首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lipid A is the active center of lipopolysaccharide which also known as endotoxin. Monophosphoryl-lipid A (MPLA) has less toxicity but retains potent immunoadjuvant activity; therefore, it can be developed as adjuvant for improving the strength and duration of the immune response to antigens. However, MPLA cannot be chemically synthesized and can only be obtained by hydrolyzing lipopolysaccharide (LPS) purified from Gram-negative bacteria. Purifying LPS is difficult and time-consuming and can damage the structure of MPLA. In this study, Escherichia coli mutant strains HWB01 and HWB02 were constructed by deleting several genes and integrating Francisella novicida gene lpxE into the chromosome of E. coli wild type strain W3110. Compared with W3110, HWB01 and HWB02 synthesized very short LPS, Kdo2-monophosphoryl-lipid A (Kdo2-MPLA) and Kdo2-pentaacyl-monophosphoryl-lipid A (Kdo2-pentaacyl-MPLA), respectively. Structural changes of LPS in the outer membranes of HWB01 and HWB02 increased their membrane permeability, surface hydrophobicity, auto-aggregation ability and sensitivity to some antibiotics, but the abilities of these strains to activate the TLR4/MD-2 receptor of HKE-Blue hTLR4 cells were deceased. Importantly, purified Kdo2-MPLA and Kdo2-pentaacyl-MPLA differed from wild type LPS in their ability to stimulate the mammalian cell lines THP-1 and RAW264.7. The purification of Kdo2-MPLA and Kdo2-pentaacyl-MPLA from HWB01 and HWB02, respectively, is much easier than the purification of LPS from W3110, and these lipid A derivatives could be important tools for developing future vaccine adjuvants.  相似文献   

2.
Strains of Pseudomonas aeruginosa (PA) isolated from the airways of cystic fibrosis patients constitutively add palmitate to lipid A, the membrane anchor of lipopolysaccharide. The PhoPQ regulated enzyme PagP is responsible for the transfer of palmitate from outer membrane phospholipids to lipid A. This enzyme had previously been identified in many pathogenic Gram‐negative bacteria, but in PA had remained elusive, despite abundant evidence that its lipid A contains palmitate. Using a combined genetic and biochemical approach, we identified PA1343 as the PA gene encoding PagP. Although PA1343 lacks obvious primary structural similarity with known PagP enzymes, the β‐barrel tertiary structure with an interior hydrocarbon ruler appears to be conserved. PA PagP transfers palmitate to the 3′ position of lipid A, in contrast to the 2 position seen with the enterobacterial PagP. Palmitoylated PA lipid A alters host innate immune responses, including increased resistance to some antimicrobial peptides and an elevated pro‐inflammatory response, consistent with the synthesis of a hexa‐acylated structure preferentially recognized by the TLR4/MD2 complex. Palmitoylation commonly confers resistance to cationic antimicrobial peptides, however, increased cytokine production resulting in inflammation is not seen with other palmitoylated lipid A, indicating a unique role for this modification in PA pathogenesis.  相似文献   

3.
Gram‐negative bacteria (GNB) emerge as important pathogens causing pulmonary infection, which can develop into sepsis due to bacterial resistance to antibiotics. GNB pneumonia poses a huge social and economic burden all over the world. During GNB infection in the lung, Toll‐like receptor 4 (TLR4) can form a complex with MD2 and CD14 after recognizing lipopolysaccharide of GNB, initiate the MyD88‐ and TRIF‐dependent signalling pathways and stimulate host non‐specific immune response. In this review, we summarize recent progress in our understanding of the role of TLR4 in GNB pneumonia. The latest experimental results, especially in TLR4 knockout animals, suggest a promising potential of targeting TLR4 signalling pathway for the treatment of GNB pneumonia. Furthermore, we highlight the benefits of Traditional Chinese Medicine as novel candidates for the therapy of GNB pneumonia due to the modulation of TLR4 signalling pathway. Finally, we discuss the promise and challenge in the development of TLR4‐based drugs for GNB pneumonia.  相似文献   

