首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin is known to induce hepatocyte swelling, which triggers via integrins and c-Src kinase an activation of the epidermal growth factor receptor (EGFR) and subsequent cell proliferation (1). Free fatty acids (FFAs) are known to induce lipoapoptosis in liver cells in a c-Jun-NH2-terminal kinase (JNK)-dependent, but death receptor-independent way (2). As non-alcoholic steatohepatitis (NASH) is associated with hyperinsulinemia and increased FFA-blood levels, the interplay between insulin and FFA was studied with regard to hepatocyte proliferation and apoptosis in isolated rat and mouse hepatocytes. Saturated long chain FFAs induced apoptosis and JNK activation in primary rat hepatocytes, but did not activate the CD95 (Fas, APO-1) system, whereas insulin triggered EGFR activation and hepatocyte proliferation. Coadministration of insulin and FFAs, however, abolished hepatocyte proliferation and triggered CD95-dependent apoptosis due to a JNK-dependent association of the activated EGFR with CD95, subsequent CD95 tyrosine phosphorylation and formation of the death-inducing signaling complex (DISC). JNK inhibition restored the proliferative insulin effect in presence of FFAs and prevented EGFR/CD95 association, CD95 tyrosine phosphorylation and DISC formation. Likewise, in presence of FFAs insulin increased apoptosis in hepatocytes from wild type but not from Alb-Cre-FASfl/fl mice, which lack functional CD95. It is concluded that FFAs can shift insulin-induced hepatocyte proliferation toward hepatocyte apoptosis by triggering a JNK signal, which allows activated EGFR to associate with CD95 and to trigger CD95-dependent apoptosis. Such phenomena may contribute to the pathogenesis of NASH.  相似文献   

2.
The aim of this study was to investigate whether matrix metalloproteinases (MMP-13, 9) of Kupffer cells induced by gadolinium chloride (GdCl(3)) treatment can reverse dimethylnitrosamine (DMN)-induced liver fibrosis (in vivo) and the effect of GdCl(3) on MAP kinase activity (in vitro). Male Wistar rats 6 weeks of age received DMN (10 mg/kg) three successive days a week for 4 weeks. Then two groups of rats (n = 6 each) were treated twice weekly with either GdCl(3) (7 mg/kg) or saline solution intravenously for the next 4 weeks. Animals were sacrificed to estimate the degree of liver fibrosis. Isolated Kuppfer cells were treated with GdCl(3) and the expressions of MMPs, MAP kinase activity (ERK, SAPK/JNK, P38) as well as apoptosis were also examined. Rats that received DMN for 4 weeks followed by GdCl(3) injection for 4 weeks showed an reduced liver hydroxyproline content compared to rats treated with DEN followed by saline (277 +/- 22 VS 348 +/- 34 microg/g, n = 6 each, P < 0.01). There were significantly increased MMP-13 mRNA levels in GdCl(3)-treated rats. However, no significant change was observed in procollagen type I mRNA levels. Isolated Kuppfer cells treated with GdCl(3) showed increased MAP kinase activity, especially P38 pathway as well as MMP-13, 9 mRNA and type I collagen-degrading activity leading to apoptosis. SB203580, inhibitor of P38 pathway diminished these activation and prevented apoptosis. These results suggest that Kuppfer cells can reverse liver fibrosis via the expression of MMPs mainly through P38 pathway.  相似文献   

3.
Interferon (IFN)-γ is a cytokine known for its immunomodulatory and anti-proliferative action. In the liver, IFN-γ can induce hepatocyte apoptosis or inhibit hepatocyte cell cycle progression. This article reviews recent mechanistic reports that describe how IFN-γ may direct the fate of hepatocytes either towards apoptosis or a cell cycle arrest. This review also describes a probable role for IFN-γ in modulating hepatocyte fate during liver regeneration, transplantation, hepatitis, fibrosis and hepatocellular carcinoma, and highlights promising areas of research that may lead to the development of IFN-γ as a therapy to enhance recovery from liver disease.  相似文献   

