首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The spatial arrangement of tree species is a key aspect of community ecology. Because tree species in tropical forests occur at low densities, it is logistically challenging to measure distributions across large areas. In this study, we evaluated the potential use of canopy tree crown maps, derived from high‐resolution aerial digital photographs, as a relatively simple method for measuring large‐scale tree distributions. At Barro Colorado Island, Panama, we used high‐resolution aerial digital photographs (~0.129 m/pixel) to identify tree species and map crown distributions of four target tree species. We determined crown mapping accuracy by comparing aerial and ground‐mapped distributions and tested whether the spatial characteristics of the crown maps reflect those of the ground‐mapped trees. Nearly a quarter (22%) of the common canopy species had sufficiently distinctive crowns to be good candidates for reliable mapping. The errors of commission (crowns misidentified as a target species) were relatively low, but the errors of omission (missed canopy trees of the target species) were high. Only 40 percent of canopy individuals were mapped on the air photographs. Despite failing to accurately predict exact abundances of canopy trees, crown distributions accurately reproduced the clumping patterns and spatial autocorrelation features of three of four tree species and predicted areas of high and low abundance. We discuss a range of ecological and forest management applications for which this method can be useful.  相似文献   

2.
In three forests that differed in annual rainfall and seasonality, the probability of a liana with a stem ≥2.0 cm stem diameter reaching the canopy was >50 percent. Lianas reached the canopy at significantly smaller size‐classes (1.5 cm) in the wet aseasonal forest, suggesting that this estimate changes with forest type. Nevertheless, as a general rule, we suggest that 2.0 cm is the minium stem diameter to examine the abundance and diversity of canopy lianas or canopy competition between lianas and trees.  相似文献   

3.
4.
Impact of Research Trails on Seedling Dynamics in a Tropical Forest   总被引:1,自引:0,他引:1  
We evaluated the impact of research access trails on adjacent seedling density, survival, and recruitment in a permanent tropical forest plot in Panama. Significant differences were detected up to 20 m from trails, indicating that data collected close to trails may be biased. However, observed effects were not substantial enough to affect plot-wide estimates of seedling dynamics, suggesting that research trail impacts are negligible when affected areas constitute only a small fraction of the total area sampled.  相似文献   

5.
Mutualistic relationships between organisms have long captivated biologists, and extrafloral nectaries, or nectar‐producing glands, found on many plants are a good example. The nectar produced from these glands provides food for ants, which may defend the plant from potential herbivores in turn. However, relatively little is known about their impact on the long‐term growth and survival of plants that produce them. To better understand the ecological significance of extrafloral nectaries, we examined their incidence on lowland tropical rain forest trees in Yasuní National Park in Amazonian Ecuador, and collated data from two other tropical lowland forest sites (Barro Colorado Island, Panamá and Pasoh Forest Reserve, Malaysia). At Yasuní, extrafloral nectaries were found on 137 of 1123 species censused (12.2%), widely distributed among different angiosperm families. This rate of incidence is high but consistent with other tropical locations. Furthermore, this study adds 18 new genera and two new families (Urticaceae and Caricaceae) to the list of taxa exhibiting extrafloral nectaries. Using demographic data from long‐term forest dynamics plots at each site, we compared the growth and mortality rates of species with extrafloral nectaries to those without. After controlling for phylogeny, no general relationship between extrafloral nectary presence and demographic rates could be detected, suggesting little demographic signal from any community‐wide ecological effects.  相似文献   

6.
Polypore fungal diversity and host density in a moist tropical forest   总被引:2,自引:0,他引:2  
In a moist tropical forest in Panama, the wood-decay polyporefungi comprise many rare species (more than half found only once) andexhibit diversity that exceeds that of the supporting tree community.The most abundant fungal species were non-specialists, each found onseveral host species from multiple plant families. In diverse fungalcommunities, each of many species should infect a given host species ina density-dependent manner, so that the infected proportion of a hostpopulation should increase with host density. Applied across hostspecies, hosts with denser populations should support greater fungaldiversity. For 10 tree species, fungal incidence and diversity increasedwith abundance of the host in the community, consistent withacross-species density-dependent infection. Fungal diversity associatedwith individual trunks did not, however, vary with host-species density.Both host density and persistence of decaying logs may be important indetermining fungal diversity associated with tree species.  相似文献   