4.
This review covers the current knowledge and gaps in Helicobacter pylori lipopolysaccharide (LPS) structure and biosynthesis. H. pylori is a Gram‐negative bacterium which colonizes the luminal surface of the human gastric epithelium. Both a constitutive alteration of the lipid A preventing TLR4 elicitation and host mimicry of the Lewis antigen decorated O‐antigen of H. pylori LPS promote immune escape and chronic infection. To date, the complete structure of H. pylori LPS is not available, and the proposed model is a linear arrangement composed of the inner core defined as the hexa‐saccharide (Kdo‐LD‐Hep‐LD‐Hep‐DD‐Hep‐Gal‐Glc), the outer core composed of a conserved trisaccharide (‐GlcNAc‐Fuc‐DD‐Hep‐) linked to the third heptose of the inner core, the glucan, the heptan and a variable O‐antigen, generally consisting of a poly‐LacNAc decorated with Lewis antigens. Although the glycosyltransferases (GTs) responsible for the biosynthesis of the H. pylori O‐antigen chains have been identified and characterized, there are many gaps in regard to the biosynthesis of the core LPS. These limitations warrant additional mutagenesis and structural studies to obtain the complete LPS structure and corresponding biosynthetic pathway of this important gastric bacterium.  相似文献   

5.
6.
Lipid A coats the outer surface of the outer membrane of Gram‐negative bacteria. In Francisella tularensis subspecies novicida lipid A is present either as the covalently attached anchor of lipopolysaccharide (LPS) or as free lipid A. The lipid A moiety of Francisella LPS is linked to the core domain by a single 2‐keto‐3‐deoxy‐D‐manno‐octulosonic acid (Kdo) residue. F. novicida KdtA is bi‐functional, but F. novicida contains a membrane‐bound Kdo hydrolase that removes the outer Kdo unit. The hydrolase consists of two proteins (KdoH1 and KdoH2), which are expressed from adjacent, co‐transcribed genes. KdoH1 (related to sialidases) has a single predicted N‐terminal transmembrane segment. KdoH2 contains 7 putative transmembrane sequences. Neither protein alone catalyses Kdo cleavage when expressed in E. coli. Activity requires simultaneous expression of both proteins or mixing of membranes from strains expressing the individual proteins under in vitro assay conditions in the presence of non‐ionic detergent. In E. coli expressing KdoH1 and KdoH2, hydrolase activity is localized in the inner membrane. WBB06, a heptose‐deficient E. coli mutant that makes Kdo2‐lipid A as its sole LPS, accumulates Kdo‐lipid A when expressing the both hydrolase components, and 1‐dephospho‐Kdo‐lipid A when expressing both the hydrolase and the Francisella lipid A 1‐phosphatase (LpxE).  相似文献   

7.
8.
ArnA from Escherichia coli is a key enzyme involved in the formation of 4‐amino‐4‐deoxy‐l ‐arabinose. The addition of this sugar to the lipid A moiety of the lipopolysaccharide of pathogenic Gram‐negative bacteria allows these organisms to evade the cationic antimicrobial peptides of the host immune system. Indeed, it is thought that such modifications may be responsible for the repeated infections of cystic fibrosis patients with Pseudomonas aeruginosa. ArnA is a bifunctional enzyme with the N‐ and C‐terminal domains catalyzing formylation and oxidative decarboxylation reactions, respectively. The catalytically competent cofactor for the formylation reaction is N10‐formyltetrahydrofolate. Here we describe the structure of the isolated N‐terminal domain of ArnA in complex with its UDP‐sugar substrate and N5‐formyltetrahydrofolate. The model presented herein may prove valuable in the development of new antimicrobial therapeutics.  相似文献   

