 7 weeks of age. Therefore, we hypothesized that ob/ob mice have abnormalities in hair cycle progression beyond 7 weeks of age. We examined 6- to 24-week-old ob/ob and 6- to 10-week-old normal mice. After acclimation, the dorsal skin was harvested and the hair cycle phase was identified histologically and immunohistochemically. Normal mice showed catagen–telogen and telogen–anagen transitions at 6 and 8–9 weeks old, respectively. In contrast, the anagen–catagen transition was observed in 7-week-old mice and the telogen phase was maintained from 10 to 24 weeks in most ob/ob mice. These results suggests that ob/ob mice are a possible model animal for telogen effluvium.  相似文献   

11.
In adult skin, stem cells in the hair follicle bulge cyclically regenerate the follicle, whereas a distinct stem cell population maintains the epidermis. The degree to which all bulge cells have equal regenerative potential is not known. We found that Sonic hedgehog (Shh) from neurons signals to a population of cells in the telogen bulge marked by the Hedgehog response gene Gli1. Gli1-expressing bulge cells function as multipotent stem cells in their native environment and repeatedly regenerate the anagen follicle. Shh-responding perineural bulge cells incorporate into healing skin wounds where, notably, they can change their lineage into epidermal stem cells. The perineural niche (including Shh) is dispensable for follicle contributions to acute wound healing and skin homeostasis, but is necessary to maintain bulge cells capable of becoming epidermal stem cells. Thus, nerves cultivate a microenvironment where Shh creates a molecularly and phenotypically distinct population of hair follicle stem cells.  相似文献   

12.
目的:探讨毛囊周期中,Wnt3a在毛囊及黑素细胞中的表达变化。方法:以DCT-LacZ转基因小鼠为动物模型,通过X-gal染色技术观察黑素细胞谱系在小鼠皮肤中的分布情况;采用X-gal染色结合免疫组化方法检测Wnt3a在毛囊及黑素细胞谱系中的表达情况;采用RT-PCR方法对小鼠皮肤全层Wnt3a和TYR的mRNA表达进行半定量分析。结果:在生长期毛囊中,Wnt3a蛋白在表皮、毛囊外根鞘Bulge区、内根鞘以及毛球部均有表达,在黑素干细胞与黑素细胞也观察到Wnt3a;在退化期,Wnt3a的表达逐渐减弱,仅在外根鞘有较弱的表达,但黑素干细胞中没有观察到Wnt3a;在静止期,几乎检测不到Wnt3a的表达;TYR mRNA与Wnt3a mRNA在毛囊周期中的表达模式一致,在生长期最强,退化期减弱,静止期最弱。结论:Wnt3a可能对黑素细胞谱系分化起到促进作用。  相似文献   

13.
The present study describes the hair growth-promoting effects of sodium thiosulfate (STS), a widely used compound, in mice. STS accelerated hair growth in the “telogen model”, suggesting that it stimulates telogen hair follicles to reenter the anagen phase of hair growth. In the same model, STS potentiated hair growth in an additive manner with minoxidil (MXD), a drug used for the treatment of androgenic alopecia. Furthermore, in the “anagen model”, STS promoted hair growth, probably by promoting hair follicle proliferation. Since STS elevated the skin surface temperature, its hair growth-promoting activity may be partly due to vasorelaxation, similar to MXD. In addition, STS is known to generate a gaseous mediator, H2S, which has vasorelaxation and anti-inflammatory/anti-oxidative stress activities. Therefore, STS and/or provisionally its metabolite, H2S, may aid the hair growth process. Collectively, these results suggest that salts of thiosulfate may represent a novel and beneficial remedy for hair loss.  相似文献   

