首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hurricanes represent the dominant type of disturbance in many tropical coastal forests. Here, we focus on mortality of epiphytic orchids caused by hurricane Ivan in the Guanahacabibes National Park (Cuba) and subsequent population recovery. We analyzed different aspects of hurricane damage on two contrasting epiphytic orchids, Broughtonia cubensis and Dendrophylax lindenii, as observed in three plots of coastal vegetation and in three plots of semi‐deciduous forest, respectively. First, we quantified the damage to host trees and orchids and explored if hurricane damage depended on height, size, or identity of the host tree. Second, we used mark connection and mark correlation functions to conduct a detailed analysis of small‐scale spatial patterns in hurricane damage for host trees and orchids. Finally, we analyzed the degree of recovery after Ivan during the 6 yr following the storm. Damage of B. cubensis host trees was independent of height and size, but Ivan severely affected larger and higher host trees of D. lindenii. Spatial analysis revealed non‐random structure in damage that differed between species. Broughtonia cubensis exhibited small‐scale spatial correlation in the proportion of damaged orchids, whereas D. lindenii did not. Dendrophylax lindenii showed ‘patchy’ damage patterns, correlated with height, but B. cubensis did not. The relative growth rate of B. cubensis for the 5–17 mo following Ivan was only moderately reduced and fully recovered in subsequent years, whereas that of D. lindenii was severely reduced the first year and did not fully recover thereafter. We hypothesize that differences in the host, vegetation type, and the traits of the two orchids contribute to the different responses to the hurricane.  相似文献   

2.
A current key issue in ecology is the role of spatial effects on population and community dynamics. In this paper, we test several hypotheses related to spatial structures and coexistence of epiphytic tropical orchid species with special emphasis on the endemic species Broughtonia cubensis. More specifically, we explored the spatial structure of orchid–host plant communities at three different levels of organization (occupied vs. nonoccupied host trees, trees with B. cubensis vs. other orchids, and reproductive vs. nonreproductive B. cubensis plants). We mapped all potential host trees and orchids at three 20 × 20 m plots and applied techniques of spatial point pattern analysis such as mark connection and mark correlation functions to evaluate departures from randomized communities. We found spatial aggregation of trees with epiphytic orchids and segregation between trees with and without epiphytic orchids, and that there was an intraspecific spatial aggregation of B. cubensis in relation to the other seven epiphytic orchid species. Furthermore, we found spatial aggregation of reproductive B. cubensis individuals and segregation between reproductive and nonreproductive individuals on their phorophytes. Thus, orchid–host plant communities show hierarchical spatial structuring with aggregation and segregation at different levels of organization. Our results point to an enhancement of local species in the coexistence of tropical epiphytic orchid communities, by reducing competition through niche differentiation.  相似文献   

3.
To design feasible conservation and management policies for wild species, it is critical to understand the effects of periodic disturbances, be they natural or anthropogenic. The Caribbean Basin is characterized by high cyclonic activity that has a strong impact on the demography and population dynamics of many taxa, including epiphytic orchids. We conducted a 5‐yr study of rare ghost orchid demography, Dendrophylax lindenii, to assess the stability of a protected population of this species in Cuba. Using both stochastic and deterministic integral projection models, we found that mean annual population growth rates are negative (λ = 0.975). However, we found both population growth rate and extinction risk are highly sensitive to survival rates and reproduction, a difficult to quantify rate for many orchids including our study species. While this species is fairly long‐lived, its relatively slow increase in annual survival with increasing size may reflect the lack of a protected (i.e., subterranean) storage organ—a life‐history trait that may typify other epiphytic species and increase susceptibility to disturbance events. Hurricanes, which are predicted to increase in frequency as a result of climate change, dramatically increase adult mortality. Simulations of these effects indicate that hurricanes and similar disturbances could result in near certain extinction in short time horizons (25 yr) if their annual probability of occurrence exceeds 14 percent. These results suggest a need to better quantify recruitment rates, as well as the sensitivity of population dynamics of this and other orchid species to hurricanes and other periodic disturbances.  相似文献   

