首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The widespread presence of cellulose-binding domains in cellulases from aerobic bacteria and fungi suggests the existence of a strong selective pressure for the retention of these non-catalytic modules. The complete nucleotide sequence of the cellulase gene, celA, from the aerobic soil bacterium Cellvibrio mixtus, was determined. It revealed an open reading frame of 1089 bp that encoded a polypeptide, defined as cellulase A (CelA), of M r 41 548. CelA displayed features characteristic of an endo-β-1,4-glucanase, rapidly decreasing the viscosity of the substrate while releasing only moderate amounts of reducing sugar. Deletion studies in celA revealed that removal of 78 nucleotides from the 5′ end or 75 from the 3′ end of the gene led to the complete loss of cellulase activity of the encoded polypeptides. The deduced primary structure of CelA revealed an N-terminal signal peptide followed by a region that exhibited significant identity with the catalytic domains of cellulases belonging to glycosyl hydrolase family 5. These data suggest that CelA is a single-domain endoglucanase with no distinct non-catalytic cellulose-binding domain. Analysis of the biochemical properties of CelA revealed that the enzyme hydrolyses a range of soluble cellulosic substrates, but was inactive against Avicel, xylan or any other hemicellulose. CelA was resistant to proteolytic inactivation by pancreatic proteinases and surprisingly, in view of its mesophylic origin, was shown to be thermostable. The significance of these findings in relation to the role of single-domain cellulases in plant cell wall hydrolysis by aerobic microorganisms is discussed. Received: 26 May 1997 / Received revision: 4 July 1997 / Accepted: 4 July 1997  相似文献   

2.
The gene celB encoding an endoglucanase from Paenibacillus sp. BP-23 was cloned and expressed in Escherichia coli. The nucleotide sequence of a 4161 bp DNA fragment containing the celB gene was determined, revealing an open reading frame of 2991 nucleotides that encodes a protein of 106,927 Da. Comparison of the deduced amino acid sequence of endoglucanase B with known β-glycanase sequences showed that the encoded enzyme is a modular protein and exhibits high homology to enzymes belonging to family 9 cellulases. The celB gene product synthesized in E. coli showed high activity on carboxymethyl cellulose and lichenan while low activity was found on Avicel. Activity was enhanced in the presence of 10 mM Ca2+ and showed its maximum at 53 °C and pH 5.5. The effect of the cloned enzyme in modifying the physical properties of pulp and paper from Eucalyptus was tested (CelB treatment). An increase in mechanical strength of paper and a decrease in pulp dewatering properties were found, indicating that CelB treatment can be considered as a biorefining. Treatment with CelB gave rise to an improvement in paper strength similar to that obtained with 1,000 revolutions increase in mechanical refining. Comparison with the performances of recently developed endoglucanase A from the same strain and with a commercial cellulase showed that CelB produced the highest refining effect. Received: 25 February 2000 / Received revision: 4 July 2000 / Accepted: 9 July 2000  相似文献   

3.
Two endo-1,4-β-glucanase genes, designated celA and celB, from a shoyu koji mold Aspergillus oryzae KBN616, were cloned and characterized. The celA gene comprised 877 bp with two introns. The CelA protein consisted of 239 amino acids and was assigned to the cellulase family H. The celB gene comprised 1248 bp with no introns. The CelB protein consisted of 416 amino acids and was assigned to the cellulase family C. Both genes were overexpressed under the promoter of the A. oryzae taka-amylase A gene for purification and enzymatic characterization of CelA and CelB. CelA had a molecular mass of 31 kDa, a pH optimum of 5.0 and temperature optimum of 55 °C, whereas CelB had a molecular mass of 53 kDa, a pH optimum of 4.0 and temperature optimum of 45 °C. Received: 3 July 1996 / Accepted: 15 July 1996  相似文献   

