首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In our 2011 synthesis (Bowman et al., Journal of Biogeography, 2011, 38 , 2223–2236), we argued for a holistic approach to human issues in fire science that we term ‘pyrogeography’. Coughlan & Petty (Journal of Biogeography, 2013, 40 , 1010–1012) critiqued our paper on the grounds that our ‘pyric phase’ model was built on outdated views of cultural development, claiming we developed it to be the unifying explanatory framework for all human–fire sciences. Rather, they suggest that ‘historical ecology’ could provide such a framework. We used the ‘pyric transition’ for multiple purposes but did not offer it as an exclusive explanatory framework for pyrogeography. Although ‘historical ecology’ is one of many useful approaches to studying human–fire relationships, scholars should also look to political and evolutionary ecology, ecosystems and complexity theories, as well as empirical generalizations to build an interdisciplinary fire science that incorporates human, ecological and biophysical dimensions of fire regimes.  相似文献   

2.
Macrosystems ecology is an effort to understand ecological processes and interactions at the broadest spatial scales and has potential to help solve globally important social and ecological challenges. It is important to understand the intellectual legacies underpinning macrosystems ecology: How the subdiscipline fits within, builds upon, differs from and extends previous theories. We trace the rise of macrosystems ecology with respect to preceding theories and present a new hypothesis that integrates the multiple components of macrosystems theory. The spatio‐temporal anthropogenic rescaling (STAR) hypothesis suggests that human activities are altering the scales of ecological processes, resulting in interactions at novel space–time scale combinations that are diverse and predictable. We articulate four predictions about how human actions are “expanding”, “shrinking”, “speeding up” and “slowing down” ecological processes and interactions, and thereby generating new scaling relationships for ecological patterns and processes. We provide examples of these rescaling processes and describe ecological consequences across terrestrial, freshwater and marine ecosystems. Rescaling depends in part on characteristics including connectivity, stability and heterogeneity. Our STAR hypothesis challenges traditional assumptions about how the spatial and temporal scales of processes and interactions operate in different types of ecosystems and provides a lens through which to understand macrosystem‐scale environmental change.  相似文献   

3.
4.
Nutrient over-enrichment in many areas around the world is having pervasive ecological effects on coastal ecosystems. These effects include reduced dissolved oxygen in aquatic systems and subsequent impacts on living resources. The largest zone of oxygen-depleted coastal waters in the United States, and the entire western Atlantic Ocean, is found in the northern Gulf of Mexico on the Louisiana/Texas continental shelf influenced by the freshwater discharge and nutrient load of the Mississippi River system. The mid-summer bottom areal extent of hypoxic waters (<2 mg l–1 O2) in 1985–1992 averaged 8000 to 9000 km2 but increased to up to 16000 to 20700 km2 in 1993–2001. The Mississippi River system is the dominant source of fresh water and nutrients to the northern Gulf of Mexico. Mississippi River nutrient concentrations and loading to the adjacent continental shelf have changed in the last half of the 20th century. The average annual nitrate concentration doubled, and the mean silicate concentration was reduced by 50%. There is no doubt that the average concentration and flux of nitrogen (per unit volume discharge) increased from the 1950s to 1980s, especially in the spring. There is considerable evidence that nutrient-enhanced primary production in the northern Gulf of Mexico is causally related to the oxygen depletion in the lower water column. Evidence from long-term data sets and the sedimentary record demonstrate that historic increases in riverine dissolved inorganic nitrogen concentration and loads over the last 50 years are highly correlated with indicators of increased productivity in the overlying water column, i.e. eutrophication of the continental shelf waters, and subsequent worsening of oxygen stress in the bottom waters. Evidence associates increased coastal ocean productivity and worsening oxygen depletion with changes in landscape use and nutrient management that resulted in nutrient enrichment of receiving waters. A steady-state model, calibrated to different observed summer conditions, was used to assess the response of the system to reductions in nutrient inputs. A reduction in surface layer chlorophyll and an increase in lower layer dissolved oxygen resulted from a reduction of either nitrogen or phosphorus loading, with the response being greater for nitrogen reductions.  相似文献   

