首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligand-activated and tyrosine-phosphorylated ErbB3 receptor binds to the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase and initiates intracellular signaling. Here, we studied the interactions between the N- (N-SH2) and C- (C-SH2) terminal SH2 domains of the p85 subunit of the phosphatidylinositol 3-kinase and eight ErbB3 receptor-derived phosphotyrosyl peptides (P-peptides) by using molecular dynamics, free energy, and surface plasmon resonance (SPR) analyses. In SPR analysis, these P-peptides showed no binding to the C-SH2 domain, but P-peptides containing a phospho-YXXM or a non-phospho-YXXM motif did bind to the N-SH2 domain. The N-SH2 domain has two phosphotyrosine binding sites in its N- (N1) and C- (N2) terminal regions. Interestingly, we found that P-peptides of pY1180 and pY1241 favored to bind to the N2 site, although all other P-peptides showed favorable binding to the N1 site. Remarkably, two phosphotyrosines, pY1178 and pY1243, which are just 63 amino acids apart from the pY1241 and pY1180, respectively, showed favorable binding to the N1 site. These findings indicate a possibility that the pair of phosphotyrosines, pY1178-pY1241 or pY1243-pY1180, will fold into an appropriate configuration for binding to the N1 and N2 sites simultaneously. Our model structures of the cytoplasmic C-terminal domain of ErbB3 receptor also strongly supported the speculation. The calculated binding free energies between the N-SH2 domain and P-peptides showed excellent qualitative agreement with SPR data with a correlation coefficient of 0.91. The total electrostatic solvation energy between the N-SH2 domain and P-peptide was the dominant factor for its binding affinity.  相似文献   

2.
3.
One of the critical intracellular signal transduction pathways involves the binding of the Grb2 SH2 domain to the phosphotyrosine (pTyr) motifs on growth factor receptors, such as epidermal growth factor receptor (EGFR) and erbB2, leading to downstream activation of the oncogenic Ras signaling pathway. Therefore, the Grb2 SH2 domain has been chosen as our target for the development of potential anticancer agents. As a continuation of our earlier work, herein we report the design and synthesis of new peptide analogs, and their inhibitory effect on the Grb2 SH2 domain using surface plasmon resonance (SPR) technology. These novel agents do not contain phosphotyrosine or phosphotyrosine mimics. Binding interactions between these peptides and the Grb2 SH2 domain were measured and analyzed using a BIAcore X instrument, which provides detailed information on the real-time detection of the binding interaction. The results of this study should provide important information for the further development of peptides or peptidomimetics with high affinity for the Grb2 SH2 domain.  相似文献   

4.
Determination of the binding motif and identification of interaction partners of the modular domains such as SH2 domains can enhance our understanding of the regulatory mechanism of protein-protein interactions. We propose here a new computational method to achieve this goal by integrating the orthogonal information obtained from binding free energy estimation and peptide sequence analysis. We performed a proof-of-concept study on the SH2 domains of SAP and Grb2 proteins. The method involves the following steps: (1) estimating the binding free energy of a set of randomly selected peptides along with a sample of known binders; (2) clustering all these peptides using sequence and energy characteristics; (3) extracting a sequence motif, which is represented by a hidden Markov model (HMM), from the cluster of peptides containing the sample of known binders; and (4) scanning the human proteome to identify binding sites of the domain. The binding motifs of the SAP and Grb2 SH2 domains derived by the method agree well with those determined through experimental studies. Using the derived binding motifs, we have predicted new possible interaction partners for the Grb2 and SAP SH2 domains as well as possible interaction sites for interaction partners already known. We also suggested novel roles for the proteins by reviewing their top interaction candidates.  相似文献   