4.
Bellanger  F.  Verdus  M. C.  Henocq  V.  Christiaen  D. 《Hydrobiologia》1990,(1):527-531
The cell wall of Gracilaria verrucosa is composed of two fractions: a matrix made of agar and a skeleton whose composition is unknown. This fibrillar part was isolated using both physical and chemical techniques. Total hydrolysis followed by gas-liquid chromatography allowed us to establish the sugar composition. Enzymatic degradations were carried out with cellulases, xylanases, agarases and pectinases. Efficiencies of the enzymatic digestions were monitored by both chemical analysis and electron microscopy. Pectinases had no effect. The fibrillar part was composed mainly of a cellulosic network that was unmasked by the xylanase action and degraded after cellulase digestion. The results suggest that a cocktail composed of agarases and cellulases can be used successfully to prepare protoplasts from Gracilaria verrucosa.  相似文献   

5.
Alkaliphilic and halophilic Bacillus sp. BG-CS10 was isolated from Zabuye Salt Lake, Tibet. The gene celB, encoding a halophilic cellulase was identified from the genomic library of BG-CS10. CelB belongs to the cellulase superfamily and DUF291 superfamily, with an unknown function domain and less than 58% identity to other cellulases in GenBank. The purified recombinant protein (molecular weight: 62 kDa) can hydrolyze soluble cellulose substrates containing beta-1,4-linkages, such as carboxylmethyl cellulose and konjac glucomannan, but has no exoglucanase and β-glucosidase activities. Thus, CelB is a cellulase with an endo mode of action and glucomannanase activity. Interestingly, the enzyme activity was increased approximately tenfold with 2.5 M NaCl or 3 M KCl. Furthermore, the optimal temperatures were 55°C with 2.5 M NaCl and 35°C without NaCl, respectively. This indicates that NaCl can improve enzyme thermostability. The K m and k cat values of CelB for CMC with 2.5 M NaCl were 3.18 mg mL−1 and 26 s−1, while the K m and k cat values of CelB without NaCl were 6.6 mg mL−1 and 2.1 s−1. Thus, this thermo-stable, salt and pH-tolerant cellulase is a promising candidate for industrial applications, and provides a new model to study salt effects on the structure of protein.  相似文献   

6.
The sensitivity of a range of cellulases and xylanases to proteolytic inactivation was investigated. The xylanases, all the Clostridium thermocellum cellulases and cellulase E from Pseudomonas fluorescens subsp. cellulosa exhibited no decrease in catalytic activity during a 3-h incubation with proteinases of the small intestine. Under these conditions, the control Escherichia coli enzymes analysed had half-lives of 4.3–13.5 min. The addition of substrate significantly decreased the sensitivity of proteinase-labile enzymes to inactivation. The significance of these data in relation to the use of cellulases and xylanases for improving animal nutrition is discussed.  相似文献   

7.
The diversity of cellulases and xylanases secreted by Cellulomonas flavigena cultured on sugar cane bagasse, Solka-floc, xylan, or glucose was explored by two-dimensional gel electrophoresis. C. flavigena produced the largest variety of cellulases and xylanases on sugar cane bagasse. Multiple extracellular proteins were expressed with these growth substrates, and a limited set of them coincided in all substrates. Thirteen proteins with carboxymethyl cellulase or xylanase activity were liquid chromatography/mass spectrometry sequenced. Proteins SP4 and SP18 were identified as products of celA and celB genes, respectively, while SP20 and SP33 were isoforms of the bifunctional cellulase/xylanase Cxo recently sequenced and characterized in C. flavigena. The rest of the detected proteins were unknown enzymes with either carboxymethyl cellulase or xylanase activities. All proteins aligned with glycosyl hydrolases listed in National Center for Biotechnology Information database, mainly with cellulase and xylanase enzymes. One of these unknown enzymes, protein SP6, was cross-induced by sugar cane bagasse, Solka-floc, and xylan. The differences in the expression maps of the presently induced cultures revealed that C. flavigena produces and secretes multiple enzymes to use a wide range of lignocellulosic substrates as carbon sources. The expression of these proteins depends on the nature of the cellulosic substrate.  相似文献   