5.
Abstract This review summarizes the history of research on mesenchymal–epithelial interactions in prostatic development from the first studies in 1970 to the present. From this study we have learned that prostatic development requires a reciprocal interaction between epithelium and mesenchyme in which urogenital sinus mesenchyme induces and patterns epithelial development and differentiation, while developing prostatic epithelium induces and patterns mesenchymal differentiation into smooth muscle and other resident cell types in the stroma. Prostatic development requires androgen action mediated by the androgen receptor (AR). Through analysis of tissue recombinants composed of wild-type and AR-null epithelium and mesenchyme, we have learned that many "androgenic effects" on prostatic epithelium do not require epithelial AR, but instead are elicited by the paracrine action of AR-positive mesenchyme. Present and future studies reviewed in this issue deal with the molecular mechanisms in this developmental communication between epithelium and mesenchyme.  相似文献   

6.
7.
8.
虫草为一类具有悠久利用历史的真菌。随着研究的逐渐深入,虫草的概念也随之改变,同时也带来了机遇和挑战。虫草已由独处深闺变得与人们生活密切相关。本文从概念出发,对虫草的研究历史、物种界定、分类研究,以及开发应用前景进行了综述和展望。  相似文献   

9.
After clarifying the relationship between the closely related concepts of ecology and epidemiology as they are used in plant virology, this article provides a historical perspective on the subject before discussing recent progress and future prospects. Ecology focuses on virus populations interacting with host populations within a variable environment, while epidemiology focuses on the complex association between virus and host plant, and factors that influence spread. The evolution and growth of plant virus ecology and epidemiology since its inception to the present day, and the major milestones in its development, are illustrated by examples from influential historical reviews published in the Annals of Applied Biology over the last 100 years. Original research papers published in the journal are used to illustrate important ecological and epidemiological principles and new developments in both fields. Both areas are multifaceted with many factors influencing host plants, and virus and vector behaviour. The highly diverse scenarios that arise from this process influence the virus population and the spatiotemporal dynamics of virus distribution and spread. The review then describes exciting progress in research in the areas of molecular epidemiology and ecology, and understanding virus–vector interactions. Application of new molecular techniques has greatly accelerated the rate of progress in understanding virus populations and the way changes in these populations influence epidemics. Viruses cause direct and plant‐mediated indirect effects on insect vectors by modifying their life cycles, fitness and behaviour, and one of the most fascinating recent fields of research concerns plant‐mediated indirect virus manipulation of insect vector behaviour that encourages virus spread. Next, the review describes the current state of knowledge about spread of plant viruses at the critical agro‐ecological interface between managed and natural vegetation. There is an urgent need to understand how viruses move in both directions between the two and be able to anticipate these kinds of events. To obtain an understanding of, and ability to foresee, such events will require a major research effort into the future. The review finishes by discussing the implications of climate change and rapid technological innovation for the types of research needed to avoid virus threats to future world food supplies and plant biodiversity. There has been lamentably little focus on research to determine the magnitude of the threat from diseases caused in diverse plant virus pathosystems under different climate change scenarios. Increasing technological innovation offers many opportunities to help ensure this situation is addressed, and provide plant virus ecology and epidemiology with a very exciting future.  相似文献   

10.
Significant advances in three-dimensional echocardiography have made this modality a powerful diagnostic tool in the cardiology clinic. It can provide accurate and reliable measurements of chamber size and function, including the quantification of left ventricular mechanical dyssynchrony to guide patient selection for cardiac resynchron-isation therapy. Furthermore, three-dimensional echocardiography offers novel views and comprehensive anatomic definition of valvular and congenital abnormalities, improving diagnosis and preoperative planning. In addition, it is extremely useful in monitoring the effectiveness of surgical or percutaneous transcatheter interventions. As its efficacy for more and more clinical applications is demonstrated, it is clear that three-dimensional echocardiography has become part of the routine clinical diagnostic armamentarium. In this article, we describe the development of three-dimensional echocardiography over the last decades, review the scientific evidence for its current clinical use and discuss potential future applications. (Neth Heart J 2009;17:18-24.)  相似文献   