5.
The growth factor receptor-binding protein 2-Src homology 2 (Grb2-SH2) domain plays an important role in the oncogenic Ras signal transduction pathway, therefore, peptidic inhibitors of the Grb2-SH2 domain has been chosen as our target for the development of antiproliferative agents. The inhibitory effects of peptide analogs on the Grb2-SH2 domain have been determined by using surface plasmon resonance (SPR) technology developed with the BIACORE biosensor. Recently, we reported the analysis of interactions between peptides and the GST-Grb2-SH2 that was immobilized on the surface of sensor chip by using BIACORE biosensor (the protein-immobilized method). Herein, we analyze interactions of peptides with the GST-Grb2-SH2 that was captured by the anti-GST antibodies immobilized on the surface of sensor chip (the protein-captured method). Results obtained by both methods are in good correlation, indicating the immobilization of GST-Grb2-SH2 on the sensor chip did not significantly affect the binding of Grb2-SH2 with peptides. Both SPR-based assays are very sensitive bioanalytical methods and can be applied in screening inhibitors of target proteins or purifying GST-fusion proteins, however, considering the efficiency and the cost, the GST-Grb2-SH2-immobilized method is suggested for routinely determining the binding potency of inhibitors of Grb2-SH2.  相似文献   

6.
Three monocarboxylic-containing analogues, O-carboxymethyltyrosine (cmT, 5), 4-(carboxymethyl)phenylalanine (cmF, 6), and 4-(carboxydifluoromethyl)phenylalanine (F2cmF, 7) were utilized as phosphotyrosyl (pTyr) replacements in a high affinity B-bend mimicking platform, where they exhibited IC50 values of 2.5 microM, 65 microM and 28 microM, respectively, in a Grb2 SH2 domain Biacore binding assay. When a terminal N(alpha)-oxalyl axillary was utilized to enhance ligand interactions with a critical SH2 domain Arg67 residue (alphaA-helix), binding potencies increased from 4- to 10-fold, resulting in submicromolar affinity for cmF (IC50 = 0.6 microM) and low micromolar affinity for F2cmF (IC50 = 2 microM). Cell lysate binding studies also showed inhibition of cognate Grb2 binding to the p185erbB-2 phosphoprotein in the same rank order of potency as observed in the Biacore assay. These results indicate the potential value of cmF and F2cmF residues as pTyr mimetics for the study of Grb2 SH2 domains and suggest new strategies for improvements in inhibitor design.  相似文献   

7.
The Grb2 adapter protein is involved in the activation of the Ras signaling pathway. It recruits the Sos protein by binding of its two SH3 domains to Sos polyproline sequences. We observed that the binding of Grb2 to a bivalent ligand, containing two Sos-derived polyproline-sequences immobilized on a SPR sensor, shows unusual kinetic behavior. SPR-kinetic analysis and supporting data from other techniques show major contributions of an intermolecular bivalent binding mode. Each of the two Grb2 SH3 domains binds to one polyproline-sequence of two different ligand molecules, facilitating binding of a second Grb2 molecule to the two remaining free polyproline binding sites. A molecular model based on the X-ray structure of the Grb2 dimer shows that Grb2 is flexible enough to allow this binding mode. The results fit with a role of Grb2 in protein aggregation, achieving specificity by multivalent interactions, despite the relatively low affinity of single SH3 interactions.  相似文献   

8.
Lung FD  Tsai JY 《Biopolymers》2003,71(2):132-140
The growth factor receptor-bound protein 2 (Grb2) plays an important role in the Ras signaling pathway. Several proteins were found to be overexpressed by oncogenes in the Ras signaling pathway, rendering Grb2 a potential target for the design of antitumor agents. Blocking the interaction between the phosphotyrosine-containing activated receptor and the Src-homology 2 (SH2) domain of Grb2 thus constitutes an important strategy for the development of potential anticancer agents. X-ray, NMR structural investigations, and molecular modeling studies have provided the target structure of Grb2 SH2 domain-alone or complexed with a phosphotyrosine-containing peptide-which is useful for the structure-based design of peptides or peptidomimetics with high affinity for the Grb2 SH2 domain. We review here the variety of approaches to Grb2 SH2 pepide inhibitors developed with the aim of interrupting Grb2 recognition. Inhibitory effects of peptide analogs on the Grb2 SH2 domain and their binding affinities for Grb2 SH2 were determined by ELISA, cell-based assays, or Surface Plasman Resonance (SPR) technology. Results of theses studies provide important information for further modifications of lead peptides, and should lead to the discovery of potent peptides as anticancer agents.  相似文献   