7.
Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition.  相似文献   

8.
John A. Barone 《Biotropica》2000,32(2):307-317
The Janzen–Connell model of tropical forest tree diversity predicts that seedlings and young trees growing close to conspecific adults should experience higher levels of damage and mortality from herbivorous insects, with the adult trees acting as either an attractant or source of the herbivores. Previous research in a seasonal forest showed that this pattern of distance‐dependent herbivory occurred in the early wet season during the peak of new leaf production. I hypothesized that distance‐dependent herbivory may occur at this time because the new foliage in the canopy attracts high numbers of herbivores that are limited to feeding on young leaves. As a consequence, seedlings and saplings growing close to these adults are more likely to be discovered and damaged by these herbivores. In the late wet season, when there is little leaf production in the canopy, leaf damage is spread more evenly throughout the forest and distance dependence disappears. I tested three predictions based on this hypothesis: (1) the same species of insect herbivores attack young and adult trees of a given plant species; (2) herbivore densities increase on adult trees during leaf production; and (3) herbivore densities in the understory rise during the course of the wet season. Censuses were conducted on adults and saplings of two tree species, raribea asterolepis and Alseis blackiana. Adults and saplings of both species had largely the same suite of chewing herbivore species. On adults of Q. asterolepis, the density of chewing herbivores increased 6–10 times during leaf production, but there was no increase in herbivore density on adults of A. blackiana. Herbivore densities increased 4.5 times on A. blackiana saplings and 8.9 times on Q. asterolepis saplings during the wet season, but there were no clear trends on the adults of either species. These results suggest that the potential of adult trees as a source of herbivores on saplings depends on the value of new leaves to a tree species' herbivores, which may differ across tree species.  相似文献   

9.
10.
Results of 3 years of pollen trapping on Barro Colorado Island, Panama, are presented. Minimum pollen dispersal distances are estimated for the most abundant pollen taxa. Dispersal distances for some taxa appear to be as low as 5 m, while for other taxa at least 50% of the trapped pollen had travelled more than 40 m. No consistent pattern of spatial variation was reflected in the pollen rain, however, samples close to large canopy gaps had exceptional abundances of 'disturbance' taxa. A preliminary analysis of the representation of canopy components indicates that as much as 19% of pollen caught in the traps was derived from large tree species.  相似文献   

11.
12.
Question: Do vascular epiphyte species have a metapopulation structure? What are the qualitative and quantitative long‐term changes of the complete vascular epiphyte vegetation in a particular host tree species? Location: Lowland forest on Barro Colorado Island (9° 10’ N, 79°51’ W), Republic of Panama. Methods: In 1994 and 2002 we conducted a census of all vascular epiphytes growing on more than 1000 Annona glabra trees (= patches). Epiphyte species abundances were recorded at the tree level in each census. Results: The number of epiphyte individuals increased from ca. 15 000 to ca. 23 700 individuals during the census interval while the species composition on Annona glabra as a whole was rather stable. There was a strong positive relationship between occurrence in patches and local abundance of the species, and between species richness and host tree stand size. The dynamics of local populations of a given species were uncorrelated to each other; small and large local populations of most species had the same probability to go extinct. The frequency distribution of species on all host trees was not bimodal, but on a subset of heavily colonized host tree stands it was. Numbers of species and individuals were correlated with tree size which was not due to a correlation of tree size and tree age. Conclusions: As far as the most abundant epiphyte species with metapopulation structures are concerned, these species belong to diverse families, e. g. Orchidaceae, Bromeliaceae and Polypodiaceae. Even ca. 80 years after the initial establishment of the host tree species in the study area epiphytes are still in the stage of initial colonization and have not reached a steady state as indicated by the strong increase in individuals and the ongoing colonization of empty trees.  相似文献   

