首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The medicinal value associated with complex polyketide and nonribosomal peptide natural products has prompted biosynthetic schemes dependent upon heterologous microbial hosts. Here we report the successful biosynthesis of yersiniabactin (Ybt), a model polyketide-nonribosomal peptide hybrid natural product, using Escherichia coli as a heterologous host. After introducing the biochemical pathway for Ybt into E. coli, biosynthesis was initially monitored qualitatively by mass spectrometry. Next, production of Ybt was quantified in a high-cell-density fermentation environment with titers reaching 67 ± 21 (mean ± standard deviation) mg/liter and a volumetric productivity of 1.1 ± 0.3 mg/liter-h. This success has implications for basic and applied studies on Ybt biosynthesis and also, more generally, for future production of polyketide, nonribosomal peptide, and mixed polyketide-nonribosomal peptide natural products using E. coli.  相似文献   

2.
Nonribosomal peptide synthetases represent the enzymatic assembly lines for the biosynthesis of pharmacologically relevant natural peptides, e.g., cyclosporine, vancomycin, and penicillin. Due to their modular organization, in which every module accounts for the incorporation of a single amino acid, artificial assembly lines for the production of novel peptides can be constructed by biocombinatorial approaches. Once transferred into an appropriate host, these hybrid synthetases could facilitate the bioproduction of basically any peptide-based molecule. In the present study, we describe the fermentative production of the cyclic dipeptide D-Phe-Pro-diketopiperazine, as a prototype for the exploitation of the heterologous host Escherichia coli, and the use of artificial nonribosomal peptide synthetases. E. coli provides a tremendous potential for genetic engineering and was manipulated in our study by stable chromosomal integration of the 4'-phosphopantetheine transferase gene sfp to ensure heterologous production of fully active holoenzmyes. D-Phe-Pro-diketopiperazine is formed by the TycA/TycB1 system, whose components represent the first two modules for tyrocidine biosynthesis in Bacillus brevis. Coexpression of the corresponding genes in E. coli gave rise to the production of the expected diketopiperazine product, demonstrating the functional interaction of both modules in the heterologous environment. Furthermore, the cyclic dipeptide is stable and not toxic to E. coli and is secreted into the culture medium without the need for any additional factors. Parameters affecting the productivity were comprehensively investigated, including various genetic setups, as well as variation of medium composition and temperature. By these means, the overall productivity of the artificial system could be enhanced by over 400% to yield about 9 mg of D-Phe-Pro-diketopiperazine/liter. As a general tool, this approach could allow the sustainable bioproduction of peptides, e.g., those used as pharmaceuticals or fine chemicals.  相似文献   

3.
Aims: Paromamine is a vital and common intermediate in the biosynthesis of 4,5 and 4,6‐disubstituted 2‐deoxystreptamine (DOS)‐containing aminoglycosides. Our aim is to develop an engineered Escherichia coli system for heterologous production of paromamine. Methods and Results: We have constructed a mutant of E. coli BL21 (DE3) by disrupting glucose‐6‐phosphate isomerase (pgi) of primary metabolic pathway to increase glucose‐6‐phosphate pool inside the host. Disruption was carried out by λ Red/ET recombination following the protocol mentioned in the kit. Recombinants bearing 2‐deoxy‐scyllo‐inosose (DOI), DOS and paromamine producing genes were constructed from butirosin gene cluster and heterologously expressed in engineered host designed as E. coli BL21 (DE3) Δpgi. Secondary metabolites produced by the recombinants fermentated in 2YTG medium were extracted, and analysis of the extracts showed there is formation of DOI, DOS and paromamine. Conclusions: Escherichia coli system is engineered for heterologous expression of paromamine derivatives of aminoglycoside biosynthesis. Significance and Impact of the Study: This is the first report of heterologous expression of paromamine gene set in E. coli. Hence a new platform is established in E. coli system for the production of paromamine which is useful for the exploration of novel aminoglycosides by combinatorial biosynthesis of 4,5‐ and 4,6‐disubtituted route of DOS‐containing aminoglycosides.  相似文献   