4.
The geographical distribution, population structure and pollination ecology are key aspects in the conservation and management of rare orchids. Here, we address these aspects and the main threats affecting the endangered Cuban orchid Broughtonia cubensis. This rewardless orchid is self‐compatible, but pollinator dependent. However, seed production can be negatively affected by insect‐mediated selfing. Three species of small bee (genera Ceratina and Lasioglossum) act as pollinators. As in the case of other nectarless orchids, we detected two species of plant producing large amounts of nectar in the area, the floral morphology of which closely resembles that of B. cubensis. The simultaneous flowering of these species could positively affect the reproductive success of B. cubensis. Nonetheless, the fitness of this orchid in natural conditions is low, possibly related to strong pollen limitation. To the problems arising from reduced fitness is added the fact that its historical distribution range has been greatly reduced in recent years. Throughout this study, we have detected dramatic reductions in the population sizes, in some cases as a result of human plundering, but also as a consequence of hurricanes. Based on the results of this study, we propose some guidelines to manage and conserve this orchid. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 345–357.  相似文献   

5.
Chromatographic and spectrophotometric methods were used to identify the floral anthocyanins of Broughtonia domingensis, B. negrilensis, B. sanguinea, Brassotonia ‘John Miller,’ Diabroughtonia, Brassavola nodosa, Cattleyopsis lindenii, and Cattleytonia ‘Rosy Jewell’ for the purpose of establishing chemotaxonomic relationships and inheritance patterns. Flowers of Brassavola nodosa were found to contain raphanusin C, an anthocyanin not present in Cattleyopsis lindenii or in any of the Broughtonia species and hybrids. Pelanin is present in flowers of Broughtonia domingensis and B. negrilensis, but not in those of B. sanguinea. Raphanusin B, raphanusin D, and pelargonidin-3-glucoside, 5-sophoroside which are present in B. sanguinea were also found in its intergeneric hybrids with Diacrium and Brassavola. These findings suggest that Cattleyopsis lindenii should not be transferred to Broughtonia and that B. domingensis, B. negrilensis, and B. sanguinea are separate species.  相似文献   

6.
Understanding the processes that determine the architecture of interaction networks represents a major challenge in ecology and evolutionary biology. One of the most important interactions involving plants is the interaction between plants and mycorrhizal fungi. While there is a mounting body of research that has studied the architecture of plant–fungus interaction networks, less is known about the potential factors that drive network architecture. In this study, we described the architecture of the network of interactions between mycorrhizal fungi and 44 orchid species that represented different life forms and co‐occurred in tropical forest and assessed the relative importance of ecological, evolutionary and co‐evolutionary mechanisms determining network architecture. We found 87 different fungal operational taxonomic units (OTUs), most of which were members of the Tulasnellaceae. Most orchid species associated with multiple fungi simultaneously, indicating that extreme host selectivity was rare. However, an increasing specificity towards Tulasnellaceae fungal associates from terrestrial to epiphytic and lithophytic orchids was observed. The network of interactions showed an association pattern that was significantly modular (M = 0.7389, Mrandom = 0.6998) and nested (NODF = 5.53, p < 0.05). Terrestrial orchids had almost no links to modules containing epiphytic or lithophytic orchids, while modules containing epiphytic orchids also contained lithophytic orchids. Within each life form several modules were observed, suggesting that the processes that organize orchid–fungus interactions are independent of life form. The overall phylogenetic signal for both partners in the interaction network was very weak. Overall, these results indicate that tropical orchids associate with a wide number of mycorrhizal fungi and that ecological rather than phylogenetic constraints determine network architecture.  相似文献   

7.
Leaf gas exchange of terrestrial and epiphytic orchids from the Atlantic Rainforest in northeast Brazil was investigated under artificial growth conditions. The terrestrial orchids showed higher values of all photosynthetic parameters in comparison to epiphytic ones. There was a close relationship between P N and g s for both terrestrial and epiphytic orchids. Taken together, our results demonstrated that the photosynthetic parameters were related to the specific growth habits of the orchids under study.  相似文献   