13.
We examined the interaction between a palm and two bruchid beetles along with several mammal species to explore how poachers and habitat fragmentation may indirectly alter the spatial pattern of seed dispersal, seed predation, and seedling recruitment in central Panama. The large, stony endocarps of Attalea butyraceae decay slowly and bear distinctive scars when opened by rodents or beetles. We determined the final distance between endocarps and reproductive trees (which we call an ecologically effective dispersal distance), the predation status of each endocarp, and the distance between seedlings and reproductive trees. The 68 focal trees were divided among 14 sites and four levels of anthropogenic disturbance. Levels of disturbance included full protection from poachers, light and heavy pressure from poachers, and small island habitat fragments. Ecologically effective seed dispersal distances were greatest for protected sites, intermediate for lightly poached sites, and shortest for heavily poached sites and habitat fragments. Seed predation by rodents increased with distance to the nearest reproductive Attalea and was greatest for fully protected sites, intermediate for lightly poached sites, and least for heavily poached sites and habitat fragments. Seed predation by beetles reversed the patterns described for seed predation by rodents. Total seed predation by beetles and rodents combined was independent of distance, greatest for fully protected sites, and lower for poached sites and habitat fragments. Seedling densities were always greatest close to reproductive trees; however, the increase in seedling densities close to reproductive trees was minimal for fully protected sites, clearly evident for poached sites, and pronounced for habitat fragments. Increased seedling recruitment near conspecific trees may in time reduce tree diversity where humans disrupt mammal communities.  相似文献   

14.
15.
A yearlong arboreal baiting survey of ants was conducted during 1983 on Barro Colorado Island, Panama. Because of a severe El Nino event, the 1983 dry season in Panama was exceptionally long and dry with a distinct boundary between the dry and wet seasons. Baits, located on tree trunks, attracted both terrestrial and arboreal ants, allowing comparisons between the two groups. Species composition at baits changed dramatically with season. Baits were primarily occupied by arboreal species during the dry season, while wet season baits were occupied mostly by terrestrial species. Arboreal and terrestrial ants differed markedly in their preferences for protein‐ or carbohydrate‐based baits; arboreal ants preferred protein‐based baits and terrestrial ants preferred carbohydrate‐based baits. Foraging preference for protein suggests that protein resources were limiting for arboreal ants, particularly during the dry season, and that carbohydrate resources were limiting for terrestrial ants. Fundamental differences in arboreal and terrestrial habitats may promote the differences in foraging strategies observed during an annual cycle in a seasonal tropical forest.  相似文献   

16.
We evaluated temporal patterns of seedling survival of eight Neotropical tree species generated under multiple abiotic and biotic hazards (vertebrates, disease, litterfall) in the forest understory on Barro Colorado Island, Panama. Seedlings were transplanted at first leaf expansion in low densities along a 6-km transect and damage and mortality were recorded for 1 yr. We also planted and monitored small and large artificial seedlings to estimate physical disturbance regimes. During 0–2 mo after transplant, vertebrate consumers of reserve cotyledons caused high mortality of real seedlings, but little damage to artificial seedlings. On real seedlings after 2 mo, disease became an important agent of mortality, despite a decrease in overall mortality rates. Damage by litterfall remained relatively low during the 1-yr study period. Survival ranks among species showed ontogenetic shifts over time, as species changed susceptibility to the mortality agents. Survival after 2 mo was positively correlated with stem toughness, not because species with tough stems were less likely to receive mechanical damage, but because they survived better after receiving mechanical damage. Within each transplant station, artificial seedlings were not good predictors of litterfall damage experienced by real seedlings. Forest-wide litterfall damage level, however, was similar for both real and artificial seedlings ( ca 10%/yr), a moderate level compared to other tropical forests. In conclusion, species traits including biomechanical traits interact to create complex temporal patterns of first year seedling survival, resulting in ontogenetic shifts that largely reflect changes in the relative importance of vertebrate consumers relative to other hazards.  相似文献   