4.
Pseudomonas aeruginosa produces the biosurfactants rhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs). In this study, we report the production of one family of rhamnolipids, specifically the monorhamnolipids, and of HAAs in a recombinant Escherichia coli strain expressing P. aeruginosa rhlAB operon. We found that the availability in E. coli of dTDP-l-rhamnose, a substrate of RhlB, restricts the production of monorhamnolipids in E. coli. We present evidence showing that HAAs and the fatty acid dimer moiety of rhamnolipids are the product of RhlA enzymatic activity. Furthermore, we found that in the recombinant E. coli, these compounds have the same chain length of the fatty acid dimer moiety as those produced by P. aeruginosa. These data suggest that it is RhlAB specificity, and not the hydroxyfatty acid relative abundance in the bacterium, that determines the profile of the fatty acid moiety of rhamnolipids and HAAs. The rhamnolipids level produced in recombinant E. coli expressing rhlAB is lower than the P. aeruginosa level and much higher than those reported by others in E. coli, showing that this metabolic engineering strategy lead to an increased rhamnolipids production in this heterologous host.  相似文献   

5.
Members of the fungal genus Fusarium are capable of manifesting in a multitude of clinical infections, most commonly in immunocompromised patients. In order to better understand the interaction between the fungus and host, we have developed the larvae of the greater wax moth, Galleria mellonella, as a heterologous host for fusaria. When conidia are injected into the haemocoel of this Lepidopteran system, both clinical and environmental isolates of the fungus are able to kill the larvae at 37 °C, although killing occurs more rapidly when incubated at 30 °C. This killing was dependent on several other factors besides temperature, including the Fusarium strain, the number of conidia injected, and the conidia morphology, where macroconidia are more virulent than their microconidia counterpart. There was a correlation in the killing rate of Fusarium spp. when evaluated in G. mellonella and a murine model. In vivo studies indicated G. mellonella haemocytes were capable of initially phagocytosing both conidial morphologies. The G. mellonella system was also used to evaluate antifungal agents, and amphotericin B was able to confer a significant increase in survival to Fusarium-infected larvae. The G. mellonella-Fusarium pathogenicity system revealed that virulence of Fusarium spp. is similar, regardless of the origin of the isolate, and that mammalian endothermy is a major deterrent for Fusarium infection and therefore provides a suitable alternative to mammalian models to investigate the interaction between the host and this increasingly important fungal pathogen.  相似文献   

6.
Molecular transport is a key process in cellular metabolism. This step is often limiting when using a nonnative carbon source, as exemplified by xylose catabolism in Saccharomyces cerevisiae. As a step toward addressing this limitation, this study seeks to characterize monosaccharide transport preference and efficiency. A group of 26 known and putative monosaccharide transport proteins was expressed in a recombinant Saccharomyces cerevisiae host unable to transport several monosaccharides. A growth-based assay was used to detect transport capacity across six different carbon sources (glucose, xylose, galactose, fructose, mannose, and ribose). A mixed glucose-and-xylose cofermentation was performed to determine substrate preference. These experiments identified 10 transporter proteins that function as transporters of one or more of these sugars. Most of these proteins exhibited broad substrate ranges, and glucose was preferred in all cases. The broadest transporters confer the highest growth rates and strongly prefer glucose. This study reports the first molecular characterization of the annotated XUT genes of Scheffersomyces stipitis and open reading frames from the yeasts Yarrowia lipolytica and Debaryomyces hansenii. Finally, a phylogenetic analysis demonstrates that transporter function clusters into three distinct groups. One particular group comprised of D. hansenii XylHP and S. stipitis XUT1 and XUT3 demonstrated moderate transport efficiency and higher xylose preferences.  相似文献   