9.
The phosphotyrosyl protein phosphatase activity of prostatic acid phosphatase (PAP) has been well established. It has also been suggested that PAP partly regulates the activity of growth factor receptors by dephosphorylating the autophosphorylysable tyrosines in them. We studied the binding of the peptides from epidermal growth factor receptor (EGFR) and its homolog (ErbB-2), corresponding to their autophosphorylation sites, to PAP using theoretical modeling and molecular dynamics (MD) simulation methods. Nine different peptides, each with a phosphotyrosine residue, were docked on human PAP. The binding energies of these peptide-PAP complexes were calculated theoretically and compared to experimentally obtained affinities. The peptide Ace--DNLpYYWD--NH2 from ErbB-2(1197-1203) showed the most favorable free energy of binding when estimated theoretically. The results demonstrate that the presence of another tyrosine residue proximate to C-terminal of autophosphorylysable Tyr enhances the binding affinity considerably. The presence of a bulky group instead prevents the binding, as is observed in case of peptide Ace--NLYpYWDQ--NH2 which failed to bind, both in theoretical calculations and experiments. Thus we demonstarted that PAP could potentially bind to EGFR and Erbb-2 and dephosphorylate them. Thus it could be involved in the regulation of the function of such receptors. In addition, complexes of a peptide from AngiotensinII and phosphotyrosine(pY) with human PAP were also modeled. The effects of different protonation states of the titratable active site residues on ligand (pY) binding have also been investigated. For a favorable binding His12 and Asp258 should be neutral, His257 should be positively charged and the phosphate group of the ligand should be in PO(4) (3-) state. Furthermore, the analysis of protein motion as observed during simulations suggests the loop-loop contact in the PAP dimer to be of importance in cooperativity.  相似文献   

10.
1H, 13C, and 15N NMR resonances of the SH2 domain of Grb2/Ash in both the free form and the form complexed with a phosphotyrosine-containing peptide derived from the EGF receptor were assigned by analysis of multi-dimensional, double- and triple-resonance NMR experiments. From the chemical shift changes of individual residues upon peptide binding, the binding site for the peptide was mapped on the structure of Grb2/Ash SH2. The peptide was not recognized by the groove formed by the BG and EF loops, suggesting that the EGFR peptide does not bind to Grb2/Ash SH2 in an extended conformation. This was supported by analysis of the binding affinity of mutants where residues on the BG and EF loops were changed to alanine. The present results are consistent with the recently reported structures of Grb2/Ash SH2 complexed with BCR-Abl and Shc-derived phosphotyrosine containing peptides, where the peptide forms a turn conformation. This shows that the specific conformation of the phosphotyrosine-containing sequence is required for the SH2 binding responsible for downstream signaling.  相似文献   

11.
The beta-dystroglycan/Grb2 interaction was investigated and a proline-rich region within beta-dystroglycan that binds Grb2-src homology 3 domains identified. We used surface plasmon resonance (SPR), fluorescence analysis, and solid-phase binding assay to measure the affinity constants between Grb2 and the beta-dystroglycan cytoplasmic tail. Analysis of the data obtained from SPR reveals a high-affinity interaction (K(D) approximately 240 nM) between Grb2 and the last 20 amino acids of the beta-dystroglycan carboxyl-terminus, which also contains a dystrophin-binding site. A similar K(D) value (K(D) approximately 280 nM) was obtained by solid-phase binding assay and in solution by fluorescence. Both Grb2-SH3 domains bind beta-dystroglycan but the N-terminal SH3 domain binds with an affinity approximately fourfold higher than that of the C-terminal SH3 domain. The Grb2-beta-dystroglycan interaction was inhibited by dystrophin in a range of concentration of 160-400 nM. These data suggest a highly regulated and dynamic dystrophin/dystroglycan complex formation and that this complex is involved in cell signaling.  相似文献   