8.
A metagenomic cosmid library was prepared in Escherichia coli from DNA extracted from the contents of rabbit cecum and screened for cellulase activities. Eleven independent clones expressing cellulase activities (four endo-β-1,4-glucanases and seven β-glucosidases) were isolated. Subcloning and sequencing analysis of these clones identified 11 cellulase genes; the encoded products of which shared less than 50% identities and 70% similarities to cellulases in the databases. All four endo-β-1,4-glucanases and all seven β-glucosidases, respectively, belonged to glycosyl hydrolase family 5 (GHF 5) and family 3 (GHF 3) and formed two separate branches in the phylogenetic tree. Ten of the 11 cloned cellulases exhibited highest activities at pH 5.5 ∼ 7.0 and 40 ∼ 55°C, a condition similar to that in the rabbit cecum. All the four endo-β-1,4-glucanases could hydrolyze a wide range of β-1,4-, β-1,4/β-1,3- or β-1,3/β-1,6-linked polysaccharides. One endo-β-1, 4-glucanase gene, umcel5G, was overexpressed in E. coli, and the purified recombinant enzyme was characterized in detail. The enzymes cloned in this work represented at least some of the cellulases operating efficiently in the rabbit cecum. This work provides the first snapshot on the cellulases produced by bacteria in rabbit cecum.  相似文献   

9.
Growth and flocculation of a marine photosynthetic bacterium Rhodovulum sp.   总被引:2,自引:2,他引:0  
A marine photosynthetic bacterium (PS88), identified as Rhodovulum sp., with flocculating ability was isolated from the sea sediment mud of a shrimp cultivation farm in Thailand. This bacterium flocculated in glutamate/malate medium during aerobic dark or anaerobic light cultivation. The flocculating ability was enhanced with the increase of NaCl concentration to 6% (w/v). When PS88 was grown in glutamate/malate medium containing 3.5% NaCl, protein, RNA and DNA were produced exocellularly and there was flocculation. The yields of DNA, RNA and protein were 8.3, 62.5 and 48.5 mg/g dry cell, respectively. The flocculated cells were deflocculated by treatment with a nucleolytic enzyme such as RNase or DNase, while amylase, protease, trypsin, cellulase and pectinase had no deflocculating effect. These results suggest that the exocellular nucleic acids are active in flocculation. Received: 10 April 1998 / Received revision: 14 July 1998 / Accepted: 8 August 1998  相似文献   

10.
Homolactic fermentation from glucose and cellobiose using Bacillus subtilis   总被引:1,自引:0,他引:1  

Backgroung  

Biodegradable plastics can be made from polylactate, which is a polymer made from lactic acid. This compound can be produced from renewable resources as substrates using microorganisms. Bacillus subtilisis a Gram-positive bacterium recognized as a GRAS microorganism (generally regarded as safe) by the FDA. B. subtilisproduces and secretes different kind of enzymes, such as proteases, cellulases, xylanases and amylases to utilize carbon sources more complex than the monosaccharides present in the environment. Thus, B. subtiliscould be potentially used to hydrolyze carbohydrate polymers contained in lignocellulosic biomass to produce chemical commodities. Enzymatic hydrolysis of the cellulosic fraction of agroindustrial wastes produces cellobiose and a lower amount of glucose. Under aerobic conditions, B. subtilisgrows using cellobiose as substrate.  相似文献   