7.
A new gene, pqrA, conferring paraquat resistance to the heterologous host Escherichia coli, from a chromosomal DNA library of Ochrobactrum anthropi JW2, was cloned and analyzed. Cells of E. coli transformed with a plasmid carrying the pqrA gene showed elevated resistance to paraquat, but not to hydrogen peroxide. The predicted amino acid sequence of the PqrA polypeptide showed 71% identity with mll7495 hypothetical membrane protein in Mesorhizobium loti, 49% identity with PA2269 protein in Pseudomonas aeruginosa, and significant identity with other previously reported drug transport proteins. The hydropathy pattern of the PqrA polypeptide showed a significant homology to those of 12-transmembrane-segment (TMS) family export proteins. Immunoblot analysis demonstrated that the PqrA protein found in the membrane protein fraction of O. anthropi JW2 has a molecular mass of 42 kDa. These results suggest that the PqrA protein is a membrane protein that plays an important role in protecting cells against paraquat toxicity.  相似文献   

8.
Lohrke SM  Yang H  Jin S 《Journal of bacteriology》2001,183(12):3704-3711
The ability to utilize Escherichia coli as a heterologous system in which to study the regulation of Agrobacterium tumefaciens virulence genes and the mechanism of transfer DNA (T-DNA) transfer would provide an important tool to our understanding and manipulation of these processes. We have previously reported that the rpoA gene encoding the alpha subunit of RNA polymerase is required for the expression of lacZ gene under the control of virB promoter (virBp::lacZ) in E. coli containing a constitutively active virG gene [virG(Con)]. Here we show that an RpoA hybrid containing the N-terminal 247 residues from E. coli and the C-terminal 89 residues from A. tumefaciens was able to significantly express virBp::lacZ in E. coli in a VirG(Con)-dependent manner. Utilization of lac promoter-driven virA and virG in combination with the A. tumefaciens rpoA construct resulted in significant inducer-mediated expression of the virBp::lacZ fusion, and the level of virBp::lacZ expression was positively correlated to the copy number of the rpoA construct. This expression was dependent on VirA, VirG, temperature, and, to a lesser extent, pH, which is similar to what is observed in A. tumefaciens. Furthermore, the effect of sugars on vir gene expression was observed only in the presence of the chvE gene, suggesting that the glucose-binding protein of E. coli, a homologue of ChvE, does not interact with the VirA molecule. We also evaluated other phenolic compounds in induction assays and observed significant expression with syringealdehyde, a low level of expression with acetovanillone, and no expression with hydroxyacetophenone, similar to what occurs in A. tumefaciens strain A348 from which the virA clone was derived. These data support the notion that VirA directly senses the phenolic inducer. However, the overall level of expression of the vir genes in E. coli is less than what is observed in A. tumefaciens, suggesting that additional gene(s) from A. tumefaciens may be required for the full expression of virulence genes in E. coli.  相似文献   

9.
10.
A chromosomal DNA fragment from the erythromycin-sensitive bacterium Corynebacterium glutamicum ATCC 13032 was shown to mediate resistance against erythromycin, tetracycline, puromycin, and bleomycin in Escherichia coli. Multicopy cloning of the fragment did not cause a resistance phenotype in C. glutamicum. The corresponding gene encodes a hydrophobic protein with 12 potential transmembrane-spanning ex-helical segments showing similarity to drug-H+ antiporters.  相似文献   

11.
The 52 amino acid host killing peptide (Hok) from the hok/sok post-segregational killer system of the Escherichia coli plasmid R1 was synthesized using Fmoc (9-fluorenylmethoxycarbonyl) chemistry, and its molecular weight was confirmed by mass spectroscopy. Hok kills cells by depolarizing the cytoplasmic membrane when it is made in the cytosol. Six microorganisms, E. coli, Bacillus subtilis, Pseudomonas aeruginosa, P. putida, Salmonella typhimurium, and Staphylococcus aureus were exposed to the purified peptide but showed no significant killing. However, electroporation of Hok (200 microgml(-1)) into E. coli cells showed a dramatic reduction (100000-fold) in the number of cells transformed with plasmid DNA which indicates that the synthetic Hok peptide killed cells. Electroporation of Hok into P. putida was also very effective with a 500-fold reduction in electrocompetent cells (100 microgml(-1)). Heat shock in the presence of Hok (380 microgml(-1)) resulted in a 5-fold reduction in E. coli cells but had no effect on B. subtilis. In addition, three Hok fragments (Hok(1-28), Hok(31-52) and Hok(16-52)) killed cells when electroporated into E. coli at 200 microgml(-1) (over 1000-fold killing for Hok(1-28), 50-fold killing for Hok(16-52) and over 1000-fold killing for Hok(31-52)). E. coli cells electroporated with Hok and visualized using transmission electron microscopy showed the same morphological changes as control cells to which Hok was induced using a plasmid inside the cell.  相似文献   

