共查询到20条相似文献,搜索用时 15 毫秒
1.
Wolbachia are strictly endocellular, vertically transmitted bacteria associated with insects and crustaceans. This group of parasites modify their hosts' reproduction so as to increase their own fitness. This paper reviews the variability of these parasitic alterations and their consequences for host biology and populations. Wolbachia induce cytoplasmic incompatibility (a characteristic apparently specific to Wolbachia) in several insects and one isopod crustacean; parthenogenesis (thelytoky) in haplo-diploid insects; feminization in various isopods. The consequences of these phenomena on speciation, population dynamics and genetic polymorphism are discussed. The variability of the mechanisms of host sex determination is one important factor responsible for the diversity of Wolbachia-host interactions. However, parasite characteristics, such as the capacity to disturb host mitosis, and the ability to be horizontally transferred between hosts, also appear to play a role in this diversity. 相似文献
2.
Christina L. Stallings Michael S. Glickman 《Microbes and infection / Institut Pasteur》2010,12(14-15):1091-1101
Mycobacterium tuberculosis is an obligate human intracellular pathogen which remains a major killer worldwide. A remarkable feature of M. tuberculosis infection is the ability of the pathogen to persist within the host for decades despite an impressive onslaught of stresses. In this review we seek to outline the host-inflicted stresses experienced by M. tuberculosis, the bacterial strategies used to withstand these stresses, and how this information should guide our efforts to combat this global pathogen. 相似文献
3.
Sex differences in parasitic infections among arthropod hosts: is there a male bias? 总被引:5,自引:0,他引:5
A higher susceptibility to diseases or parasites in males than females may be an ultimate consequence of the different reproductive strategies favored by selection in the two sexes. At the proximate level, the immunosuppressant effects of testosterone in vertebrates provide a mechanism that can cause male biases in parasite infections. Invertebrates, however, lack testosterone and other steroid hormones. We used a meta-analysis of published results to investigate whether sex biases in parasite infections were generally observed among arthropod hosts despite the absence of the immune-endocrine coupling provided by testosterone. Overall, male and female arthropods did not differ in prevalence or intensity of parasite infections. This is based on an analysis of sex differences corrected for sample size and, when possible, variability in the original data. Sex biases in parasite infection were not more likely to be observed in certain host or parasite taxa, and were not more pronounced in experimental studies than in surveys of naturally infected hosts. Our results suggest that because of the absence of endocrine-immune interactions in arthropods, males are not generally more prone to parasite infections than females despite the greater intensity of sexual selection acting on males. 相似文献
4.
Wooding S 《Current biology : CB》2005,15(19):R805-R807
Bitter tastes are among the most salient of life's experiences--who can forget one's first encounter with dandelion milk or a stout beer? Studies of the genes underlying these tastes are providing new perspectives on human origins and health. 相似文献
5.
6.
7.
8.
9.
Mair-Bauernfeind Claudia Zimek Martina Lettner Miriam Hesser Franziska Baumgartner Rupert J. Stern Tobias 《The International Journal of Life Cycle Assessment》2020,25(11):2217-2240
The International Journal of Life Cycle Assessment - The choice of materials used for a vehicle can contribute to reduce negative environmental and social impacts. Bio-based materials are... 相似文献
10.
Persistence of an infectious agent in a population is an important issue in epidemiology. It is assumed that spatially fragmenting a population of hosts increases the probability of persistence of an infectious agent and that movement of hosts between the patches is vital for that. The influence of migration on persistence is however often studied in mean-field models, whereas in reality the actual distance travelled can be limited and influence the movement dynamics. We use a stochastic model, where within- and between-patch dynamics are coupled and movement is modelled explicitly, to show that explicit consideration of movement distance makes the relation between persistence of infectious agents and the metapopulation structure of its hosts less straightforward than previously thought. We show that the probability of persistence is largest at an intermediate movement distance of the host and that spatially fragmenting a population of hosts is not necessarily beneficial for persistence. 相似文献
11.
1. Parasites and infectious diseases have become a major concern in conservation biology, in part because they can trigger or accelerate species or population declines. Focusing on primates as a well-studied host clade, we tested whether the species richness and prevalence of parasites differed between threatened and non-threatened host species. 2. We collated data on 386 species of parasites (including viruses, bacteria, protozoa, helminths and arthropods) reported to infect wild populations of 36 threatened and 81 non-threatened primate species. Analyses controlled for uneven sampling effort and host phylogeny. 3. Results showed that total parasite species richness was lower among threatened primates, supporting the prediction that small, isolated host populations harbour fewer parasite species. This trend was consistent across three major parasite groups found in primates (helminths, protozoa and viruses). Counter to our predictions, patterns of parasite species richness were independent of parasite transmission mode and the degree of host specificity. 4. We also examined the prevalence of selected parasite genera among primate sister-taxa that differed in their ranked threat categories, but found no significant differences in prevalence between threatened and non-threatened hosts. 5. This study is the first to demonstrate differences in parasite richness relative to host threat status. Results indicate that human activities and host characteristics that increase the extinction risk of wild animal species may lead simultaneously to the loss of parasites. Lower average parasite richness in threatened host taxa also points to the need for a better understanding of the cascading effects of host biodiversity loss for affiliated parasite species. 相似文献
12.
