首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances in DNA and isotope analyses have allowed tentative reconstructions of dispersal strategies of Plio-Pleistocene hominins.(1,2) Comparing their findings to dispersal patterns of some extant apes and humans suggested groups of related males and unrelated females in Neandertals indicating patrilocality(2) and Pan-like male philopatry in australopiths.(1) Here we review the demographic, ethnographic, and genetic evidence of dispersal patterns in extant apes and humans and compare the results to the suggestions for Plio-Pleistocene hominins. We find that alternative dispersal patterns, for example among gorillas or gibbons, could explain the findings of related or natal males in a confined geographic area. Based on sexual size dimorphism, we speculate that gorillas might currently be the best model for reconstructing dispersal in robust australopiths. Given that the sexual size dimorphism in other australopiths is still hotly debated, the question of which hominoid model best matches their dispersal pattern must remain unanswered. Neandertal dispersal patterns have been compared to patrilocality of modern humans. However, the latter is related to the advent of food production. Consequently, hunter-gatherers exhibiting primarily multilocality appear to be the better comparison for Neandertals. Overall, human-like patrilocality and Pan-like male philopatry appear to be poor models for the reconstruction of dispersal patterns in Plio-Pleistocene hominins.  相似文献   

2.
Understanding variation in the basicranium is of central importance to paleoanthropology because of its fundamental structural role in skull development and evolution. Among primates, encephalisation is well known to be associated with flexion between midline basicranial elements, although it has been proposed that the size or shape of the face influences basicranial flexion. In particular, brain size and facial size are hypothesized to act as antagonists on basicranial flexion. One important and unresolved problem in hominin skull evolution is that large-brained Neanderthals and some Mid-Pleistocene humans have slightly less flexed basicrania than equally large-brained modern humans. To determine whether or not this is a consequence of differences in facial size, geometric morphometric methods were applied to a large comparative data set of non-human primates, hominin fossils, and humans (N = 142; 29 species). Multiple multivariate regression and thin plate spline analyses suggest that basicranial evolution is highly significantly influenced by both brain size and facial size. Increasing facial size rotates the basicranium away from the face and slightly increases the basicranial angle, whereas increasing brain size reduces the angles between the spheno-occipital clivus and the presphenoid plane, as well as between the latter and the cribriform plate. These interactions can explain why Neanderthals and some Mid-Pleistocene humans have less flexed cranial bases than modern humans, despite their relatively similar brain sizes. We highlight that, in addition to brain size (the prime factor implicated in basicranial evolution in Homo), facial size is an important influence on basicranial morphology and orientation. To better address the multifactorial nature of basicranial flexion, future studies should focus on the underlying factors influencing facial size evolution in hominins.  相似文献   

3.
This paper examines the hypothesis raised by recent studies that postnatal trajectories of shape change in the facial skeleton are parallel between, at least, chimpanzees, modern humans and also fossil hominins, specifically australopithecines and possibly Neanderthals. In contrast, other studies point to divergences in postnatal shape trajectories within diverse groups of primates. As such there is some debate regarding the relative contributions of pre and postnatal ontogeny to adult morphological differences. This paper presents a series of geometric morphometric studies of the ontogeny of facial shape in hominins with the specific aim of resolving these issues. The results indicate that many differences in facial shape between hominins are established prenatally, however highly significant divergences of postnatal facial ontogeny are found among living hominins. Our studies point to possible differences between the shape ontogeny of the Australopithecus africanus face and that of African apes on the one hand and humans on the other. However, sampling experiments indicate that the small sample size of available specimens of A. africanus does not permit any conclusions to be drawn regarding comparative shape ontogeny of the face.  相似文献   