17.
Leaf-cutting ants are frequently characterized as the major herbivores in the Neotropics, but quantitative data to back up this assumption are scarce. In this study, the consumption and herbivory rates for the entire leaf-cutting ant ( Atta colombica , Formicidae) population in an old secondary forest on Barro Colorado Island (BCI) in Panama were determined over 15 mo (on average 49 colonies). The number of harvested leaf fragments was calculated from monthly refuse deposition rates of the colonies and the regression between refuse deposition and harvesting rates. The inclusion of fragment characteristics (proportion of leaf fragments in the harvest, average fragment weight, and area) allowed us to calculate consumption and herbivory rates at colony, population, and ecosystem levels. The A. colombica population harvested 13.2 tons of biomass/yr and 13.1 ha of leaf area/yr, and deposited 9.4 tons of refuse material/yr. Rates varied considerably among colonies. At the ecosystem level, i.e. , per forest area, herbivory rates were 132 kg biomass/ha/yr and 1310 m2 foliage/ha/yr. For the area on BCI where A. colombica occurs (100 ha), this is equivalent to 2.1 percent of the foliage area in the forest or 1.7 percent of the annual leaf-area production. This value is considerably lower than previously published estimates of leaf-cutting ant herbivory rates in tropical forests.  相似文献   

18.
Many plant species have the capacity to regenerate asexually by resprouting from stem and leaf fragments. In the pan‐tropical shrub genus Piper, this tendency is thought to be higher in shade‐tolerant than light‐demanding species, and to represent a trade‐off with annual seed production. Here we use molecular markers to identify clones in five Piper species varying in light requirements. We test predictions that (i) asexual recruitment success is highest in shade‐tolerant species, and (ii) that consequently, shade‐tolerant species are characterized by lower genotypic diversity than light‐demanding Piper. We found that two shade‐tolerant Piper species recruited asexually more frequently (36–42% of sampled shoots were of asexual origin) than, two light‐demanding and one shade‐tolerant species (0–26%). Furthermore, as predicted, genotypic diversity was negatively correlated with the frequency of asexual recruitment in the population. Nonetheless, genotypic diversity of Piper was high compared with other clonal plants. The proportion of unique genotypes found per population ranged from 0.58 to 1.0 and the genotypic Simpson's diversity ranged from 0.93 to 1.0 for all five species. Our results suggest that even though asexual reproduction plays an important role in maintaining local populations of Piper in the understory, it does not seem to reduce genotypic diversity to levels that will threaten these species ability to respond to environmental change. Abstract in Spanish is available in the online version of this article.  相似文献   

19.
20.
Tropical forests are a key determinant of the functioning of the Earth system, but remain a major source of uncertainty in carbon cycle models and climate change projections. In this study, we present an updated land model (LM3PPA‐TV) to improve the representation of tropical forest structure and dynamics in Earth system models (ESMs). The development and parameterization of LM3PPA‐TV drew on extensive datasets on tropical tree traits and long‐term field censuses from Barro Colorado Island (BCI), Panama. The model defines a new plant functional type (PFT) based on the characteristics of shade‐tolerant, tropical tree species, implements a new growth allocation scheme based on realistic tree allometries, incorporates hydraulic constraints on biomass accumulation, and features a new compartment for tree branches and branch fall dynamics. Simulation experiments reproduced observed diurnal and seasonal patterns in stand‐level carbon and water fluxes, as well as mean canopy and understory tree growth rates, tree size distributions, and stand‐level biomass on BCI. Simulations at multiple sites captured considerable variation in biomass and size structure across the tropical forest biome, including observed responses to precipitation and temperature. Model experiments suggested a major role of water limitation in controlling geographic variation forest biomass and structure. However, the failure to simulate tropical forests under extreme conditions and the systematic underestimation of forest biomass in Paleotropical locations highlighted the need to incorporate variation in hydraulic traits and multiple PFTs that capture the distinct floristic composition across tropical domains. The continued pressure on tropical forests from global change demands models which are able to simulate alternative successional pathways and their pace to recovery. LM3PPA‐TV provides a tool to investigate geographic variation in tropical forests and a benchmark to continue improving the representation of tropical forests dynamics and their carbon storage potential in ESMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号