4.
Nitric oxide (NO) is one of the smallest molecules synthesised in the human body. It is produced by three distinct nitric oxide synthase isoenzymes (NOS) and plays a number of physiological functions in many organs and tissues. Among its numerous properties is the ability to influence programmed cell death. NO can either inhibit or induce apoptosis depending on the context of its production. In the liver, NO is produced in greater amounts especially during inflammation. The effect of NO in liver physiology and pathophysiology can be both beneficial and detrimental. Therefore, the aim of our study was to examine NO effect on cell viability and cell death in primary rat hepatocyte culture. By using NO donor, S-nitroso-N-acetylpenicillamine (SNAP), the potential of exogenously delivered NO to influence spontaneous cell death in culture was examined. The morphological approach was used in order to discriminate between apoptotic and necrotic cell death. The nitrite level, urea production and alanine aminotransferase leakage were determined in the culture medium. The immunocytochemical detection of three apoptotic markers: cleaved caspase-3, cleaved caspase-9 and lamin A, was performed. Immunocytochemical analysis of hepatocyte apoptosis revealed different labelling pattern for each method, while the detection of cleaved caspase-3 best correlated with defined phenotypical criteria. Our data showed that under present conditions NO improved the viability of primary rat hepatocytes compared to untreated cells. This was manifested by the increase of viable hepatocytes in contrast to the decrease of necrotic and apoptotic hepatocytes as assessed by the morphological examination of cell culture. The NO effect was dose-dependent in the range of SNAP concentration between 200-800 microM.  相似文献   

5.
The in vivo genotoxic activity of two inorganic lead compounds was studied in Drosophila melanogaster by measurement of two different genetic endpoints. We used the wing-spot test and the comet assay. The comet assay was conducted with larval haemocytes. The results from the wing-spot test showed that neither lead chloride, PbCl(2), nor lead nitrate, Pb(NO(3))(2), were able to induce significant increases in the frequency of mutant spots. In addition, the combined treatments with gamma-radiation and PbCl(2) or Pb(NO(3))(2) did not show significant variations in the frequency of the three categories of mutant spots recorded, compared with the frequency induced by gamma-radiation alone. This seems to indicate that the lead compounds tested do not interact with the repair of the genetic damage induced by ionizing radiation. When the lead compounds were evaluated in the in vivo comet assay with haemocytes, Pb(NO(3))(2) was effective in inducing significant increases of DNA damage with a direct dose-response pattern. These results confirm the usefulness of the comet assay with haemocytes as an in vivo model and support the assumption that there is a genotoxic risk associated with lead exposure.  相似文献   

6.
Gadolinium chloride (GdCl) is commonly used to study the role of Kupffer cells in liver disease in vivo. The in vitro effects of GdCl on cultured Kupffer cells are poorly characterised. The aim of this study was to characterise rat Kupffer cell TNFalpha production, phagocytic function, and ED1 and ED2 antigen expression following the administration of GdCl. For in vivo experiments, rats received 10mg/kg GdCl IV or sterile saline. Lipopolysaccharide 3mg/kg IP (LPS) was administered 4h prior to sacrifice on Days 1-3, 5 or 8 following GdCl injection. Hepatic ED1 and ED2 positive macrophage numbers and TNFalpha mRNA levels were determined. For in vitro experiments, Kupffer cells were cultured in the presence of 0-270 microM GdCl for 24h following which viability, TNFalpha protein production in response to LPS (10 ng/ml), phagocytosis, and ED1 and ED2 staining were evaluated. In vivo, the proportion of ED1 positive cells which were ED2 positive was reduced from 87 to 3% and hepatic TNFalpha mRNA levels following LPS declined by 60% over Days 1-5 after injection of GdCl (P<0.01). In vitro, phagocytosis declined with increasing concentrations of GdCl. GdCl (0-27 microM) did not effect cultured Kupffer cell viability, TNFalpha production, ED1 or ED2 staining. We conclude that GdCl significantly reduces ED2 expression by Kupffer cells in vivo. In vitro, GdCl has a dose dependent effect on phagocytosis but only effects viability and TNFalpha production at high concentrations. ED2 expression of cultured Kupffer cells is not affected by GdCl.  相似文献   

