首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic characteristics of the ouabain-sensitive (Na + K) transport system (pump) of high potassium (HK) and low potassium (LK) sheep red cells have been investigated. In sodium medium, the curve relating pump rate to external K is sigmoid with half maximal stimulation (K1/2) occurring at 3 mM for both cell types, the maximum pump rate in HK cells being about four times that in LK cells. In sodium-free media, both HK and LK pumps are adequately described by the Michaelis-Menten equation, but the K1/2 for HK cells is 0.6 ± 0.1 mM K, while that for LK is 0.2 ± 0.05 mM K. When the internal Na and K content of the cells was varied by the PCMBS method, it was found that the pump rate of HK cells showed a gradual increase from zero at very low internal Na to a maximum when internal K was reduced to nearly zero (100% Na). In LK cells, on the other hand, no pump activity was detected if Na constituted less than 70% of the total (Na + K) in the cell. Increasing Na from 70 to nearly 100% of the internal cation composition, however, resulted in an exponential increase in pump rate in these cells to about ⅙ the maximum rate observed in HK cells. While changes in internal composition altered the pump rate at saturating concentrations of external K, it had no effect on the apparent affinity of the pumps for external K. These results lead us to conclude that the individual pump sites in the HK and LK sheep red cell membranes must be different. Moreover, we believe that these data contribute significantly to defining the types of mechanism which can account for the kinetic characteristics of (Na + K) transport in sheep red cells and perhaps in other systems.  相似文献   

2.
3.
Brain tissue potassium in normal and potassium depleted rats   总被引:1,自引:0,他引:1  
E E Nattie 《Life sciences》1977,21(12):1851-1855
The potassium concentration of muscle, brainstem and diencephalon were studied in normal and potassium-depleted rats. With 13% depletion of muscle potassium there was a 2.1% and 2.8% decrease in brainstem and diencephalon tissue potassium respectively. With 34% depletion of muscle potassium there was a 1.9% and 4.0% decrease in brainstem and diencephalon tissue potassium. These small decreases in regional brain tissue potassium could be related to observed functional alterations in the potassium depleted rat, i.e., altered cerebrospinal fluid bicarbonate regulation and altered control of the pattern of breathing and of body temperature regulation.  相似文献   

4.
Summary The crosslinking abilities of osmium tetroxide, potassium dichromate and potassium permanganate towards bovine serum albumin and bovine -globulin were investigated by chromatography with Sephadex G-200. Osmium tetroxide had a moderate crosslinking ability towards these proteins, the others had little or none. Chromatography with Sephadex G-50 permitted the oxidative cleavage of the proteins by these oxidative fixation agents to be studied. Potassium permanganate caused much fragmentation of the proteins and destruction of the tyrosine and tryptophan residues. Osmium tetroxide and potassium dichromate caused only a small amount of protein cleavage. These results were corroborated by polyacrylamide gel electrophoresis and viscosimetric studies. The significance of the results for tissue fixation is discussed.  相似文献   

5.
6.
Summary Rice plants (Oryza sativa L.) were grown for 125 days in nutrient solutions maintained at constant potassium concentrations over the rate 51 to 1534 M. Data are recorded at different growth stages for relative growth rate, potassium content, absorption rate of this element per gram dry weight of roots per day and its utilization in dry-matter production. Optimum concentration for maximum growth was found to be about 256 M or 10 ppm potassium. Growth was more or less constant beyond this concentration. The maximum growth was characterized by a certain relative absorption rate (IM) for maximum growth ranging from 106 to 757 g-atom of potassium per g dry weight of roots per day, during the period of cultivation. In general the content of this element in tops as a percentage of the total content does not change appreciably either under different concentrations or at different ages. When the concentration of the solution increased, the utilization of potassium (dry-matter production per unit element content) decreased. The ratio between the relative growth rate (RGR) and relative absorption rate (IM) for maximum growth of rice ranged 1.4 during the first phase of growth to 1.3 at maturity of the crop. Higher ratios indicate an insufficient nutrient supply, lower ratios, however, either an abundant supply or a depressing effect of the solution on growth.  相似文献   