4.
Maximum bite force affects craniofacial morphology and an organism's ability to break down foods with different material properties. Humans are generally believed to produce low bite forces and spend less time chewing compared with other apes because advances in mechanical and thermal food processing techniques alter food material properties in such a way as to reduce overall masticatory effort. However, when hominins began regularly consuming mechanically processed or cooked diets is not known. Here, we apply a model for estimating maximum bite forces and stresses at the second molar in modern human, nonhuman primate, and hominin skulls that incorporates skeletal data along with species‐specific estimates of jaw muscle architecture. The model, which reliably estimates bite forces, shows a significant relationship between second molar bite force and second molar area across species but does not confirm our hypothesis of isometry. Specimens in the genus Homo fall below the regression line describing the relationship between bite force and molar area for nonhuman anthropoids and australopiths. These results suggest that Homo species generate maximum bite forces below those predicted based on scaling among australopiths and nonhuman primates. Because this decline occurred before evidence for cooking, we hypothesize that selection for lower bite force production was likely made possible by an increased reliance on nonthermal food processing. However, given substantial variability among in vivo bite force magnitudes measured in humans, environmental effects, especially variations in food mechanical properties, may also be a factor. The results also suggest that australopiths had ape‐like bite force capabilities. Am J Phys Anthropol 151:544–557, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
An increase in brain size is a hallmark of human evolution. Questions regarding the evolution of brain development and obstetric constraints in the human lineage can be addressed with accurate estimates of the size of the brain at birth in hominins. Previous estimates of brain size at birth in fossil hominins have been calculated from regressions of neonatal body or brain mass to adult body mass, but this approach is problematic for two reasons: modern humans are outliers for these regressions, and hominin adult body masses are difficult to estimate. To accurately estimate the brain size at birth in extinct human ancestors, an equation is needed for which modern humans fit the anthropoid regression and one in which the hominin variable entered into the regression equation has limited error. Using phylogenetically sensitive statistics, a resampling approach, and brain-mass data from the literature and from National Primate Research Centers on 362 neonates and 2802 adults from eight different anthropoid species, we found that the size of the adult brain can strongly predict the size of the neonatal brain (r2 = 0.97). This regression predicts human brain size, indicating that humans have precisely the brain size expected as an adult given the size of the brain at birth. We estimated the size of the neonatal brain in fossil hominins from a reduced major axis regression equation using published cranial capacities of 89 adult fossil crania. We suggest that australopiths gave birth to infants with cranial capacities that were on average 180 cc (95% CI: 158–205 cc), slightly larger than the average neonatal brain size of chimpanzees. Neonatal brain size increased in early Homo to 225 cc (95% CI: 198–257 cc) and in Homo erectus to approximately 270 cc (95% CI: 237–310 cc). These results have implications for interpreting the evolution of the birth process and brain development in all hominins from the australopiths and early Homo, through H. erectus, to Homo sapiens.  相似文献   

6.
The association between mandibular robusticity, postcanine megadontia, and canine reduction in hominins has led to speculation that large and robust jaws might be required to spatially accommodate large canine and molar teeth in hominins and other primates. If so, then variations in mandibular form that are generally regarded as biomechanical adaptations to masticatory demands might instead be incidental effects of functional requirements of tooth support. While the association between large teeth and deep, robust jaws in hominins is well known, the relationship between tooth size and jaw size has not been systematically evaluated in a comparative sample of primates. We evaluate the relationships between molar tooth size, canine tooth size, and mandibular corpus and symphyseal dimensions in a sample of adult anthropoids in interspecific (n=84 species) and intraspecific (n=36 species) contexts. For intraspecific comparisons, tooth size and jaw size are correlated, but for a majority of species this is a function of sexual size dimorphism. Interspecific comparisons lend little direct support to the hypothesis that jaw breadth directly covaries with molar tooth breadth, but they do support the hypothesis that mandibular depth is associated with canine tooth size in males. The latter observation suggests that if there is a causal association between canine size and mandibular depth, it is subject to a threshold effect. In contrast, neither corpus nor symphyseal robusticity, measured as a shape index of breadth/height, are correlated with tooth size. Our results suggest that further studies of the relationship between tooth size and corpus morphology should focus on tooth root size and corpus bony architecture, and that species-specific factors should have a strong impact on such relationships.  相似文献   

7.
Early hominins, australopiths, were similar to most large primates in having relatively short hindlimbs for their body size. The short legs of large primates are thought to represent specialization for vertical climbing and quadrupedal stability on branches. Although this may be true, there are reasons to suspect that the evolution of short legs may also represent specialization for physical aggression. Fighting in apes is a behavior in which short legs are expected to improve performance by lowering the center of mass during bipedal stance and by increasing the leverage through which muscle forces can be applied to the ground. Among anthropoid primates, body size sexual dimorphism (SSD) and canine height sexual dimorphism (CSD) are strongly correlated with levels of male-male competition, allowing SSD and CSD to be used as indices of male-male aggression. Here I show that the evolution of hindlimb length in apes is inversely correlated with the evolution of SSD (R(2)= 0.683, P-value = 0.006) and the evolution of CSD (R(2)= 0.630, P-value = 0.013). In contrast, a significant correlation was not observed for the relationship between the evolution of hindlimb and forelimb lengths. These observations are consistent with the suggestion that selection for fighting performance has maintained relatively short hindlimbs in species of Hominoidea with high levels of male-male competition. Although australopiths were highly derived for striding bipedalism when traveling on the ground, they retained short legs compared to those of Homo for over two million years, approximately 100,000 generations. Their short legs may be indicative of persistent selection for high levels of aggression.  相似文献   