In an attempt to localize components of the renin angiotensin-system in the pineal gland of rats, immunocytochemical studies using the PAP-technique were performed with antisera against angiotensin I, angiotensin II and angiotensinogen. The staining pattern thus obtained was not only the same for the three antisera, but was also identical to that shown for many other peptide-antisera in the literature. In those studies, the immunocytochemical staining had been ascribed to a distinct pineal cell population or to cell processes. However, by examining adjacent semithin and ultrathin sections by immunocytochemistry and electron microscopy, respectively, we could identify the extracellular perivascular compartment and its flocculent material as the site of staining. This unexpected localization and the observation of "immunoreactivity" of some preimmunesera in the same compartment as well as several additional findings and arguments are taken to suggest that likelihood of "pseudopositive" immunostaining, typical for the pineal gland. 相似文献
13.
Although multihost complex life cycles (CLCs) are common in several distantly related groups of parasites, their evolution remains poorly understood. In this article, we argue that under particular circumstances, adding a second host to a single-host life cycle is likely to enhance transmission (i.e., reaching the target host). For instance, in several situations, the propagules of a parasite exploiting a predator species will achieve a higher host-finding success by encysting in a prey of the target predator than by other dispersal modes. In such a case, selection should favor the transition from a single- to a two-host life cycle that includes the prey species as an intermediate host. We use an optimality model to explore this idea, and we discuss it in relation to dispersal strategies known among free-living species, especially animal dispersal. The model found that selection favored a complex life cycle only if intermediate hosts were more abundant than definitive hosts. The selective value of a complex life cycle increased with predation rates by definitive hosts on intermediate hosts. In exploring trade-offs between transmission strategies, we found that more costly trade-offs made it more difficult to evolve a CLC while less costly trade-offs between traits could favor a mixed strategy. 相似文献
14.
Anna M. OBrien Chandra N. Jack Maren L. Friesen Megan E. Frederickson 《Proceedings. Biological sciences / The Royal Society》2021,288(1942)
Evolutionary biologists typically envision a trait’s genetic basis and fitness effects occurring within a single species. However, traits can be determined by and have fitness consequences for interacting species, thus evolving in multiple genomes. This is especially likely in mutualisms, where species exchange fitness benefits and can associate over long periods of time. Partners may experience evolutionary conflict over the value of a multi-genomic trait, but such conflicts may be ameliorated by mutualism’s positive fitness feedbacks. Here, we develop a simulation model of a host–microbe mutualism to explore the evolution of a multi-genomic trait. Coevolutionary outcomes depend on whether hosts and microbes have similar or different optimal trait values, strengths of selection and fitness feedbacks. We show that genome-wide association studies can map joint traits to loci in multiple genomes and describe how fitness conflict and fitness feedback generate different multi-genomic architectures with distinct signals around segregating loci. Partner fitnesses can be positively correlated even when partners are in conflict over the value of a multi-genomic trait, and conflict can generate strong mutualistic dependency. While fitness alignment facilitates rapid adaptation to a new optimum, conflict maintains genetic variation and evolvability, with implications for applied microbiome science. 相似文献
15.
Wolbachia are a group of cytoplasmically inherited bacteria that cause reproduction alterations in arthropods, including parthenogenesis, reproductive incompatibility, feminization of genetic males and male killing. Previous general surveys of insects in Panama and Britain found Wolbachia to be common, occurring in 16-22% of species. Here, using similar polymerase chain reaction methods, we report that 19.3% of a sample of temperate North American insects are infected with Wolbachia, a frequency strikingly similar to frequencies found in two other studies in widely separated locales. The results may indicate a widespread equilibrium of Wolbachia infection frequencies in insects whose maintenance remains to be explained. Alternatively, Wolbachia may be increasing in global insect communities. Within each of the three geographic regions surveyed, Hymenoptera are more frequently infected with A group Wolbachia and Lepidoptera more frequently infected with B group Wolbachia. 相似文献
16.
The romantic perception of plant–animal mutualisms as a cooperative endeavour has been shattered in the last decades. While the classic theory of plant–pollinator coevolution assumed that partner coevolution is largely mutualistic, an increasing appreciation of the inherent conflict of interests between such partners has led to the realization that genes that confer a reproductive advantage to plants may have negative effects on their pollinators (and vice versa), giving rise to an apparent paradox: that antagonistic processes may drive coevolution among mutualistic partners. Under this new paradigm, mutualistic partners are bound by mutual interest but shaped by “selfish” antagonistic processes. Exploitation barriers mediated by resource competition among pollinators are a key element of this paradigm. Exploitation barriers involve traits such as tubular corollas, red flowers, toxic or deterrent rewards, and attractants of floral predators. Exploitation barriers result in resource partitioning, increasing floral fidelity of favoured pollinators and therefore plant fitness; but they often entail a physiological, behavioural or developmental cost for such favoured pollinators. Resource partitioning mediated by exploitation barriers is a very powerful driver of floral diversification, robust to variation in pollinator assemblages; hence, it may contribute to elucidating the occurrence of co-evolutionary changes in multi-species contexts. Exploitation barriers provide also a mechanistic basis for trait-based modelling of interaction networks, and represent a reason for caution in assuming fixed interaction identity or strength when modelling such networks (e.g. in rarefaction procedures used to estimate secondary extinctions). We propose to replace the misleading metaphor that depicts flowers and pollinators as cooperative partners by a metaphor in which plants and pollinator are traders, seeking to obtain different services from each other in complete disregard for the benefit of their mutualistic partner. 相似文献
17.
18.
John N. Maina 《Biological reviews of the Cambridge Philosophical Society》2023,98(6):2152-2187
In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices. 相似文献
19.