8.
The cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae), is a perennial pest that specializes on plants of the Brassicaceae family, attacking winter canola (Brassica napus L.) mainly during and after flowering. Under field conditions, cabbage aphid colonizes the upper flowering canopy. Population dynamics of aphids in the flowering canopy could be regulated by differences in either plant quality (bottom‐up) or predatory (top‐down) forces. The goal of our study was to determine the effect of feeding location on cabbage aphid demography. A stage‐structured matrix population model was constructed for aphids restricted to reproductive or vegetative plant tissues of canola. We found that feeding location had a large impact on demography of cabbage aphid; the finite rate of increase (λ ± SEM) was higher when aphids were restricted to reproductive tissues, compared to aphids feeding on vegetative tissues: 1.25 ± 0.01 vs. 1.17 ± 0.01 (leaves). Aphids confined to reproductive tissues with higher λ exhibited shorter generation times (T = 14.2 ± 0.2 days) and 53–75% higher net reproductive rates (R0 = 23.3 ± 1.7) than aphids feeding on vegetative tissues. Prospective analyses showed that there was a nymph‐skewed stable stage distribution, and elasticity values revealed that λ is most sensitive to changes in stasis of adults staying in the adult stage and to adult survival. Retrospective analyses indicated that variation in adult fecundity (value of 0.05) had the largest effect on population dynamics but collectively, growth of nymphal stage 2–3, 3–4, and 4 to adult accounted for most of the difference in λ between the treatments. Monitoring programs should target adults and penultimate instars colonizing reproductive tissues of canola plants in the field as aphids on these plant structures contribute most to population growth.  相似文献   

9.
We have developed a new NIR fluorescent probe based on an ytterbium(III) (E)‐1‐(pyridin‐2‐yl‐diazenyl)naphthalen‐2‐ol (PAN) complex. This probe emits near‐infrared luminescence derived from the Yb ion through excitation of the PAN moiety with visible light (λex = 530 nm, λem = 975 nm). The results support the possible utility of the probe for in vivo fluorescence molecular imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew (CDM), is known to exhibit host specialization. The virulence of different isolates of the pathogen can be classified into pathotypes based on their compatibility with a differential set composed of specific cucurbit host types. However, the genetic basis of host specialization within P. cubensis is not yet known. Total genomic DNA extracted from nine isolates of P. cubensis collected from 2008 to 2013 from diverse cucurbit host types (Cucumis sativus, C. melo var. reticulatus, Cucurbita maxima, C. moschata, C. pepo, and Citrullus lanatus) in the United States were subjected to whole‐genome sequencing. Comparative analysis of these nine genomes confirmed the presence of two distinct evolutionary lineages (lineages I and II) of P. cubensis. Many fixed polymorphisms separated lineage I comprising isolates from Cucurbita pepo, C. moschata, and Citrullus lanatus from lineage II comprising isolates from Cucumis spp. and Cucurbita maxima. Phenotypic characterization showed that lineage II isolates were of the A1 mating type and belonged to pathotypes 1 and 3 that were not known to be present in the United States prior to the resurgence of CDM in 2004. The association of lineage II isolates with the new pathotypes and a lack of genetic diversity among these isolates suggest that lineage II of P. cubensis is associated with the resurgence of CDM on cucumber in the United States.  相似文献   

11.
The kinetics of the decomposition reaction of 4‐(4,5‐diphenyl‐1H‐imidazol‐2‐yl)phenyl acetate ( 1 ) in basic alcoholic media was investigated, using a simple fluorescence (FL) spectrophotometric procedure. The process was conveniently studied using FL, since the triphenylimidazole‐derived ester 1 and its reaction products (the corresponding phenol 2 and phenolate 2 ? ) are all highly fluorescent (ΦFL > 37%). By carefully selecting excitation and emission wavelengths, observed rate constants k1 in the order of 10?3 to 10?2 s?1 were obtained from either reactant consumption (λex = 300 nm, λem = 400 nm) or product formation (λex = 350 nm, λem = 475 nm); these were shown to be kinetically equivalent. Intensity‐decay time profiles also gave a residual FL intensity parameter, shown to be associated to the distribution of produced species 2 and 2 ? , according to the basicity of the medium. Studying the reaction in both methanol (MeOH) and isopropanol (iPrOH), upon addition of HO?, provided evidence that the solvent's conjugate base is the active nucleophilic species. When different bases were used (tBuO?, HO?, DBU and TEA), bimolecular rate constants kbim ranging from 4.5 to 6.5 L mol?1 s?1 were obtained, which proved to be non‐dependent on the base pKaH, suggesting specific base catalysis for the decomposition of 1 in alcoholic media.  相似文献   