11.
A rifampin-resistant mutant ofCellulomonas biazotea secreted elevated levels of cellulasesin vivo. The cellulase production in the mutant was not inhibited in the presence of 5% glucose, cellobiose or glycerol in the solid medium. The mutant exhibited approximately two- to three-fold enhanced product yields and productivity of cellular β-glucosidase over the wild parent in shake-flask culture studies when grown on either cellulosic or lignocellulosic substrates. Extracellular production of filter paper cellulase (FPase) and endo-glucanase (CMCase) were also significantly (p≤0.05) altered. During growth of the mutant on α-cellulose, the maximum volumetric productivities for CMCase, FPase and β-glucosidase were 52, 23.3, and 15.2 IUL−1 h−1,i.e 118, 121, and 229% their respective values for the parental strain. Some enzyme properties of the mutant cellulases were altered. Mutant-derived cellulases produced higher yields of glucose arising by degradation of bagasse, wheat straw, and α-cellulose (1.53-, 1.57-, and 1.75-fold, respectively).  相似文献   

12.
A potentially novel aerobic, thermophilic, and cellulolytic bacterium designated as Brevibacillus sp. strain JXL was isolated from swine waste. Strain JXL can utilize a broad range of carbohydrates including: cellulose, carboxymethylcellulose (CMC), xylan, cellobiose, glucose, and xylose. In two different media supplemented with crystalline cellulose and CMC at 57°C under aeration, strain JXL produced a basal level of cellulases as FPU of 0.02 IU/ml in the crude culture supernatant. When glucose or cellobiose was used besides cellulose, cellulase activities were enhanced ten times during the first 24 h, but with no significant difference between these two simple sugars. After that time, however, culture with glucose demonstrated higher cellulase activities compared with that from cellobiose. Similar trend and effect on cellulase activities were also obtained when glucose or cellobiose served as a single substrate. The optimal doses of cellobiose and glucose for cellulase induction were 0.5 and 1%. These inducing effects were further confirmed by scanning electron microscopy (SEM) images, which indicated the presence of extracellular protuberant structures. These cellulosome-resembling structures were most abundant in culture with glucose, followed by cellobiose and without sugar addition. With respect to cellulase activity assay, crude cellulases had an optimal temperature of 50°C and a broad optimal pH range of 6–8. These cellulases also had high thermotolerance as evidenced by retaining more than 50% activity at 100°C after 1 h. In summary, this is the first study to show that the genus Brevibacillus may have strains that can degrade cellulose.  相似文献   

13.
A gene library from the thermophilic eubacterium Rhodothermus marinus, strain ITI 378, was constructed in pUC18 and transformed into Escherichia coli. Of 5400 transformants, 3 were active on carboxymethylcellulose. Three plasmids conferring cellulase activity were purified and were all found to contain the same cellulase gene, celA. The open reading frame for the celA gene is 780 base pairs and encodes a protein of 260 amino acids with a calculated molecular mass of 28.8 kDa. The amino acid sequence shows homology with cellulases in glycosyl hydrolase family 12. The celA gene was overexpressed in E. coli when the pET23, T7 phage RNA polymerase system was used. The enzyme showed activity on carboxymethylcellulose and lichenan, but not on birch xylan or laminarin. The expressed enzyme had six terminal histidine residues and was purified by using a nickel nitrilotriacetate column. The enzyme had a pH optimum of 6–7 and its highest measured initial activity at 100 °C. The heat stability of the enzyme was increased by removal of the histidine residues. It then retained 75% of its activity after 8 h at 90 °C. Received: 5 August 1997 / Received revision: 6 November 1997 / Accepted: 7 November 1997  相似文献   

14.
A chitinase gene (chiA) from Pseudomonas sp. YHS-A2 was cloned into Escherichia coli using pUC19. The nucleotide sequence determination revealed a single open reading frame of chiA comprised of 1902 nucleotide base pairs and 633 deduced amino acids with a molecular weight of 67,452 Da. Amino acid sequence alignment showed that ChiA contains two putative chitin-binding domains and a single catalytic domain. Two proline-threonine repeat regions, which are linkers between catalytic and substrate-binding domains in some cellulases and xylanases, were also found. From E. coli, ChiA was purified 12.8-fold relative to the periplasmic fraction. The Michaelis constant and maximum initial velocity for p-nitrophenyl-N,N′-diacetylchitobiose were 1.06 mM and 44.4 μmol/h per mg protein, respectively. The purified ChiA binds not only to colloidal chitin but also to other substrates (avicel, chitosan, and xylan), but the binding affinity of avicel, chitosan, and xylan is around 10 times lower than that of colloidal chitin. The reaction of ChiA with colloidal chitin and chitooligosaccharides (trimer-hexamer) produced an end product of N,N′-diacetylchitobiose, indicating that ChiA is a chitobiosidase. Received: 29 October 1999 / Received revision: 16 March 2000 / Accepted: 24 March 2000  相似文献   