8.
Animals typically deploy their morphology during conflict to enhance competitors' assessments of their fighting ability (e.g. bared fangs, piloerection, dewlap inflation). Recent research has shown that humans assess others' fighting ability by monitoring cues of strength, and that the face itself contains such cues. We propose that the muscle movements that constitute the human facial expression of anger were selected because they increased others' assessments of the angry individual's strength, thereby increasing bargaining power. This runs contrary to the traditional theory that the anger face is an arbitrary set of features that evolved simply to signal aggressive intent. To test between these theories, the seven key muscle movements constituting the anger face were systematically manipulated one by one and in the absence of the others. Raters assessed faces containing any one of these muscle movements as physically stronger, supporting the hypothesis that the anger face evolved to enhance cues of strength.  相似文献   

9.

Background

While humans (like other primates) communicate with facial expressions, the evolution of speech added a new function to the facial muscles (facial expression muscles). The evolution of speech required the development of a coordinated action between visual (movement of the lips) and auditory signals in a rhythmic fashion to produce “visemes” (visual movements of the lips that correspond to specific sounds). Visemes depend upon facial muscles to regulate shape of the lips, which themselves act as speech articulators. This movement necessitates a more controlled, sustained muscle contraction than that produced during spontaneous facial expressions which occur rapidly and last only a short period of time. Recently, it was found that human tongue musculature contains a higher proportion of slow-twitch myosin fibers than in rhesus macaques, which is related to the slower, more controlled movements of the human tongue in the production of speech. Are there similar unique, evolutionary physiologic biases found in human facial musculature related to the evolution of speech?

Methodology/Prinicipal Findings

Using myosin immunohistochemistry, we tested the hypothesis that human facial musculature has a higher percentage of slow-twitch myosin fibers relative to chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta). We sampled the orbicularis oris and zygomaticus major muscles from three cadavers of each species and compared proportions of fiber-types. Results confirmed our hypothesis: humans had the highest proportion of slow-twitch myosin fibers while chimpanzees had the highest proportion of fast-twitch fibers.

Conclusions/significance

These findings demonstrate that the human face is slower than that of rhesus macaques and our closest living relative, the chimpanzee. They also support the assertion that human facial musculature and speech co-evolved. Further, these results suggest a unique set of evolutionary selective pressures on human facial musculature to slow down while the function of this muscle group diverged from that of other primates.  相似文献   

10.
All early (Pliocene–Early Pleistocene) hominins exhibit some differences in proximal femoral morphology from modern humans, including a long femoral neck and a low neck‐shaft angle. In addition, australopiths (Au. afarensis, Au. africanus, Au. boisei, Paranthropus boisei), but not early Homo, have an “anteroposteriorly compressed” femoral neck and a small femoral head relative to femoral shaft breadth. Superoinferior asymmetry of cortical bone in the femoral neck has been claimed to be human‐like in australopiths. In this study, we measured superior and inferior cortical thicknesses at the middle and base of the femoral neck using computed tomography in six Au. africanus and two P. robustus specimens. Cortical asymmetry in the fossils is closer overall to that of modern humans than to apes, although many values are intermediate between humans and apes, or even more ape‐like in the midneck. Comparisons of external femoral neck and head dimensions were carried out for a more comprehensive sample of South and East African australopiths (n = 17) and two early Homo specimens. These show that compared with modern humans, femoral neck superoinferior, but not anteroposterior breadth, is larger relative to femoral head breadth in australopiths, but not in early Homo. Both internal and external characteristics of the australopith femoral neck indicate adaptation to relatively increased superoinferior bending loads, compared with both modern humans and early Homo. These observations, and a relatively small femoral head, are consistent with a slightly altered gait pattern in australopiths, involving more lateral deviation of the body center of mass over the stance limb. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Facial heights, i.e. the vertical distances between the superior and inferior limits of facial compartments, contribute to the orientation of the viscerocranium in the primate skull. In humans, vertical facial variation is among the main sources of diversity and frequently associated with an integrated suite of other cranio-mandibular traits. Facial heights and kyphosis are also important factors in interspecific variation and models of hominoid evolution. The ontogenetic determination of adult facial orientation and its relation to phylogenetic variation are unclear, but crucial in all previously mentioned respects. We addressed these issues in a sample of 175 humans and chimpanzees with Procrustes based geometric morphometrics, testing hypotheses of interspecific similarity in postnatal ontogenetic trajectories, early versus later ontogenetic facial pattern determination, and a developmental model of morphological integration. We analyzed the contribution of postnatal morphogenesis to adult vertical facial variation by partitioning morphological variation into a portion of pure growth allometry and a non-allometric fraction. A statistically significant difference of growth-allometries revealed that in both species growth established the adult skull proportions by vertical facial expansion, but while in chimpanzees the complete viscerocranium showed reorientation, in humans only the lower face was modified. In both species the results support a hypothesis of early facial pattern determination. A coincident emergence of morphological traits favors a hypothesis of developmental integration of the face, excluding traits of the basi- and neurocranium. Interspecific differences in integration may have implications for evolutionary studies. The present findings indicate that growth establishes the adult skull proportions and integrates principal facial orientation patterns, already there in early postnatal ontogeny.  相似文献   