14.
15.
Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients.  相似文献   

16.
小眼畸形转录因子(MITF)不仅是黑色素细胞发育、增殖和存活的必要调节因子,而且对调节相关酶和黑素体蛋白表达来确保黑色素产生具有至关重要的作用。MITF下游色素相关基因在小鼠毛囊生长周期中的表达及相关性仍有待研究。HE染色结果表明不同毛囊时期的小鼠毛囊呈现典型的组织形态学结构;免疫组织化学显示,MITF、GPNMB、OA1、TYR、TYRP2在不同毛囊生长周期中的毛基质及内外毛根鞘均有不同程度的阳性表达。黑色素测定结果表明,在毛囊生长初期和中期,碱性可溶性总黑色素(ASM)、真黑素(EM)以及褐黑素(PM)相对含量高于毛囊生长末期。蛋白免疫印迹结果表明,MITF、GPNMB、OA1、TYR、TYRP2在毛囊生长初期和中期蛋白质相对水平明显高于毛囊生长末期。实时荧光定量PCR结果表明, MITF、GPNMB、OA1、TYR、TYRP2、PMEL在毛囊生长初期和中期,mRNA相对表达量显著高于毛囊生长末期。在不同毛囊生长周期小鼠皮肤的MITF下游色素相关基因表达存在显著差异,表明上述因子在维持黑色素细胞色素生成是不可或缺的因素。  相似文献   

17.
During embryonic development, hair follicles (HFs) develop from an epidermal–mesenchymal cross talk between the ectoderm progenitor layer and the underlying dermis. Epidermal stem cell activation represents a crucial point both for HF morphogenesis and for hair regeneration. miR-24 is an anti-proliferative microRNA (miRNA), which is induced during differentiation of several cellular systems including the epidermis. Here, we show that miR-24 is expressed in the HF and has a role in hair morphogenesis. We generated transgenic mice ectopically expressing miR-24 under the K5 promoter. The K5::miR-24 animals display a marked defect in HF morphogenesis, with thinning of hair coat and altered HF structure. Expression of miR-24 alters the normal process of hair keratinocyte differentiation, leading to altered expression of differentiation markers. MiR-24 directly represses the hair keratinocyte stemness regulator Tcf-3. These results support the notion that microRNAs, and among them miR-24, have an important role in postnatal epidermal homeostasis.  相似文献   

18.
目的探讨常见毛囊细胞角蛋白在毛囊周期中的表达特征。 方法取毛囊发育期、生长期启动、生长期、退化期和静止期的小鼠皮肤,石蜡切片后通过免疫荧光的方法,检测细胞角蛋白Krt5、Krt6、Krt10、Krt14、Krt15和Krt19的表达情况。 结果Krt5在静止期和生长期启动表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt6表达于所有时期的外根鞘细胞和内根鞘细胞;Krt10表达于生长期和退化期的毛母质和内根鞘细胞,在其他时期表达不一致;Krt14在生长期和退化期表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt15和Krt19表达于毛囊发育期、生长期启动和静止期的毛囊隆突区细胞,在生长期和退化期表达不一致。 结论角蛋白作为毛囊结构或毛囊干细胞标记物仅适用于特定的毛囊周期。研究者在使用毛囊角蛋白作为标记物时,应首先明确其在毛囊周期中的表达情况。  相似文献   

19.
20.
Human hair dermal papilla (DP) cells are specialized mesenchymal cells that play a pivotal role in hair regeneration and hair cycle activation. The current study aimed to first develop three‐dimensional (3D) DP spheroids (DPS) with or without a silk–gelatin (SG) microenvironment, which showed enhanced DP‐specific gene expression, resulting in enhanced extracellular matrix (ECM) production compared with a monolayer culture. We tested the feasibility of using this DPS model for drug screening by using minoxidil, which is a standard drug for androgenic alopecia. Minoxidil‐treated DPS showed enhanced expression of growth factors and ECM proteins. Further, an attempt has been made to establish an in vitro 3D organoid model consisting of DPS encapsulated by SG hydrogel and hair follicle (HF) keratinocytes and stem cells. This HF organoid model showed the importance of structural features, cell–cell interaction, and hypoxia akin to in vivo HF. The study helped to elucidate the molecular mechanisms to stimulate cell proliferation, cell viability, and elevated expression of HF markers as well as epithelial–mesenchymal crosstalks, demonstrating high relevance to human HF biology. This simple in vitro DP organoid model system has the potential to provide significant insights into the underlying mechanisms of HF morphogenesis, distinct molecular signals relevant to different stages of the hair cycle, and hence can be used for controlled evaluation of the efficacy of new drug molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号