15.
A third xylanase (Xyn III) from Trichoderma reesei PC-3–7 was purified to electrophoretic homogeneity by gel filtration and ion-exchange chromatographies. The enzyme had a molecular mass of 32 kDa, and its isoelectric point was 9.1. The pH optimum of Xyn III was 6.0, similar to that of Xyn II, another basic xylanase of  T. reesei. The purified Xyn III showed high activity with birchwood xylan but no activity with cellulose and aryl glycoside. The hydrolysis of birchwood xylan by Xyn III produced mainly xylobiose, xylotriose and other xylooligosaccharides. The amino acid sequences of the N-terminus and internal peptides of Xyn III exhibited high homology with the family F xylanases, showing that they were distinct from those of Xyn I and Xyn II of  T. reesei, which belong to family G. These results reveal that Xyn III is a new specific endoxylanase, differing from Xyn I and Xyn II in  T. reesei. It is noteworthy that this novel xylanase was induced only by cellulosic substrates and l-sorbose but not by xylan and its derivarives. Furthermore,  T. reesei PC-3-7 produced Xyn III in quantity when grown on Avicel or lactose as a carbon source, while  T. reesei QM9414 produced little or no Xyn III. Received: 7 November 1997 / Received last revision: 2 February 1988 / Accepted: 23 February 1998  相似文献   

16.
A facultatively anaerobic bacterium, Paenibacillus curdlanolyticus B-6, isolated from an anaerobic digester produces an extracellular xylanolytic-cellulolytic enzyme system containing xylanase, β-xylosidase, arabinofuranosidase, acetyl esterase, mannanase, carboxymethyl cellulase (CMCase), avicelase, cellobiohydrolase, β-glucosidase, amylase, and chitinase when grown on xylan under aerobic conditions. During growth on xylan, the bacterial cells were found to adhere to xylan from the early exponential growth phase to the late stationary growth phase. Scanning electron microscopic analysis revealed the adhesion of cells to xylan. The crude enzyme preparation was found to be capable of binding to insoluble xylan and Avicel. The xylanolytic-cellulolytic enzyme system efficiently hydrolyzed insoluble xylan, Avicel, and corn hulls to soluble sugars that were exclusively xylose and glucose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of a crude enzyme preparation exhibited at least 17 proteins, and zymograms revealed multiple xylanases and cellulases containing 12 xylanases and 9 CMCases. The cellulose-binding proteins, which are mainly in a multienzyme complex, were isolated from the crude enzyme preparation by affinity purification on cellulose. This showed nine proteins by SDS-PAGE and eight xylanases and six CMCases on zymograms. Sephacryl S-300 gel filtration showed that the cellulose-binding proteins consisted of two multienzyme complexes with molecular masses of 1,450 and 400 kDa. The results indicated that the xylanolytic-cellulolytic enzyme system of this bacterium exists as multienzyme complexes.  相似文献   

17.
Summary Deoxyglucose-resistant mutants of Cellulomonas biazotea secreted elevated levels of cellulases and xylanases. The production of β-glucosidase in the constitutive mutant was increased 5-fold over its parent strain. This mutant showed an approximately 1.6-fold enhanced productivity of extracellular endo-glucanase following growth on Leptochloa fusca over the mutant parent. Extracellular production of xylanase, filter-paper cellulase (FPase) and endo-glucanase (CMCase) were also altered in the mutant. Maximum volumetric productivities for xylanase, β-xylosidase, FPase, β-glucosidase and endo-glucosidase were 451, 98, 80, 95, and 143 IU l−1 h−1 which were significantly more than their respective values from the parental strains. The enzyme preparation of the mutants exhibited improved saccharification of kallar grass straw.  相似文献   