7.
The K(+)-channels of the surface membrane play a crucial role in the generation of electrical activity of a neuron. There is a large diversity of the K(+)-channels that depends on a great number (over 200) of genes encoding channels proteins. An evolutionary conservation of channel's proteins is determined. The K(+)-channels were found to have a great importance in the memory processes. It was shown on different model systems that K(+)-current of the surface membrane decreases during the learning. The antagonists of K(+)-channels were found to improve the learning and memory. It was revealed in electrophysiological experiments that K(+)-channels antagonists can either themselves induce a long-term synaptic potentiation or intensify the synaptic potentiation induced by a tetanization. The disfunction of K(+)-channels is believed to be an important link in the mechanisms of memory disturbances. In animal mutants with K(+)-channels disfunction, learning and memory are deficient. In behavioral experiments, the use of K(+)-channels openers make the learning worse. Amnesia caused by cerebral ischemia is explained by strong activity of K(+)-channels which not only inhibits neuronal excitement but also causes neurodegeneration. The question on the K(+)-channels involvement into pathophysiology of Alzheimer's disease is discussed. Neurotoxic peptide beta-amyloid, which is supposed to be involved into mechanisms of Alzheimer's disease, modulates K(+)-channels function. The effect of beta-amyloid depends on the subtype of K(+)-channels: A-channels are inhibited, and KDR-channels, on the contrary, become stronger. The effect of the cognitive enhancers (vinpocetine, piracetam, tacrine, linopirdine) on K(+)-current also depends on the subtype of K(+)-channels. Slow-inactivating K(+)-currents (IDR, IK(Ca), IM) are inhibited in the presence of these drugs, while fast-in-activating K(+)-current (A-current) remains unchanged or even increases.  相似文献   

8.
9.
10.
With near normal monovalent ionic concentrations, the rate of increase of the potassium conductance after a depolarizing voltage-clamp step is slowed when the external calcium concentration is increased. This trend in the rise-time with changes in calcium is reversed when the axointernal potassium concentration is reduced (150 mM) and the periaxonal concentration is increased (50 mM); that is, the rise-time decrease with increasing calcium concentration. Furthermore, the degree of sigmoidality of the K-conductance time-course always increase when the rise-times increase for a given test potential. In the case of calcium surface-charge screening, these effects may be caused by a shifted distribution of K-ions within the channels following the altered ion gradient, and by a consequent shift in the reciprocal electrostatic interactions between the ionic charges and channel-gate charges.  相似文献   

11.
施肥对潮棕壤钾收支及钾在作物体内分配的影响   总被引:1,自引:0,他引:1  
姜子绍  宇万太  张璐 《应用生态学报》2006,17(12):2337-2340
通过15年的定位试验,研究了不同施肥制度下土壤K的收支及K在作物体内的分配.结果表明,施K肥处理的大豆籽实和秸秆中K浓度高于不施K肥处理;而施K肥处理的玉米籽实K浓度在各个处理间几乎没有变化.在不施K肥条件下,单一施用N肥或NP配施均可造成K的严重亏缺.保持农业系统养分循环再利用可以缓解K收支赤字,而配合适量K肥的施用可以实现作物高产,平衡土壤中K收支.  相似文献   

12.
基于2个氮水平(低氮和高氮)下连续种植6年的玉米单作、马铃薯单作及玉米马铃薯间作田间定位试验,采用湿筛法对土壤进行团聚体分级,并测定各粒级全钾、交换性钾和非交换性钾含量,研究氮水平和种植模式对土壤团聚体相关钾素分配的影响.结果表明:土壤团聚体以中团聚体(0.25~2 mm)为主,所分配钾素占土壤钾储量60.6%?65....  相似文献   

13.
Two sugar beet (Beta vulgaris L.) genotypes were cultivated at different K+/Na+ concentration in nutrient solutions (mM, 3/0 (control groups), 0.03/2.97 (K-Na replacement groups), and 0.03/0 (K deficiency groups)) to investigate the effects of potassium deficiency and replacement of potassium by sodium on plant growth and to explore how sodium can compensate for a lack of potassium. After 22 days of growth were determined: (i) dry weights of leaves, stems, and roots, (ii) the Na+ and K+ contents, (iii) MDA level, (iv) the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), and (v) the level of free amino acids. Potassium deficit inhibited plant growth, decreased the K+ content in leaves and roots, activated GPX and SOD, suppressed CAT activity, and increased the content of most amino acids. In K-Na replacement groups, the effects of K+ deficiency, including changes in the MDA level, antioxidant enzyme activities, and the level of free amino acids, were alleviated, but the degree of recovery did not reach the values characteristic for the control groups. Based on these results, we concluded that low potassium could lead to the inhibition of seedling growth, oxidative damage, and amino acid accumulation. While sodium was able to substitute potassium to a large extent, it cannot fulfil potassium fundamental role as an essential nutrient in sugar beet.  相似文献   