12.
The venom glands of snakes of the families Elapidae and Viperidae are thought to have evolved from Duvernoy's gland of colubrid ancestors. In highly venomous snakes elements of the external adductor musculature of the jaw insert fibers directly onto the capsule of the venom gland. These muscles, upon contraction, cause release of contents by increasing intraglandular pressure. In Thamnophis sirtalis, a colubrid, there is no direct connection between Duvernoy's gland and the adductor musculature. The anatomical arrangement of the gland, skull, adductor muscles, and the integument is such that contraction of the muscles may facilitate emptying of the gland. This hypothesis was tested by electrical stimulation of the muscles, which resulted in significantly greater release of secretion than elicited by controls. The results suggest a possible early step in the evolution of a more intimate association between venom glands and adductor musculature in highly venomous snakes.  相似文献   

13.
The skull structure of dicynodonts may be regarded as a complex adaptation towards herbivorous feeding. The present work examines how and why this adaptation may have evolved. A cladogram of the dicynodonts is presented and from it a sequence of hypothetical ancestral forms is inferred. The jaw musculature of dicynodonts and other therapsids is described and in particular the early dicynodont Eodicynodon oosthuizeni is described in detail. This information is used to draw up a sequence of ancestral stages whose basic skull anatomy, jaw muscle organization and masticatory properties are described. Differences in masticatory properties between these stages are pinpointed and an explanation to account for the development of these differences is advanced. It is concluded that the changes in skull organization seen during the evolution of dicynodonts are consistent with the hypothesis that a propalinal jaw action was being improved by selection, and that this was required to permit dicynodonts to be efficient herbivores.  相似文献   

14.
Neanderthal pelvic morphology is not well understood, despite the recent find and analysis of the Kebara 2 pelvis. Many of the proposed hypotheses focus on the possible need for a larger birth canal. A previously unexplored aspect involves possible direct obstetric implications of bone robusticity and density. These characteristics ocan affect obstetrics in modern humans, especially the molding of the neonate's head during parturition: engineering studies have shown that denser neonate cranial bones undergo less deformation, and thicker (more robust) cranial bones would also be expected to deform less during the birth process. These bone characteristics may also result in a less flexible birth canal. Thus, more robust or denser bones could result in the need for a larger birth canal or a smaller neonate head, due to decreased flexibility. Examples from modern populations are discussed and the conclusions applied to Neanderthals, who are known to have had high bone robusticity and may have had high bone density, given their heavy musculature. (A positive association between muscle mass and bone density has been observed repeatedly in modern humans.) We conclude that bone robusticity and density may have obstetrical implications for Neanderthals, with particular importance for neonate head molding during birth.  相似文献   

15.
It has been suggested that the large theropod dinosaur Tyrannosaurus rex was capable of producing extremely powerful bite forces and resisting multi-directional loading generated during feeding. Contrary to this suggestion is the observation that the cranium is composed of often loosely articulated facial bones, although these bones may have performed a shock-absorption role. The structural analysis technique finite element analysis (FEA) is employed here to investigate the functional morphology and cranial mechanics of the T. rex skull. In particular, I test whether the skull is optimized for the resistance of large bi-directional feeding loads, whether mobile joints are adapted for the localized resistance of feeding-induced stress and strain, and whether mobile joints act to weaken or strengthen the skull overall. The results demonstrate that the cranium is equally adapted to resist biting or tearing forces and therefore the 'puncture-pull' feeding hypothesis is well supported. Finite-element-generated stress-strain patterns are consistent with T. rex cranial morphology: the maxilla-jugal suture provides a tensile shock-absorbing function that reduces localized tension yet 'weakens' the skull overall. Furthermore, peak compressive and shear stresses localize in the nasals rather than the fronto-parietal region as seen in Allosaurus, offering a reason why robusticity is commonplace in tyrannosaurid nasals.  相似文献   