18.
Cellulosomes are efficient cellulose-degradation systems produced by selected anaerobic bacteria. This multi-enzyme complex is assembled from a group of cellulases attached to a protein scaffold termed scaffoldin, mediated by a high-affinity protein–protein interaction between the enzyme-borne dockerin module and the cohesin module of the scaffoldin. The enzymatic complex is attached as a whole to the cellulosic substrate via a cellulose-binding module (CBM) on the scaffoldin subunit. In previous works, we have employed a synthetic biology approach to convert several of the free cellulases of the aerobic bacterium, Thermobifida fusca, into the cellulosomal mode by replacing each of the enzymes’ CBM with a dockerin. Here we show that although family six enzymes are not a part of any known cellulosomal system, the two family six enzymes of the T. fusca system (endoglucanase Cel6A and exoglucanase Cel6B) can be converted to work as cellulosomal enzymes. Indeed, the chimaeric dockerin-containing family six endoglucanase worked well as a cellulosomal enzyme, and proved to be more efficient than the parent enzyme when present in designer cellulosomes. In stark contrast, the chimaeric family six exoglucanase was markedly less efficient than the wild-type enzyme when mixed with other T. fusca cellulases, thus indicating its incompatibility with the cellulosomal mode of action.  相似文献   

19.
bstract The use of the insoluble polysaccharides Avicel and oat-spelt xylan for the binding and subsequent purification of active xylanases from Streptomyces chattanoogensis was investigated. Maximum recovery of xylanases was achieved with oat-spelt xylan, using NaCl (2 M) to remove active protein. The application of this technique to the purification of xylanases resulted in the purification of an endoxylanase (CM-2) with high specific activity (729.5 U mg−1). The properties of the purified enzyme, exhibiting activity and stability between 40 °C and 60 °C and between pH 5 and 8, suggest a potential role for both the enzyme and the rapid purification protocol in the removal of hemicelluloses from kraft pulp prior to bleaching. Received: 6 April 1998 / Accepted: 8 May 1998  相似文献   

20.
The fuel oxygenate, methyl tert-butyl ether (MTBE), although now widely banned or substituted, remains a persistent groundwater contaminant. Multidimensional compound-specific isotope analysis (CSIA) of carbon and hydrogen is being developed for determining the extent of MTBE loss due to biodegradation and can also potentially distinguish between different biodegradation pathways. Carbon and hydrogen isotopic fractionation factors were determined for MTBE degradation in aerobic and anaerobic laboratory cultures. The carbon isotopic enrichment factor (εC) for aerobic MTBE degradation by a bacterial consortium containing the aerobic MTBE-degrading bacterium, Variovorax paradoxus, was −1.1 ± 0.2‰ and the hydrogen isotope enrichment factor (εH) was −15 ± 2‰. This corresponds to an approximated lambda value (Λ = εH/εC) of 14. Carbon isotope enrichment factors for anaerobic MTBE-degrading enrichment cultures were −7.0 ± 0.2‰ and did not vary based on the original inoculum source, redox condition of the enrichment, or supplementation with syringic acid as a co-substrate. The hydrogen enrichment factors of cultures without syringic acid were insignificant, however a strong hydrogen enrichment factor of −41 ± 3‰ was observed for cultures which were fed syringic acid during MTBE degradation. The Λ = 6 obtained for NYsyr cultures might be diagnostic for the stimulation of anaerobic MTBE degradation by methoxylated compounds by an as yet unknown pathway and mechanism. The stable-isotope enrichment factors determined in this study will enhance the use of CSIA for monitoring anaerobic and aerobic MTBE biodegradation in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号