14.
15.
Summary Efflux of42K+ was measured in frog sartorius muscles equilibrated in depolarizing solutions with external K+ concentrations ([K+] o ) between 75 and 300mm and NaCl concentrations of 60, 120, or 240mm. For several combinations of KCl and NaCl, steady-state internal potentials (V i) were the same for different [K+] o . For the range ofV i examined, K+ efflux occurs principally through the K+ inward rectifier channels. When external K+ is removedV i remains constant for 2 to 3 hr because of the high membrane conductance to Cl, but K+ efflux drops by about one order of magnitude.External Ba2+ in the presence or absence of external K+ produces an inhibition of K+ efflux described by a relation of the formu=(u1/(1+C)[Ba2+] o ))+u 2, whereu is the uninhibited fraction of K+ efflux;u 1, u2 andC are constants; andu 1+u2=1.C depends both on [K+] o andV i. When [K+] o 75mm, increasing [K+] o at constantV i reduces Ba2+ sensitivity. For constantV i–30 mV, Ba2+ sensitivity is less when [K+] o =0 than when [K+] o 75mm. When [K+] o =0, Ba2+ sensitivity decreases asV i is made more positive. The dependence of the Ba2+ sensitivity onV i at constant [K+] o is greater when [K+] o =0 than when [K+] o 75mm.Both the activation of K+ efflux by external K+ and the Ba2+ inhibition of K+ efflux can be explained on the basis of two membrane control sites associated with each channel. When both sites are occupied by K+, the channels are in a high flux state. When one or both sites are empty, the channels are in a low, nonzero flux state. When Ba2+ occupies either site, K+ efflux is further reduced. The reduction of Ba2+-sensitivity by increasing [K+] o at high [K+] o is attributable to the displacement of Ba2+ from the control sites by K+. The increased Ba2+ sensitivity produced by going from [K+] o =0 to [K+] o >-75mm whenV i–30 mV is attributable to states in which Ba2+ occupies one site and K+ the other when [K+] o 0. The smallerV i dependence of the Ba2+ sensitivity when [K+] o 75mm compared to [K+] o =0 is attributable to the necessity that Ba2+ displace K+ at the control sites when [K+] o is high but not when [K+] o =0.  相似文献   

16.
Sexual dimorphism in potassium content was found in plasma, kidney, heart and skeletal muscle of CD1 mice. We observed that feeding mice with a K(+)-deficient diet had an uneven and gender-dependent effect on organ weight and tissue potassium concentrations. Treatment produced a marked decrease in plasma, pancreas and skeletal muscle K(+) levels in both sexes, and a reduction in kidney, liver and heart potassium concentrations in females. Moreover, K(+) deficiency produced a 2-3-fold increase in the concentrations of cationic amino acids, such as arginine and lysine in both heart and skeletal muscle of the two sexes, a slight increase ( approximately 37%) in renal arginine in the male mice. The concentrations of these amino acids in plasma and other tissues in both sexes remained unaltered. Polyamine levels in heart, liver, skeletal muscle and pancreas from male and female mice were not affected by K(+) deficiency. However, in the male kidney potassium deficiency was accompanied by an increase of putrescine and spermidine concentration, and a reduction of putrescine excretion into the urine, even though renal K(+) concentration was not significantly affected and ornithine decarboxylase activity was dramatically decreased. The general lack of correlation between tissue potassium decrease and the increase in organic cations suggests that it is unlikely that the changes observed could be related with an attempt of the tissues to compensate for the reduction in cellular positive charge produced by the fall in K(+) content. The mechanisms by which these changes are produced are discussed, but their physiological implications remain to be determined.  相似文献   

17.
18.
19.
Gating of sodium and potassium channels   总被引:1,自引:0,他引:1  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号