9.
During lipopolysaccharide biosynthesis in several pathogens, including Burkholderia and Yersinia, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) 3-hydroxylase, otherwise referred to as KdoO, converts Kdo to d-glycero-d-talo-oct-2-ulosonic acid (Ko) in an Fe(II)/α-ketoglutarate (α-KG)/O2-dependent manner. This conversion renders the bacterial outer membrane more stable and resistant to stresses such as an acidic environment. KdoO is a membrane-associated, deoxy-sugar hydroxylase that does not show significant sequence identity with any known enzymes, and its structural information has not been previously reported. Here, we report the biochemical and structural characterization of KdoO, Minf_1012 (KdoMI), from Methylacidiphilum infernorum V4. The de novo structure of KdoMI apoprotein indicates that KdoOMI consists of 13 α helices and 11 β strands, and has the jelly roll fold containing a metal binding motif, HXDX111H. Structures of KdoMI bound to Co(II), KdoMI bound to α-KG and Fe(III), and KdoMI bound to succinate and Fe(III), in addition to mutagenesis analysis, indicate that His146, His260, and Asp148 play critical roles in Fe(II) binding, while Arg127, Arg162, Arg174, and Trp176 stabilize α-KG. It was also observed that His225 is adjacent to the active site and plays an important role in the catalysis of KdoOMI without affecting substrate binding, possibly being involved in oxygen activation. The crystal structure of KdoOMI is the first completed structure of a deoxy-sugar hydroxylase, and the data presented here have provided mechanistic insights into deoxy-sugar hydroxylase, KdoO, and lipopolysaccharide biosynthesis.  相似文献   

10.
Pathogenic and commensal Gram‐negative bacteria produce and release outer membrane vesicles (OMVs), which present several surface antigens and play an important role for bacterial pathogenesis. OMVs also modulate the host immune system, which makes them attractive as vaccine candidates. At the cellular level, OMVs are internalized by macrophages and deliver lipopolysaccharide (LPS) into the host cytosol, thus activating the caspase‐11 non‐canonical inflammasome. Here, we show that OMV‐induced inflammasome activation requires TLR4‐TRIF signaling, the production of type I interferons, and the action of guanylate‐binding proteins (GBPs), both in macrophages and in vivo. Mechanistically, we find that isoprenylated GBPs associate with the surface of OMVs or with transfected LPS, indicating that the key factor that determines GBP recruitment to the Gram‐negative bacterial outer membranes is LPS itself. Our findings provide new insights into the mechanism by which GBPs target foreign surfaces and reveal a novel function for GBPs in controlling the intracellular detection of LPS derived from extracellular bacteria in the form of OMVs, thus extending their function as a hub between cell‐autonomous immunity and innate immunity.  相似文献   

11.
Phospholipase A2 (PLA2) hydrolyzes fatty acids from phospholipids at the sn‐2 position. Two intracellular PLA2s, iPLA2A and iPLA2B, have been found in Spodoptera exigua. Both are calcium‐independent cellular PLA2. Their orthologs have been found in other insects. These two iPLA2s are different in ankyrin motif of N terminal region. The objective of this study was to determine whether Toll/immune deficiency (IMD) signal pathways could mediate cellular immune responses via induction of iPLA2 expression. Both iPLA 2s were expressed in all developmental stages of S. exigua, showing the highest expression in the adult stage. During larval stage, hemocyte is the main tissue showing expression of these iPLA2s. Both iPLA2s exhibited similar expression patterns after immune challenge with different microbial pathogens such as virus, bacteria, and fungi. Promoter component analysis of orthologs encoded in S. frugiperda indicated nuclear factor‐κB‐ and Relish‐responsible elements on their promoters, suggesting their expression in S. exigua under Toll/IMD immune signaling pathways. RNA interference (RNAi) of MyD88 or Pelle under Toll pathway suppressed inducible expression levels of both iPLA2s in response to Gram‐positive bacteria containing Lys‐type peptidoglycan or fungal infection. In contrast, RNAi against Relish under IMD pathway suppressed both iPLA2s in response to infection with Gram‐negative bacteria. Under RNAi conditions, hemocytes significantly lost cellular immune response measured by nodule formation. However, addition of arachidonic acid (a catalytic product of PLA2) rescued such immunosuppression. These results suggest that Toll/IMD signal pathways can mediate cellular immune responses via eicosanoid signaling by inducing iPLA2 expression.  相似文献   