12.
A leading hypothesis for the immense diversity of the Orchidaceae is that skewed mating success and small, disjunct populations lead to strong genetic drift and switches between adaptive peaks. This mechanism is only possible under conditions of low gene flow that lead to high genetic differentiation among populations. We tested whether orchids typically exhibit high levels of population genetic differentiation by conducting a meta‐analysis to compare mean levels of population genetic differentiation (FST) between orchids and other diverse families and between rare and common orchids. Compared with other families, the Orchidaceae is typically characterized by relatively low genetic differentiation among populations (mean FST = 0.146) at allozyme loci. Rare terrestrial orchids showed higher population genetic differentiation than common orchids, although this value was still lower than the mean for most plant families. All lines of evidence suggest that orchids are typically characterized by low levels of population genetic differentiation, even in species with naturally disjunct populations. As such, we found no strong evidence that genetic drift in isolated populations has played a major role in the diversification of the Orchidaceae. Further research into the diversification of the family needs to unravel the relative roles of biotic and environmental selective pressures in the speciation of orchids.  相似文献   

13.
The majority of flowering plants rely on animals as pollen vectors. Thus, plant mating systems and pollen dispersal are strongly influenced by pollinator behaviour. In Australian sexually deceptive orchids pollinated by male thynnine wasps, outcrossing and extensive pollen flow is predicted due to floral deception, which minimizes multiple flower visitations within patches, and the movement of pollinators under mate‐search rather than foraging behaviours. This hypothesis was tested using microsatellite markers to reconstruct and infer paternity in two clonal, self‐compatible orchids. Offspring from naturally pollinated Chiloglottis valida and C. aff. jeanesii were acquired through symbiotic culture of seeds collected over three seasons. In both species, outcrossing was extensive (tm = 0.924–1.00) despite clone sizes up to 11 m wide. The median pollen flow distance based on paternity for both taxa combined was 14.5 m (n = 18, range 0–69 m), being larger than typically found by paternity analyses in other herbaceous plants. Unexpectedly for orchids, some capsules were sired by more than one father, with an average of 1.35 pollen donors per fruit. This is the first genetic confirmation of polyandry in orchid capsules. Further, we report a possible link between multiple paternity and increased seed fitness. Together, these results demonstrate that deceptive pollination by mate‐searching wasps enhances offspring fitness by promoting both outcrossing and within‐fruit paternal diversity.  相似文献   

14.
Colonization of vacant habitat is a fundamental ecological process that affects the ability of species to persist and undergo range modifications in continually shifting landscapes. Thus, understanding factors that affect and limit colonization has important ecological and conservation implications. Epiphytic orchids are increasingly threatened by various factors, including anthropogenic habitat disturbance. As cleared areas (e.g. pastures) are recolonized by suitable host trees, the establishment and genetic composition of epiphytic orchid populations are likely a function of their colonization patterns. We used genetic analyses to infer the prevailing colonization pattern of the epiphytic orchid, Brassavola nodosa. Samples from three populations (i.e. individuals within a tree) from each of five pastures in the dry forest of Costa Rica were genotyped with neutral nuclear and chloroplast markers. Spatial autocorrelation and hierarchical genetic structure analyses were used to assess the relatedness of individuals within populations, among populations within pastures and among populations in different pastures. The results showed significant relatedness within populations (mean = 0.166) and significant but lower relatedness among populations within a pasture (mean = 0.058). Our data suggest that colonization of available habitats is by few individuals with subsequent population expansion resulting from in situ reproduction, and that individuals within a tree are not a random sample of the regional seed pool. Furthermore, populations within a pasture were likely colonized by seeds produced by founders of a neighbouring population within that pasture. These results have important ramifications for understanding conservation measures needed for this species and other epiphytic orchids.  相似文献   