11.
12.
Chitosomes: past, present and future   总被引:4,自引:0,他引:4  
José Ruiz-Herrera's discovery that chitin microfibrils could be made by a fungal extract paved the way for elucidating the intracellular location of chitin synthetase. In collaboration with Charles Bracker, chitosomes were identified as the major reservoir of chitin synthetase in fungi. Unique in size, buoyant density, and membrane thickness, chitosomes were found in a wide range of fungi. Their reversible dissociation into 16S subunits is another unique property of chitosomes. These 16S subunits are the smallest molecular entities known to retain chitin synthetase activity. Further dissociation leads to complete loss of activity. From studies with secretory mutants, yeast researchers concluded that chitosomes were components of the endocytosis pathway. However, key structural and enzymatic characteristics argue in favor of the chitosome being poised for exocytotic delivery rather than endocytotic recycling. The chitosome represents the main vehicle for delivering chitin synthetase to the cell surface. An immediate challenge is to elucidate chitosome ontogeny and the role of proteins encoded by the reported chitin synthetase genes in the structure or function of chitosomes. The ultimate challenge would be to understand how the chitosome integrates with the cell surface to construct the organized microfibrillar skeleton of the fungal cell wall.  相似文献   

13.
On 12-15 May 2011, a diverse group of students, researchers and practitioners from across Canada and around the world met in Banff, Alberta, to discuss the many facets of biodiversity science at the 6th Annual Meeting of the Canadian Society for Ecology and Evolution.  相似文献   

14.
Immunotherapy: past,present and future   总被引:15,自引:0,他引:15  
  相似文献   

15.
Molecular methods of taxonomy and phylogeny have changed the way in which life on earth is viewed; they have allowed us to transition from a eukaryote-centric (five-kingdoms) view of the planet to one that is peculiarly prokarote-centric, containing three kingdoms, two of which are prokaryotic unicells. These prokaryotes are distinguished from their eukaryotic counterparts by their toughness, tenacity and metabolic diversity. Realization of these features has, in many ways, changed the way we feel about life on earth, about the nature of life past and about the possibility of finding life elsewhere. In essence, the limits of life on this planet have expanded to such a degree that our thoughts of both past and future life have been altered. The abilities of prokaryotes to withstand many extreme conditions has led to the term extremophiles, used to describe the organisms that thrive under conditions thought just a few years ago, to be inconsistent with life. Perhaps the most extensive adaptation to extreme conditions, however, is represented by the ability of many bacteria to survive nutrient conditions not compatible with eukaryotic life. Prokaryotes have evolved to use nearly every redox couple that is in abundance on earth, filling the metabolic niches left behind by the oxygen-using, carbon-eating eukaryotes. This metabolic plasticity leads to a common feature in physically stratified environments of layered microbial communities, chemical indicators of the metabolic diversity of the prokaryotes. Such 'metabolic extremophily' forms a backdrop by which we can view the energy flow of life on this planet, think about what the evolutionary past of the planet might have been, and plan ways to look for life elsewhere, using the knowledge of energy flow on earth.  相似文献   

16.
17.
18.
19.
Ranavirus: past, present and future   总被引:1,自引:0,他引:1  
Emerging infectious diseases are a significant threat to global biodiversity. While historically overlooked, a group of iridoviruses in the genus Ranavirus has been responsible for die-offs in captive and wild amphibian, reptile and fish populations around the globe over the past two decades. In order to share contemporary information on ranaviruses and identify critical research directions, the First International Symposium on Ranaviruses was held in July 2011 in Minneapolis, MN, USA. Twenty-three scientists and veterinarians from nine countries examined the ecology and evolution of ranavirus-host interactions, potential reservoirs, transmission dynamics, as well as immunological and histopathological responses to infection. In addition, speakers discussed possible mechanisms for die-offs, and conservation strategies to control outbreaks.  相似文献   

20.
Plague: past, present, and future   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号