12.
Bacillus thuringiensis is a soil‐dwelling Gram positive bacterium that has been utilized as a biopesticide for well over 60 years. It is known to contain flagella that are important for motility. One of the proteins found in flagella is flagellin, which is post‐translationally modified by O‐glycosylation with derivatives of pseudaminic acid. The biosynthetic pathway for the production of CMP‐pseudaminic acid in B. thuringiensis, starting with UDP‐N‐acetyl‐d ‐glucosamine (UDP‐GlcNAc), requires seven enzymes. Here, we report the three‐dimensional structures of Pen and Pal, which catalyze the first and second steps, respectively. Pen contains a tightly bound NADP(H) cofactor whereas Pal is isolated with bound NAD(H). For the X‐ray analysis of Pen, the site‐directed D128N/K129A mutant variant was prepared in order to trap its substrate, UDP‐GlcNAc, into the active site. Pen adopts a hexameric quaternary structure with each subunit showing the bilobal architecture observed for members of the short‐chain dehydrogenase/reductase superfamily. The hexameric quaternary structure is atypical for most members of the superfamily. The structure of Pal was determined in the presence of UDP. Pal adopts the more typical dimeric quaternary structure. Taken together, Pen and Pal catalyze the conversion of UDP‐GlcNAc to UDP‐4‐keto‐6‐deoxy‐l ‐N‐acetylaltrosamine. Strikingly, in Gram negative bacteria such as Campylobacter jejuni and Helicobacter pylori, only a single enzyme (FlaA1) is required for the production of UDP‐4‐keto‐6‐deoxy‐l ‐N‐acetylaltrosamine. A comparison of Pen and Pal with FlaA1 reveals differences that may explain why FlaA1 is a bifunctional enzyme whereas Pen and Pal catalyze the individual steps leading to the formation of the UDP‐sugar product. This investigation represents the first structural analysis of the enzymes in B. thuringiensis that are required for CMP‐pseudaminic acid formation.  相似文献   

13.
Migration of dendritic cells (DCs) plays an important role in T‐cell‐mediated adaptive immune responses. Lipopolysaccharide (LPS) sensed by Toll‐like receptor 4 (TLR4) serves as a signal for DC migration. We analyzed LPS‐induced DC volume changes preceding the directed movement towards chemoattractants. Treatment with LPS resulted in rapid, prolonged cell swelling in wild‐type (WT), but not in TLR4?/? bone marrow‐derived (BM) DCs indicating that TLR4 signaling is essential for LPS‐induced swelling. As a consequence, LPS‐treatment enhanced the migratory activity along a chemokine (CCL21)‐gradient in WT, but not in TLR4‐deficient BMDCs suggesting that the LPS/TLR4‐induced swelling response facilitates DC migration. Moreover, the role of calcium‐activated potassium channels (KCa3.1) as putative regulators of immune cell volume regulation and migration was analyzed in LPS‐challenged BMDCs. We found that the LPS‐induced swelling of KCa3.1‐deficient DCs was impaired when compared to WT DCs. Accordingly, the LPS‐induced increase in [Ca2+]i detected in WT DCs was reduced in KCa3.1‐deficient DCs. Finally, directed migration of LPS‐challenged KCa3.1‐deficient DCs was low compared to WT DCs indicating that activation of KCa3.1 is involved in LPS‐induced DC migration. These findings suggest that both TLR4 and KCa3.1 contribute to the migration of LPS‐activated DCs as an important feature of the adaptive immune response.
  相似文献   