15.
Information on genetic variation and its distribution in tropical plant populations relies mainly on studies of ground‐rooted species, while genetic information of epiphytic plants is still limited. Particularly, the effect of forest successional condition on genetic diversity and structure of epiphytes is scanty in the literature. We evaluated the genetic variation and spatial genetic structure of the epiphytic bromeliad Guzmania monostachia (Bromeliaceae, Tillandsioideae) in montane secondary forest patches in Costa Rica. The sampling design included plants on the same trees (i.e., populations), populations within forest patches and patches within secondary forest at two different successional stages (early vs. mid‐succession). Six microsatellites revealed low levels of population genetic variation (A = 2.06, AE = 1.61, HE = 0.348), a marked deficiency of heterozygotes (HO = 0.031) and high inbreeding (f = 0.908). Genetic differentiation was negligible among populations within the same forest patch, but moderate (GST = 0.123 ± 0.043) among forest patches. Genetic relatedness between individuals was significantly higher for plants located within the same forest patch and separated by <60 m and decreased as distance between plants increased, becoming significantly negative at distances >400 m. An analysis of molecular variance (AMOVA) showed significant genetic variation between forest patches, but non‐significant variation between successional stages. The selfing breeding system and limited seed dispersal capabilities in G. monostachia could explain the observed levels and partitioning of genetic diversity at this geographic scale. However, these results also suggest that forest fragmentation is likely to influence the degree of local genetic structuring of epiphytic plants by limiting gene flow.  相似文献   

16.
A highly sensitive, simple and rapid spectrofluorimetric method was developed for the determination of azelastine HCl (AZL) in either its pure state or pharmaceutical dosage form. The proposed method was based on measuring the native fluorescence of the studied drug in 0.2 M H2SO4 at λem = 364 nm after excitation at λex = 275 nm. Different experimental parameters were studied and optimized carefully to obtain the highest fluorescence intensity. The proposed method showed a linear dependence of the fluorescence intensity on drug concentration over a concentration range of 10–250 ng/mL, with a limit of detection of 1.52 ng/mL and limit of quantitation of 4.61 ng/mL. Moreover, the method was successfully applied to pharmaceutical preparations, with percent recovery values (± SD) of 99.96 (± 0.4) and 100.1 (± 0.52) for nasal spray and eye drops, respectively. The results were in good agreement with those obtained by the comparison method, as revealed by Student's t‐test and the variance ratio F‐test. The method was extended to study the stability of AZL under stress conditions, where the drug was exposed to neutral, acidic, alkaline, oxidative and photolytic degradation according to International Conference on Harmonization (ICH) guidelines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The vast majority of pelagic bioluminescent organisms emit a blue light with emission maxima (λmax) ranging from 450 to 490 nm. Among the known outliers, the tomopterids (Annelida: Polychaeta) are usually described as yellow‐emitters (λmax = 565–570 nm) for which bioluminescence functions as a specific recognition signal. Here, we report the first data regarding the colours emitted by four different tomopterid species, Tomopteris pacifica, T. carpenteri, T. septentrionalis and T. planktonis. Surprisingly, T. planktonis is a blue‐emitter (λmax = 450 nm). Our pharmacological results on T. planktonis support cholinergic control, as recently demonstrated in the yellow‐emitter, T. helgolandica. Moreover, as revealed by epifluorescence microscopy, the light seems to be produced in both species from the same yellow‐pigmented parapodial glands. Despite these similarities, tomopterids express an unexpected diversity of bioluminescent colour patterns. This leads us to reassess the ecological value of bioluminescence within this group.  相似文献   