7.
Nitric oxide (NO) is formed by different cell types in the pancreas. In this study, inhibition of endogenous nitric oxide by N(omega)-nitro-L-arginine (L-NNA) reduced the urinary excretion of NO(2)/NO(3) and raised serum L-arginine and the NO donator S-nitroso-N-acetylpenicillamine (SNAP) increased the urinary excretion of NO(2)/NO(3). The peptide cholecystokinin-8 (CCK-8) has a strong influence on exocrine pancreatic proliferation. Rat pancreas was excised and studied with regard to tissue weight, protein and DNA contents after 3 days of treatment with saline, L-NNA or SNAP given separately or combined with CCK-8. Further, proliferation of different pancreatic cells was studied with [3H]-thymidine incorporation and apoptotic activity was studied by analysing caspase-3 activity and histone-associated DNA fragments. The effects of L-NNA indicate that endogenous nitric oxide formation has a tonic inhibition on apoptosis in the pancreas during both basal condition and growth stimulation by CCK-8. In CCK-induced hyperplasia, NO inhibits the proliferation of acinar cells but stimulates ductal cells. Endogenous NO may regulate the balance between proliferation and apoptosis and in a situation of growth stimulation by CCK-8, it has a tonic inhibition on both mitogenesis and apoptosis thus slowing down the acinar cell turnover in the pancreas.  相似文献   

8.
Although the complement system has been implicated in liver regeneration after toxic injury and partial hepatectomy, the mechanism or mechanisms through which it participates in these processes remains ill-defined. In this study, we demonstrate that complement activation products (C3a, C3b/iC3b) are generated in the serum of experimental mice after CCl(4) injection and that complement activation is required for normal liver regeneration. Decomplementation by cobra venom factor resulted in impaired entry of hepatocytes into S phase of the cell cycle. In addition, livers from C3-deficient (C3(-/-)) mice showed similarly impaired proliferation of hepatocytes, along with delayed kinetics of both hepatocyte hyperplasia and removal of injured liver parenchyma. Restoration of hepatocyte proliferative capabilities of C3(-/-) mice through C3a reconstitution, as well as the impaired regeneration of C3a receptor-deficient mice, demonstrated that C3a promotes liver cell proliferation via the C3a receptor. These findings, together with data showing two waves of complement activation, indicate that C3 activation is a pivotal mechanism for liver regeneration after CCl(4) injury, which fulfills multiple roles; C3a generated early after toxin injection is relevant during the priming of hepatocytes, whereas C3 activation at later times after CCl(4) treatment contributes to the clearance of injured tissue.  相似文献   

9.
1. A novel technique for the subfractionation of rat liver smooth and rough microsomal fractions according to their content of glucose 6-phosphatase is described. This technique, based on the Gomori lead histochemical procedure, involves incubation of smooth and rough microsomal fractions with low concentrations of Pb(NO(3))(2) and glucose 6-phosphate. Control experiments, in which enzyme was assayed in the presence of various amounts of Pb(NO(3))(2) or in which microsomal fractions were reisolated after incubation with low concentrations of Pb(NO(3))(2) and glucose 6-phosphate, showed that lead does not interfere with glucose 6-phosphatase activity. 2. Discontinuous sucrose-density-gradient centrifugation of microsomal fractions which had previously been incubated with various amounts of Pb(NO(3))(2) and glucose 6-phosphate showed that it is possible to subfractionate both smooth- and rough-microsomal fractions into several bands, owing to a differential modification of the density of the microsomal vesicles by the trapping of lead phosphate within them. 3. When the material in the bands obtained by density-gradient centrifugation of incubated microsomal fractions was assayed for glucose 6-phosphatase activity, it was found that the modification of the density of the microsomal fractions was directly related to their relative enrichment in glucose 6-phosphatase activity. Control experiments, in which microsomal fractions were incubated with Pb(NO(3))(2) and glucose 6-phosphate and then treated with EDTA, showed that the subfractionation was not due to aggregation of microsomal vesicles, lead and glucose 6-phosphate. Thus the resolution of microsomal preparations into subfractions with different glucose 6-phosphatase activities is interpreted as indicating heterogeneity of glucose 6-phosphatase distribution in the microsomal vesicles. 4. Electron micrographs of both smooth- and rough-microsomal subfractions show deposits of lead phosphate within the microsomal vesicles. The frequency and extent of these deposits correlate with the different amounts of glucose 6-phosphatase activity measured biochemically. 5. The nature of the heterogeneous distribution of glucose 6-phosphatase is discussed and the more general applicability of the technique for studying membrane fractions containing a heterogeneous distribution of phosphatases is indicated.  相似文献   