14.
Gram‐negative bacterial peptidoglycan is specifically recognized by the host intracellular sensor NOD1, resulting in the generation of innate immune responses. Although epithelial cells are normally refractory to external stimulation with peptidoglycan, these cells have been shown to respond in a NOD1‐dependent manner to Gram‐negative pathogens that can either invade or secrete factors into host cells. In the present work, we report that Gram‐negative bacteria can deliver peptidoglycan to cytosolic NOD1 in host cells via a novel mechanism involving outer membrane vesicles (OMVs). We purified OMVs from the Gram‐negative mucosal pathogens: Helicobacter pylori, Pseudomonas aeruginosa and Neisseria gonorrhoea and demonstrated that these peptidoglycan containing OMVs upregulated NF‐κB and NOD1‐dependent responses in vitro. These OMVs entered epithelial cells through lipid rafts thereby inducing NOD1‐dependent responses in vitro. Moreover, OMVs delivered intragastrically to mice‐induced innate and adaptive immune responses via a NOD1‐dependent but TLR‐independent mechanism. Collectively, our findings identify OMVs as a generalized mechanism whereby Gram‐negative bacteria deliver peptidoglycan to cytosolic NOD1. We propose that OMVs released by bacteria in vivo may promote inflammation and pathology in infected hosts.  相似文献   

15.
The level of circulating endotoxin is related to the severity of cardiovascular disease. One of the indexes for the prognosis of cardiovascular disease is the plasma aldosterone level. Recently, the Toll‐like receptors (TLRs), lipopolysaccharide (LPS)‐regulated receptors, were found not only to mediate the inflammatory response but also to be important in the adrenal stress response. Whether LPS via TLRs induced aldosterone production in adrenal zona glomerulosa (ZG) cells was not clear. Our results suggest that LPS‐induced aldosterone secretion in a time‐ and dose‐dependent manner and via TLR2 and TLR4 signaling pathway. Administration of LPS can enhance steroidogenesis enzyme expression such as scavenger receptor‐B1 (SR‐B1), steroidogenic acute regulatory protein (StAR) and P450 side chain cleavage (P450scc) enzyme. LPS‐induced SR‐B1 and StAR protein expression are abolished by TLR2 blocker. Furthermore, we demonstrated that phosphorylation of Akt was elevated by LPS treatment and reduced by TLR2 blockers, TLR4 blockers, and LY294002 (PI3K inhibitor). Those inhibitors of PI3K/Akt pathways also abolish LPS‐induced aldosterone secretion and SR‐B1 protein level. In conclusion, LPS‐induced aldosterone production and SR‐B1 proteins expression are through the TLR2 and TLR4 related PI3K/Akt pathways in adrenal ZG cells. J. Cell. Biochem. 111: 872–880, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The interaction between human Toll‐like receptor 4 (hTLR4) and its coreceptor, myeloid differentiation factor 2 (MD‐2), is important in Gram‐negative bacteria lipopolysaccharide (LPS) recognition. In this process, MD‐2 recognizes LPS and promotes the dimerization of the complex hTLR4–MD‐2–LPS, triggering an intracellular immune signaling. In this study, we employed distinct computational methods to explore the dynamical properties of the hTLR4–MD‐2 complex and investigated the implications of the coreceptor complexation to the structural biology of hTLR4. We characterized both global and local dynamics of free and MD‐2 complexed hTLR4, in both (hTLR4–MD‐2)1 and (hTLR4–MD‐2)2 states. Both molecular dynamics and normal mode analysis reveled a stabilization of the terminal regions of hTLR4 upon complexation to MD‐2. We are able to identify conserved important residues involved on the hTLR4–MD‐2 interaction dynamics and disclose C‐terminal motions that may be associated to the signaling process upon oligomerization. Proteins 2015; 83:373–382. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
The human immune system can directly lyse invading micro‐organisms and aberrant host cells by generating pores in the cell envelope, called membrane attack complexes (MACs). Recent studies using single‐particle cryoelectron microscopy have revealed that the MAC is an asymmetric, flexible pore and have provided a structural basis on how the MAC ruptures single lipid membranes. Despite these insights, it remains unclear how the MAC ruptures the composite cell envelope of Gram‐negative bacteria. Recent functional studies on Gram‐negative bacteria elucidate that local assembly of MAC pores by surface‐bound C5 convertase enzymes is essential to stably insert these pores into the bacterial outer membrane (OM). These convertase‐generated MAC pores can subsequently efficiently damage the bacterial inner membrane (IM), which is essential for bacterial killing. This review summarizes these recent insights of MAC assembly and discusses how MAC pores kill Gram‐negative bacteria. Furthermore, this review elaborates on how MAC‐dependent OM damage could lead to IM destabilization, which is currently not well understood. A better understanding on how MAC pores kill bacteria could facilitate the future development of novel strategies to treat infections with Gram‐negative bacteria.  相似文献   