18.
Most orchids studied thus far show long‐term resource adjustments to increases in fruit production within a flowering season, but none of these offers rewards to their potential pollinators. If nectar production is energetically expensive, then resources utilized to produce fruits and seeds may be even more limited in pollinator‐rewarding orchids than in non‐rewarding ones. Thus, resource adjustments may be more dramatic or entirely different in nectar producing plants. In this study, we performed artificial hand‐pollinations for two consecutive flowering seasons in die nectar producing orchid Comparettia falcata, and tested whether or not fruit set, seed set, and seed viability were limited by the quantity of pollinations or by resources. In addition, we compared mechanisms of short‐term (fruit abortion within seasons) and long‐term consequences (percent change in leaf length and change in flower number per plant between seasons, probability of shoot and inflorescence production, and mortality) between hand‐ pollinated and unmanipulated plants. The relationships among plant traits related to vegetative size and reproduction also were examined. Hand‐pollinations showed some negative effects. Fruit set was higher in hand‐pollinated plants in the first season but was similar to the controls in the second. Seed set was significantly lower and abortions were higher than in unmanipulated plants. On the other hand, some of our measurements were unaffected by die hand‐pollination treatment. Unexpectedly, there were no significant differences between groups in percent change in leaf length, change in flower number per plant between seasons, or die probability of shoot and inflorescence production. Although there was a strong correlation between leaf size and die number of flowers produced within a season, associations between leaf size and traits related to current or future reproduction were not consistent. Like other epiphytic orchids, pollination limitation occurred within a single season in C. falcata., but increases in fruit production also resulted in reduced lifetime fitness as estimated by a compounded fitness index. Contrary to all other epiphytic orchids studied, long‐term adjustments to increased fruit production in C. falcata through reduction in future growth or flower and inflorescence production were either minor or lacking. Our results suggest that the nature of plant strategies associated with resource constraints during sexual reproduction may be dependent on whether or not plants have evolved traits that are costly.  相似文献   

19.
  • Epiphytic and rupicolous plants inhabit environments with limited water resources. Such plants commonly use Crassulacean Acid Metabolism (CAM), a photosynthetic pathway that accumulates organic acids in cell vacuoles at night, so reducing their leaf water potential and favouring water absorption. Foliar water uptake (FWU) aids plant survival during drought events in environments with high water deficits. We hypothesized that FWU represents a strategy employed by epiphytic and rupicolous orchids for water acquisition and that CAM will favour increased water absorption.
  • We examined 6 epiphyte, 4 terrestrial and 6 rupicolous orchids that use C3 (n = 9) or CAM (n = 7) pathways. Five individuals per species were used to evaluate FWU, structural characteristics and leaf water balance.
  • Rupicolous species with C3 metabolism had higher FWU than other species. FWU (Cmax and k) could be related to succulence, SLM and leaf RWC. The results indicated that high orchid leaf densities favoured FWU, as area available for water storage increases with leaf density. Structural characteristics linked to water storage (e.g. high RWC, succulence), on the other hand, could limit leaf water absorption by favouring high internal leaf water potentials.
  • Epiphytic, rupicolous and terrestrial orchids showed FWU. Rupicolous species had high levels of FWU, probably through absorption from mist. However, succulence in plants with CAM appears to mitigate FWU.
  相似文献   

20.
Downy mildew (DM), caused by Pseudoperonospora cubensis (Berk. & M.A. Curtis) Rostovzev, is a worldwide major disease of cucumbers (Cucumis sativus L.). By screening 10 introgression lines (ILs) derived from interspecific hybridization between cucumber and the wild Cucumis, C. hystrix, through a whole plant assay, one introgression line (IL52) was identified with high DM‐resistance. IL52 was further used as a resistant parent to make an F2 population with ‘changchunmici’ (susceptible parent). The F2 population (300 plants) was investigated for DM‐yellowing, DM‐necrosis and DM‐resistance in the adult stage. A genetic map spanning 642.5 cM with 104 markers was constructed and used for QTL analysis from the population. Three QTL regions were identified on chromosome 5 and chromosome 6. By interval mapping analysis, two QTLs for DM‐resistance were determined on chromosome 5 (DM_5.1 and DM_5.2), which explained 17.9% and 14.2% of the variation, respectively. QTLs for DM‐yellowing were in the same regions as DM‐resistance. For DM‐necrosis, by interval mapping analysis, one QTL was determined on chromosome 5 (Necr_5.1) that explained 18.3% of the variation and one on chromosome 6 (Necr_6.1) that explained 13.9% of the variation. Our results indicated that the identification of molecular markers linked to the QTLs could be further applied for marker‐assisted selection (MAS) of downy mildew resistance in cucumber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号