10.
Reactive oxygen intermediates (ROI) have been implicated as mediators of hepatocyte death resulting from a variety of forms of liver injury. To delineate the mechanisms that underlie ROI-induced apoptosis, the roles of caspase activation and nuclear factor-kappaB (NF-kappaB) signaling were determined in the rat hepatocyte cell line RALA255-10G after treatment with H(2)O(2) or the superoxide generator menadione. By 8 h, H(2)O(2) and menadione caused 26% and 33% cell death, respectively. Death from both ROI occurred by apoptosis as indicated by morphology under fluorescence microscopy, the induction of caspase activation and DNA fragmentation, and the cleavage of poly(ADP-ribose) polymerase. Despite the presence of caspase activation in both forms of apoptosis, caspase inhibition blocked H(2)O(2)- but not menadione-induced apoptosis. In contrast, inhibition of NF-kappaB activation decreased cell death from both ROI. Different ROI, therefore, induce distinct apoptotic pathways in RALA hepatocytes that are both caspase dependent and independent. In contrast to the known protective effect of NF-kappaB activation in tumor necrosis factor-alpha-induced hepatocyte apoptosis, NF-kappaB promotes hepatocellular death from ROI in these cells.  相似文献   

11.
Persistent infection with the hepatitis B virus leads to liver cirrhosis and hepatocellular carcinoma. MicroRNAs (miRNAs) play an important role in a variety of biological processes; however, the role of miRNAs in chronic hepatitis B (CHB)‐induced liver damage remains poorly understood. Here, we investigated the role of miRNAs in CHB‐related liver damage. Microarray analysis of the expression of miRNAs in 22 CHB patients and 33 healthy individuals identified miR‐194 as one of six differentially expressed miRNAs. miR‐194 was up‐regulated in correlation with increased liver damage in the plasma or liver tissues of CHB patients. In mice subjected to 2/3 partial hepatectomy, miR‐194 was up‐regulated in liver tissues in correlation with hepatocyte growth and in parallel with the down‐regulation of the activin receptor ACVR2B. Overexpression of miR‐194 in human liver HL7702 cells down‐regulated ACVR2B mRNA and protein expression, promoted cell proliferation, acceleratedG1 to S cell cycle transition, and inhibited apoptosis, whereas knockdown of miR‐194 had the opposite effects. Luciferase reporter assays confirmed that ACVR2B is a direct target of miR‐194, and overexpression of ACVR2B significantly repressed cell proliferation and G1 to S phase transition and induced cell apoptosis. ACVR2B overexpression abolished the effect of miR‐194, indicating that miR‐194 promotes hepatocyte proliferation and inhibits apoptosis by down‐regulating ACVR2B. Taken together, these results indicate that miR‐194 plays a crucial role in hepatocyte proliferation and liver regeneration by targeting ACVR2B and may represent a novel therapeutic target for the treatment of CHB‐related liver damage.  相似文献   

12.
Hydrophobic bile acids are toxic to isolated rat hepatocytes by mechanisms involving mitochondrial dysfunction and oxidative stress. In the current study we examined the role of nitric oxide (NO), a potential mediator of apoptosis, during bile acid-induced apoptosis. Freshly isolated rat hepatocytes and hepatic mitochondria generated NO and peroxynitrite (ONOO(-)) in a concentration- and time-dependent manner when exposed to the toxic bile salt glycochenodeoxycholate (GCDC) (25-500 microm), which was prevented by the nitric-oxide synthase (NOS) inhibitors N(G)-monomethyl-N-arginine monoacetate (l-NMMA) and 1400W. Relationships between hepatocyte NO production and apoptosis were examined by comparing the effects of NOS inhibitors with other inhibitors of GCDC-induced apoptosis. Inhibitors of caspases 8 and 9, the mitochondrial permeability transition blocker cyclosporin A, and the antioxidant idebenone reduced NO generation and apoptosis in GCDC-treated hepatocytes. In contrast, NOS inhibitors had no effect on GCDC-induced apoptosis despite marked reduction of NO and ONOO(-). However, treatment with the NO donors S-nitroso-N-acetylpenicillamine and spermine NONOate [N-(-aminoethyl)N-(2-hydroxy-2-nitrohydrazino)-1,2-ethylenediamine) inhibited apoptosis and caspase 3 activity while significantly elevating NO levels above GCDC-stimulated levels. Neither NO donors nor NOS inhibitors affected GCDC-induced mitochondrial permeability transition or cytochrome c release from liver mitochondria or GCDC-induced mitochondrial depolarization from isolated hepatocytes, suggesting that NO inhibits bile acid-induced hepatocyte apoptosis by a non-mitochondrial-dependent pathway. In conclusion, whereas NO produced from GCDC-treated hepatocytes neither mediates nor protects against bile acid-induced apoptosis, higher levels of NO inhibit GCDC-induced hepatocyte apoptosis by caspase-dependent pathways.  相似文献   