18.
The sugar nucleotide dTDP‐L‐rhamnose is critical for the biosynthesis of the Group A Carbohydrate, the molecular signature and virulence determinant of the human pathogen Group A Streptococcus (GAS). The final step of the four‐step dTDP‐L‐rhamnose biosynthesis pathway is catalyzed by dTDP‐4‐dehydrorhamnose reductases (RmlD). RmlD from the Gram‐negative bacterium Salmonella is the only structurally characterized family member and requires metal‐dependent homo‐dimerization for enzymatic activity. Using a biochemical and structural biology approach, we demonstrate that the only RmlD homologue from GAS, previously renamed GacA, functions in a novel monomeric manner. Sequence analysis of 213 Gram‐negative and Gram‐positive RmlD homologues predicts that enzymes from all Gram‐positive species lack a dimerization motif and function as monomers. The enzymatic function of GacA was confirmed through heterologous expression of gacA in a S. mutans rmlD knockout, which restored attenuated growth and aberrant cell division. Finally, analysis of a saturated mutant GAS library using Tn‐sequencing and generation of a conditional‐expression mutant identified gacA as an essential gene for GAS. In conclusion, GacA is an essential monomeric enzyme in GAS and representative of monomeric RmlD enzymes in Gram‐positive bacteria and a subset of Gram‐negative bacteria. These results will help future screens for novel inhibitors of dTDP‐L‐rhamnose biosynthesis.  相似文献   

19.
MD-2, a eukaryotic accessory protein, is an essential component for the molecular pattern recognition of bacterial endotoxins. MD-2 interacts with lipid A of endotoxins [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] to activate human toll-like receptor (TLR) 4. The structure of lipid A influences the subsequent activation of human TLR4 and the immune response, but the basis for the discrimination of lipid A structures is unclear. A recombinant human MD-2 (rMD-2) protein was produced in the Pichia pastoris yeast expression system. Human embryonic kidney (HEK293) cells were transfected with human TLR4 and were stimulated with highly purified LOS (0.56 pmol) from Neisseria meningitidis or LPS from other structurally defined bacterial endotoxins in the presence or absence of human rMD-2. Human rMD-2 restored, in a dose-dependent manner, interleukin (IL-8) responsiveness to LOS or LPS in TLR4-transfected HEK293 cells. The interaction of endotoxin with human rMD-2 was then assessed by enzyme-linked immunosorbent assays. Wild-type meningococcal LOS (Wt m LOS) bound human rMD-2, and binding was inhibited by an anti-MD-2 antibody to MD-2 dose-dependently (P < 0.005). Wt m LOS or meningococcal KDO(2)-lipid A had the highest binding affinity for human rMD-2; unglycosylated meningococcal lipid A produced by meningococci with defects in the 3-deoxy-d-manno-2-octulosonic acid (KDO) biosynthesis pathway did not appear to bind human rMD-2 (P < 0.005). The affinity of meningococcal LOS with a penta-acylated lipid A for human rMD-2 was significantly less than that for hexa-acylated LOS (P < 0.05). The hierarchy in the binding affinity of different lipid A structures for human rMD-2 was directly correlated with differences in TLR4 pathway activation and cytokine production by human macrophages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号