12.
13.
14.
The entire pathway for the biosynthesis of the phycobiliviolin-bearing His-tagged holo-alpha subunit of the cyanobacterial photosynthetic accessory protein phycoerythrocyanin was reconstituted in Escherichia coli. Cyanobacterial genes encoding enzymes required for the conversion of heme to 3Z-phycocyanobilin, a precursor of phycobiliviolin (namely, heme oxygenase 1 and 3Z-phycocyanobilin:ferredoxin oxidoreductase), were expressed from a plasmid under the control of the hybrid trp-lac (trc) promoter. Genes for the apo-phycoerythrocyanin alpha subunit (pecA) and the heterodimeric lyase/isomerase (pecE and pecF), which catalyzes both the covalent attachment of phycocyanobilin and its concurrent isomerization to phycobiliviolin, were expressed from the trc promoter on a second plasmid. Upon induction, recombinant E. coli used endogenous heme to produce holo-PecA with absorbance and fluorescence properties similar to those of the same protein produced in cyanobacteria. About two-thirds of the apo-PecA was converted to holo-PecA. No significant bilin addition took place in a similarly engineered E. coli strain that lacks pecE and pecF. By using immobilized metal affinity chromatography, both apo-PecA and holo-PecA were isolated as ternary complexes with PecE and PecF. The identities of all three components in the ternary complexes were established unambiguously by protein and tryptic peptide analyses performed by matrix-assisted laser desorption ionization-time of flight mass spectrometry.  相似文献   

15.
Filamentous fungi have long been used for production of a range of valuable products; with the advent of molecular biology, it became apparent that these fungi possess considerable potential as expression hosts for the production of heterologous proteins and small molecules. Aspergillus is an important genus, including well known species of economically significant molds, and widely used for basic genetic research. The development of a genetic engineering "toolkit" for Aspergillus, such as those existing for the simpler yeasts and bacteria, was delayed due to the added complexity of the filamentous fungi, and also to the lesser resources devoted to their study. History of the development of Aspergillus as an expression host, current state of the art and future directions are reviewed, touching on related research in other fungi when discussing the areas of greatest potential for future biotechnological applications, focusing on the large and diverse families of fungal secondary metabolites.  相似文献   

16.
Disulfide-bond formation is a major post-translational modification and is essential for protein folding, stability, and function. This is especially true for secreted proteins, many of which possess great potential for biotechnological applications. Focusing on the use of Escherichia coli for the production of this class of proteins, we describe the mechanisms that maintain redox compartmentalization in the cell, with an emphasis on those that promote the formation and isomerization of disulfide bonds in the bacterial periplasm, while presenting parallel pathways in the eukaryotic endoplasmic reticulum. Based on these concepts, we review the use of E. coli as a cell factory for the production of heterologous disulfide-containing proteins using either peri- or cytoplasmic expression and, in particular, how these compartments can be tuned to improve the yield of correctly folded recombinant proteins. Finally, we describe a few examples of the production of small disulfide-rich proteins (protease inhibitors) to illustrate how soluble, active, and fully oxidized recombinants may be successfully obtained upon peri- or cytoplasmic expression in E. coli.  相似文献   