13.
Faster growth and differentiation of liver stem cells to hepatocyte is one of the key factors during liver regeneration. In recent years, simulated microgravity, a physical force has shown to differentially regulate the differentiation and proliferation of stem cells. In the present work, we studied the effect of simulated microgravity on differentiation and proliferation of liver stem cells. The cells were subjected to microgravity, which was simulated using indigenously fabricated 3D clinostat. Proliferation, apoptosis, immunofluorescence assays and Western blot analysis were carried out to study the effects of simulated microgravity on liver stem cells. Microgravity treatment for 2 h enhanced proliferation of stem cells by twofold without inducing apoptosis and compromising cell viability. Analysis of hepatocyte nuclear factor 4‐α (HNF4‐α) expression after 2 h of microgravity treatment revealed that microgravity alone can induce the differentiation of stem cells within 2–3 days. Probing bone morphogenic protein 4 (BMP4) and Notch1 in microgravity treated stem cells elaborated downregulation of Notch1 and upregulation of BMP4 after 2 days of incubation. Further, blocking BMP4 using dorsomorphin and chordin conditioned media from chordin plasmid transfected cells attenuated microgravity mediated differentiation of liver stem cells. In conclusion, microgravity interplays with BMP4/Notch1 signaling in stem cells thus inducing differentiation of stem cells to hepatocytes. Present findings can be implicated in clinical studies where microgravity activated stem cells can regenerate the liver efficiently after liver injury. J. Cell. Biochem. 112: 1898–1908, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
BACKGROUND: The in vivo transduction of hepatocytes with conventional retrovirus vectors requires the induction of cell division and this can currently only be achieved by invasive surgery or by inducing severe liver damage. We hypothesised that partial portal branch ligation (PBL) could induce hepatocyte proliferation and efficient gene transfer in the rat. METHODS: We ligated the portal branch serving 70% of the liver and measured the kinetics of liver mass restoration and cell proliferation and the distribution of dividing hepatocytes after administration of 5-bromo-2'-deoxyuridine. The efficiency of retrovirus-mediated gene transfer after PBL was tested by use of beta-galactosidase-expressing recombinant retroviruses. The viruses were administered in a single injection via the portal vein at different times after PBL and the livers of transduced animals were analysed 4 days later. RESULTS: We found that the number of cycling hepatocytes remained stable between 24 and 44 h after PBL (approximately 12.5%). Although there was a high level of inter-animal variability, hepatocyte proliferation was always initiated in the same lobe of the liver. In animals that had undergone PBL, 19% of hepatocytes were transduced 28 h after the administration of a single high-titre injection of retroviruses, mainly around the portal spaces. CONCLUSIONS: PBL can mediate the efficient transduction of hepatocytes in vivo after a single intravenous injection of recombinant retroviruses. This approach is feasible in humans.  相似文献   

15.
Hepatic stellate cells (HSCs) are important part of the local 'stem cell niche' for hepatic progenitor cells (HPCs) and hepatocytes. However, it is unclear as to whether the products of activated HSCs are required to attenuate hepatocyte injury, enhance liver regeneration, or both. In this study, we performed 'loss of function' studies by depleting activated HSCs with gliotoxin. It was demonstrated that a significantly severe liver damage and declined survival rate were correlated with depletion of activated HSCs. Furthermore, diminishing HSC activation resulted in a 3-fold increase in hepatocyte apoptosis and a 66% decrease in the number of proliferating hepatocytes. This was accompanied by a dramatic decrease in the expression levels of five genes known to be up-regulated during hepatocyte replication. In particular, it was found that depletion of activated HSCs inhibited oval cell reaction that was confirmed by decreased numbers of Pank-positive cells around the portal tracts and lowered gene expression level of cytokeratin 19 (CK19) in gliotoxin-treated liver. These data provide clear evidence that the activated HSCs are involved in both hepatocyte death and proliferation of hepatocytes and HPCs in acetaminophen (APAP)-induced acute liver injury.  相似文献   