16.
The evolution of the mammalian jaw during the transition from non‐mammalian synapsids to crown mammals is a key event in vertebrate history and characterised by the gradual reduction of its individual bones into a single element and the concomitant transformation of the jaw joint and its incorporation into the middle ear complex. This osteological transformation is accompanied by a rearrangement and modification of the jaw adductor musculature, which is thought to have allowed the evolution of a more‐efficient masticatory system in comparison to the plesiomorphic synapsid condition. While osteological characters relating to this transition are well documented in the fossil record, the exact arrangement and modifications of the individual adductor muscles during the cynodont–mammaliaform transition have been debated for nearly a century. We review the existing knowledge about the musculoskeletal evolution of the mammalian jaw adductor complex and evaluate previous hypotheses in the light of recently documented fossils that represent new specimens of existing species, which are of central importance to the mammalian origins debate. By employing computed tomography (CT) and digital reconstruction techniques to create three‐dimensional models of the jaw adductor musculature in a number of representative non‐mammalian cynodonts and mammaliaforms, we provide an updated perspective on mammalian jaw muscle evolution. As an emerging consensus, current evidence suggests that the mammal‐like division of the jaw adductor musculature (into deep and superficial components of the m. masseter, the m. temporalis and the m. pterygoideus) was completed in Eucynodontia. The arrangement of the jaw adductor musculature in a mammalian fashion, with the m. pterygoideus group inserting on the dentary was completed in basal Mammaliaformes as suggested by the muscle reconstruction of Morganucodon oehleri. Consequently, transformation of the jaw adductor musculature from the ancestral (‘reptilian’) to the mammalian condition must have preceded the emergence of Mammalia and the full formation of the mammalian jaw joint. This suggests that the modification of the jaw adductor system played a pivotal role in the functional morphology and biomechanical stability of the jaw joint.  相似文献   

17.
The australopiths are a group of early hominins (humans and their close extinct relatives) that lived in Africa between approximately 4.1 and 1.4 million years ago. Formerly known as the australopithecines, they are not a “natural” group, in that they do not represent all of the descendants of a single common ancestor (i.e., they are not a “clade”). Rather, they are grouped together informally because nearly all share a similar adaptive grade (i.e., they have similar adaptations). In particular, they are bipedal apes that, to a greater or lesser extent, exhibit enlarged molar and premolar teeth (postcanine megadontia) and other associated modifications to their feeding apparatuses. Dietary adaptations clearly played an important role in shaping their evolutionary history. They also are distinguished by their lack of derived features typically associated with the genus Homo, such as a large brain, a broad complement of adaptations for manual dexterity, and advanced tool use. However, Homo is almost certainly descended from an australopith ancestor, so at least one or some australopiths belong directly to the human lineage. Regardless, australopiths had a rich evolutionary history deserving of study independent of questions about our direct ancestry. They were diverse, geographically widespread, and anatomically derived, they lived through periods of pronounced climate change, and their story dominates the narrative of human evolution for millions of years.  相似文献   

18.
Selection in species with aggressive social interactions favours the evolution of cognitive mechanisms for assessing physical formidability (fighting ability or resource-holding potential). The ability to accurately assess formidability in conspecifics has been documented in a number of non-human species, but has not been demonstrated in humans. Here, we report tests supporting the hypothesis that the human cognitive architecture includes mechanisms that assess fighting ability-mechanisms that focus on correlates of upper-body strength. Across diverse samples of targets that included US college students, Bolivian horticulturalists and Andean pastoralists, subjects in the US were able to accurately estimate the physical strength of male targets from photos of their bodies and faces. Hierarchical linear modelling shows that subjects were extracting cues of strength that were largely independent of height, weight and age, and that corresponded most strongly to objective measures of upper-body strength-even when the face was all that was available for inspection. Estimates of women's strength were less accurate, but still significant. These studies are the first empirical demonstration that, for humans, judgements of strength and judgements of fighting ability not only track each other, but accurately track actual upper-body strength.  相似文献   