17.
Biosynthesis of cardiolipin in Escherichia coli   总被引:13,自引:0,他引:13  
  相似文献   

18.
His-His-Leu (HHL), a tripeptide derived from a Korean soybean paste, is an angiotensin-I-converting enzyme (ACE) inhibitor. We report here a method of producing this tripeptide efficiently by expressing tandem multimers of the codons encoding the peptide in E. coli and purifying the HHL after hydrolysis of the peptide multiners. The HHL gene, tandemly multimerized to a 40-mer, was ligated with ubiquitin as a fusion gene (UH40). UH40 was inserted into vector pET29b; the UH40 fusion protein was then produced in E. coli BL21. The recombinant UH40 protein was purified by cation-exchange chromatography with a yield of 17.3 mg/l and analyzed by matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry and protein N-terminal sequencing. Leucine aminopeptidase was used to cleave a 405-Da HHL monomer from the UH40 fusion protein and the peptide was purified using reverse-phase high-performance liquid chromatography (HPLC) on a C18 HPLC column, with a final yield of 6.2 mg/l. The resulting peptide was confirmed to be HHL with the aid of MALDI-TOF mass spectrometry, glutamine-TOF mass spectrometry, N-terminal sequencing, and measurement of ACE inhibiting activity. These results suggest that our production method is useful for obtaining a large quantity of recombinant HHL for functional antihypertensive peptide studies.  相似文献   

19.
L Hedegaard  P Klemm 《Gene》1989,85(1):115-124
A strategy has been designed for the construction of recombinant bacterial strains which eventually may become useful as live vaccines and which may also be relevant for the preparation of conventional vaccines. The approach used is the fusion of small antigenic peptide sequences into specific segments of a protein whose location on the bacterial surface ensures that the recombinant organism is able to present the inserted antigen to the host (animal or human) infected by the bacterium. The chosen surface protein is a naturally occurring polymer of Escherichia coli, viz., type 1 fimbriae. The results obtained show that fusion of such foreign sequences into selected points of the structural protein of the fimbriae results in the production of functionally normal type 1 fimbriae. Furthermore, hybrid fimbriae carrying such small epitope sequences can be recognized by antibodies directed against the foreign parent protein. This observation is an important prerequisite for the eventual design of useful vaccines. The analysis of the fimbrial protein and its potential as a carrier of foreign peptides from hepatitis B surface antigen, foot-and-mouth disease virus and poliovirus indicated that there may be several positions in the protein which may turn out to be relevant for this purpose and be important fusion sites.  相似文献   

20.
The siderophore and virulence factor yersiniabactin is produced by Pseudomonas syringae. Yersiniabactin was originally detected by high-pressure liquid chromatography (HPLC); commonly used PCR tests proved ineffective. Yersiniabactin production in P. syringae correlated with the possession of irp1 located in a predicted yersiniabactin locus. Three similarly divergent yersiniabactin locus groups were determined: the Yersinia pestis group, the P. syringae group, and the Photorhabdus luminescens group; yersiniabactin locus organization is similar in P. syringae and P. luminescens. In P. syringae pv. tomato DC3000, the locus has a high GC content (63.4% compared with 58.4% for the chromosome and 60.1% and 60.7% for adjacent regions) but it lacks high-pathogenicity-island features, such as the insertion in a tRNA locus, the integrase, and insertion sequence elements. In P. syringae pv. tomato DC3000 and pv. phaseolicola 1448A, the locus lies between homologues of Psyr_2284 and Psyr_2285 of P. syringae pv. syringae B728a, which lacks the locus. Among tested pseudomonads, a PCR test specific to two yersiniabactin locus groups detected a locus in genospecies 3, 7, and 8 of P. syringae, and DNA hybridization within P. syringae also detected a locus in the pathovars phaseolicola and glycinea. The PCR and HPLC methods enabled analysis of nonpathogenic Escherichia coli. HPLC-proven yersiniabactin-producing E. coli lacked modifications found in irp1 and irp2 in the human pathogen CFT073, and it is not clear whether CFT073 produces yersiniabactin. The study provides clues about the evolution and dispersion of yersiniabactin genes. It describes methods to detect and study yersiniabactin producers, even where genes have evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号