16.
Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis   总被引:16,自引:0,他引:16  
Elevated serum free fatty acids (FFAs) and hepatocyte lipoapoptosis are features of non-alcoholic fatty liver disease. However, the mechanism by which FFAs mediate lipoapoptosis is unclear. Because JNK activation is pivotal in both the metabolic syndrome accompanying non-alcoholic fatty liver disease and cellular apoptosis, we examined the role of JNK activation in FFA-induced lipoapoptosis. Multiple hepatocyte cell lines and primary mouse hepatocytes were treated in culture with monounsaturated fatty acids and saturated fatty acids. Despite equal cellular steatosis, apoptosis and JNK activation were greater during exposure to saturated versus monounsaturated FFAs. Inhibition of JNK, pharmacologically as well as genetically, reduced saturated FFA-mediated hepatocyte lipoapoptosis. Cell death was caspase-dependent and associated with mitochondrial membrane depolarization and cytochrome c release indicating activation of the mitochondrial pathway of apoptosis. JNK-dependent lipoapoptosis was associated with activation of Bax, a known mediator of mitochondrial dysfunction. As JNK can activate Bim, a BH3 domain-only protein capable of binding to and activating Bax, its role in lipoapoptosis was also examined. Small interfering RNA-targeted knock-down of Bim attenuated both Bax activation and cell death. Collectively the data indicate that saturated FFAs induce JNK-dependent hepatocyte lipoapoptosis by activating the proapoptotic Bcl-2 proteins Bim and Bax, which trigger the mitochondrial apoptotic pathway.  相似文献   

17.
Numerous liver diseases are associated with extensive oxidative tissue damage. It is well established that Wnt/β-catenin signaling directs multiple hepatocellular processes, including development, proliferation, regeneration, nutrient homeostasis, and carcinogenesis. It remains unexplored whether Wnt/β-catenin signaling provides hepatocyte protection against hepatotoxin-induced apoptosis. Conditional, liver-specific β-catenin knockdown (KD) mice and their wild-type littermates were challenged by feeding with a hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to induce chronic oxidative liver injury. Following the DDC diet, mice with β-catenin-deficient hepatocytes demonstrate increased liver injury, indicating an important role of β-catenin signaling for liver protection against oxidative stress. This finding was further confirmed in AML12 hepatocytes with β-catenin signaling manipulation in vitro using paraquat, a known oxidative stress inducer. Immunofluorescence staining revealed an intense nuclear FoxO3 staining in β-catenin-deficient livers, suggesting active FoxO3 signaling in response to DDC-induced liver injury when compared with wild-type controls. Consistently, FoxO3 target genes p27 and Bim were significantly induced in β-catenin KD livers. Conversely, SGK1, a β-catenin target gene, was significantly impaired in β-catenin KD hepatocytes that failed to inactivate FoxO3. Furthermore, shRNA-mediated deletion of FoxO3 increased hepatocyte resistance to oxidative stress-induced apoptosis, confirming a proapoptotic role of FoxO3 in the stressed liver. Our findings suggest that Wnt/β-catenin signaling is required for hepatocyte protection against oxidative stress-induced apoptosis. The inhibition of FoxO through its phosphorylation by β-catenin-induced SGK1 expression reduces the apoptotic function of FoxO3, resulting in increased hepatocyte survival. These findings have relevance for future therapies directed at hepatocyte protection, regeneration, and anti-cancer treatment.  相似文献   