19.
The cranial anatomy of the Lower Jurassic ornithischian dinosaur Heterodontosaurus tucki Crompton & Charig, 1962 is described in detail for the first time on the basis of two principal specimens: the holotype (SAM‐PK‐K337) and referred skull (SAM‐PK‐K1332). In addition several other specimens that have a bearing on the interpretation of the anatomy and biology of Heterodontosaurus are described. The skull and lower jaw of Heterodontosaurus are compact and robust but perhaps most notable for the heterodont dentition that merited the generic name. Details of the cranial anatomy are revealed and show that the skull is unexpectedly specialized in such an early representative of the Ornithischia, including: the closely packed, hypsodont crowns and ‘warping’ of the occlusal surfaces (created by progressive variation in the angulation of wear on successive crowns) seen in the cheek dentition; the unusual sutural relationships between the bones along the dorsal edge of the lower jaw; the very narrow, deeply vaulted palate and associated structures on the side wall of the braincase; and the indications of cranial pneumatism (more commonly seen in basal archosaurs and saurischian dinosaurs). Evidence for tooth replacement (which has long been recognized, despite frequent statements to the contrary) is suggestive of an episodic, rather than continuous, style of tooth replacement that is, yet again, unusual in diapsids generally and particularly so amongst ornithischian dinosaurs. Cranial musculature has been reconstructed and seems to conform to that typically seen in diapsids, with the exception of the encroachment of M. adductor mandibulae externus superficialis across the lateral surface of the temporal region and external surface of the lower jaw. Indications, taken from the unusual shape of the occlusal surfaces of the cheek dentition and jaw musculature, are suggestive of a novel form of jaw action in this dinosaur. The taxonomy of currently known late Karoo‐aged heterodontosaurids from southern Africa is reviewed. Although complicated by the inadequate nature of much of the known material, it is concluded that two taxa may be readily recognized: H. tucki and Abrictosaurus consors. At least one additional taxon is recognized within the taxa presently named Lanasaurus and Lycorhinus; however, both remain taxonomically problematic and their status needs to be further tested and may only be resolved by future discoveries. The only other named taxon, Geranosaurus atavus, represents an invalid name. The recognition of at least four distinct taxa indicates that the heterodontosaurids were speciose within the late Karoo ecosystem. The systematics of Heterodontosaurus and its congeners has been analysed, using a restricted sample of taxa. A basal (nongenasaurian) position within Ornithischia is re‐affirmed. There are at least four competing hypotheses concerning the phylogenetic placement of the Heterodontosauridae, so the evidence in support of the various hypotheses is reviewed in some detail. At present the best‐supported hypothesis is the one which places Heterodontosauridae in a basal (non‐genasaurian) position; however, the evidence is not fully conclusive and further information is still needed in respect of the anatomy of proximate outgroups, as well as more complete anatomical details for other heterodontosaurids. Heterodontosaurids were not such rare components of the late Karoo ecosystem as previously thought; evidence also suggests that from a phylogenetic perspective they occupied a potentially crucial position during the earliest phases of ornithischian dinosaur evolution. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011.  相似文献   

20.
As early as the 1970s, Robinson defined lumbar vertebrae according to their zygapophyseal orientation. He identified six lumbar elements in fossil Sts 14 Australopithecus africanus, one more than is commonly present in modern humans. It is now generally inferred that the modal number of lumbar vertebrae for australopiths and early Homo was six, from which the mode of five in later Homo is derived. The two central questions this study investigates are (1) to what extent do differences in human lumbar vertebral count affect lordotic shape and lumbar function, and (2) what does lumbar number variation imply about lumbar spine function in early hominins? To address these questions, I first outline a biomechanical model of lumbar number effect on lordotic function. I then identify relevant morphological differences in the human modal and extra-modal variants, which I use to test the model. These tests permit evaluation of the human L6 variant as a model for reconstructing early hominin modal number and spine function. Application of the biomechanical model in reconstructing australopith/early Homo lumbar spines highlights shared principles of Euler column strength and sagittal spine flexibility among early and modern hominins. Within modern humans, the extra-modal L6 variant has an extended series of three cranially positioned kyphotic vertebrae and strongly oblique zygapophyseal facets at the last lumbar level. Although they share the same radius and length of lumbar curvature, the L6 variant differs functionally from the L5 mode in its expanded range of sagittal flexion/extension and enhanced resistance to shear. Given the modal number of six lumbar vertebrae in australopiths and early Homo, lumbar spine mobility and strength would have been key properties of vertebral function in early bipeds whose upper and lower body segments were coupled by close approximation of the thorax and iliac crests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号