18.
Stem cell factor (SCF) and its receptor c-kit are important in hematopoiesis and cellular proliferation. c-kit has also been identified as a cell surface marker for progenitor cells. We have previously shown that there is a large reservoir of hepatic SCF, and this molecule plays a significant role in liver regeneration after 70% hepatectomy. In the current study, we further examined the expression of SCF and c-kit in acetaminophen (APAP)-induced liver injury in C57BL/6J mice or SCF-deficient sl-sld mice and their appropriate wild-type controls. Following APAP-induced liver injury, c-kit mRNA expression increased, with peak levels detected 48 h postinjury. Hepatic SCF mRNA levels after APAP injury were also increased, with peak levels seen 16 h post-APAP. The mortality rate in SCF-deficient mice treated with APAP was significantly higher than that of wild-type mice; furthermore, administration of exogenous SCF significantly reduced the mortality of APAP-treated wild-type mice. Bromodeoxyuridine incorporation experiments showed that SCF significantly increased hepatocyte proliferation at 48 and 72 h in APAP-treated mice. SCF inhibited APAP-induced hepatocyte apoptosis and increased Bcl-2 and Bcl-xL expression, suggesting that this decrease in hepatocyte apoptosis is mediated through Bcl-2 and Bcl-xL. In summary, SCF and c-kit expression was increased after APAP-induced liver injury. Administration of exogenous SCF reduces mortality in APAP-treated mice, increases hepatocyte proliferation, and prevents hepatocyte apoptosis induced by APAP, suggesting that these molecules are important in the liver's recovery from these injuries.  相似文献   

19.
Augmenter of Liver Regeneration (Alrp) enhances, through unknown mechanism/s, hepatocyte proliferation only when administered to partially hepatectomized (PH) rats. Liver resection, besides stimulating hepatocyte proliferation, induces reactive oxygen species (ROS), triggering apoptosis. To clarify the role of Alrp in the process of liver regeneration, hepatocyte proliferation, apoptosis, ROS-induced parameters and morphological findings of regenerating liver were studied from PH rats Alrp-treated for 72 h after the surgery. The same parameters, evaluated on regenerating liver from albumin-treated PH rats, were used as control. The results demonstrated that Alrp administration induces the anti-apoptotic gene expression, inhibits hepatocyte apoptosis and reduces ROS-induced cell damage. These and similar data from in vitro studies and the presence of 'Alrp homologous proteins' in viruses as well as in mammals (i) allow to hypothesize that Alrp activity/ies may not be exclusive for regenerating liver and (ii) suggest the use of Alrp in the treatment of oxidative stress-related diseases.  相似文献   

20.
In bile duct-ligated (BDL) rats, cholangiocyte proliferation is regulated by neuroendocrine factors such as α-calcitonin gene-related peptide (α-CGRP). There is no evidence that the sensory neuropeptide substance P (SP) regulates cholangiocyte hyperplasia. Wild-type (WT, (+/+)) and NK-1 receptor (NK-1R) knockout (NK-1R(-/-)) mice underwent sham or BDL for 1 wk. Then we evaluated 1) NK-1R expression, transaminases, and bilirubin serum levels; 2) necrosis, hepatocyte apoptosis and steatosis, and the number of cholangiocytes positive by CK-19 and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling in liver sections; 3) mRNA expression for collagen 1α and α-smooth muscle (α-SMA) actin in total liver samples; and 4) PCNA expression and PKA phosphorylation in cholangiocytes. In cholangiocyte lines, we determined the effects of SP on cAMP and D-myo-inositol 1,4,5-trisphosphate levels, proliferation, and PKA phosphorylation. Cholangiocytes express NK-1R with expression being upregulated following BDL. In normal NK-1R(-/-) mice, there was higher hepatocyte apoptosis and scattered hepatocyte steatosis compared with controls. In NK-1R (-)/(-) BDL mice, there was a decrease in serum transaminases and bilirubin levels and the number of CK-19-positive cholangiocytes and enhanced biliary apoptosis compared with controls. In total liver samples, the expression of collagen 1α and α-SMA increased in BDL compared with normal mice and decreased in BDL NK-1R(-/-) compared with BDL mice. In cholangiocytes from BDL NK-1R (-)/(-) mice there was decreased PCNA expression and PKA phosphorylation. In vitro, SP increased cAMP levels, proliferation, and PKA phosphorylation of cholangiocytes. Targeting of NK-1R may be important in the inhibition of biliary hyperplasia in cholangiopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号