12.
Surface plasmon resonance (SPR) is a useful biosensor technique for the study of biomolecular interactions, with the potential for high-throughput screening of ligand interactions with drug targets. The key to its successful use, however, is in the appropriate design of the experiment, including the mode of immobilization to the biosensor chip. We report an investigation of the use of SPR for measuring the affinity of the G7-18NATE peptide ligand for its Grb7-SH2 domain target involved in the migratory and proliferative potential of cancer cells. Previous studies have shown that the cyclic non-phosphorylated peptide, G7-18NATE, inhibits Grb7 interactions with upstream binding partners and is able to inhibit both cell migration and proliferation of cancer cells. We report the synthesis of a biotinylated G7-18NATE covalently attached to a linker (G7-18NATE-ASASASK-Biotin) and compare its interaction with the Grb7-SH2 domain by SPR using three different immobilization strategies; immobilisation of the peptide via streptavidin, immobilization of glutathione S-transferase (GST)-Grb7-SH2 domain via anti-GST antibody, and immobilization of biotinylated Grb7-SH2 domain via streptavidin. This revealed that sensorgrams free from non-specific binding and displaying simple kinetics were most readily achieved by immobilising the protein rather than the peptide, in spite of the lower response associated with this method. K D values of ~300 μM were determined for both strategies at pH 7.4. This compared with a K D value of 4.4 μM at pH 6 demonstrating the importance of pH on this interaction. Overall, the immobilised protein systems are most suitable for future comparative screening efforts using SPR.  相似文献   

13.
The Src homology 2 (SH2) and collagen domain protein Shc plays a pivotal role in signaling via tyrosine kinase receptors, including epidermal growth factor receptor (EGFR). Shc binding to phospho-tyrosine residues on activated receptors is mediated by the SH2 and phospho-tyrosine binding (PTB) domains. Subsequent phosphorylation on Tyr-317 within the Shc linker region induces Shc interactions with Grb2-Son of Sevenless that initiate Ras-mitogen-activated protein kinase signaling. We use molecular dynamics simulations of full-length Shc to examine how Tyr-317 phosphorylation controls Shc conformation and interactions with EGFR. Our simulations reveal that Shc tyrosine phosphorylation results in a significant rearrangement of the relative position of its domains, suggesting a key conformational change. Importantly, computational estimations of binding affinities show that EGFR-derived phosphotyrosyl peptides bind with significantly more strength to unphosphorylated than to phosphorylated Shc. Our results unveil what we believe is a novel structural phenomenon, i.e., tyrosine phosphorylation of Shc within its linker region regulates the binding affinity of SH2 and PTB domains for phosphorylated Shc partners, with important implications for signaling dynamics.  相似文献   

14.
Kim SH  Kiick KL 《Peptides》2007,28(11):2125-2136
Heterogeneity in the composition and in the polydispersity of heparin has motivated the development of homogeneous heparin mimics, and peptides of appropriate sequence and chemical function have therefore recently emerged as potential replacements for heparin in selected applications. Here, we report the assessment of the binding affinities of multiple sulfated peptides (SPs) for a set of heparin-binding peptides (HBPs) and for vascular endothelial growth factor isoform 165 (VEGF165); these binding partners have application in the selective immobilization of proteins and in hydrogel formation through non-covalent interactions. Sulfated peptides were produced via solid-phase methods, and their affinity for the HBPs and VEGF165 was assessed via affinity liquid chromatography (ALC), surface plasmon resonance (SPR), and in selected cases, isothermal titration calorimetry (ITC). The shortest peptide, SP(a), showed the highest affinity binding of HBPs and VEGF165 in both ALC and SPR measurements, with slight exceptions. Of the investigated HBPs, a peptide based on the heparin-binding domain of human platelet factor 4 showed greatest binding affinities toward all of the SPs, consistent with its stronger binding to heparin. The affinity between SP(a) and PF4(ZIP) was indicated via SPR (K(D)=5.27 microM) and confirmed via ITC (K(D)=8.09 microM). The binding by SP(a) of both VEGF and HBPs suggests its use as a binding partner to multiple species, and the use of these interactions in assembly of materials. Given that the peptide sequences can be varied to control binding affinity and selectivity, opportunities are also suggested for the production of a wider array of matrices with selective binding and release properties useful for biomaterials applications.  相似文献   

15.
Zhang D  Shao C  Hu S  Ma S  Gao Y 《PloS one》2012,7(1):e29902
The Grb7 (growth factor receptor-bound 7) protein, a member of the Grb7 protein family, is found to be highly expressed in such metastatic tumors as breast cancer, esophageal cancer, liver cancer, etc. The src-homology 2 (SH2) domain in the C-terminus is reported to be mainly involved in Grb7 signaling pathways. Using the random peptide library, we identified a series of Grb7 SH2 domain-binding nonphosphorylated peptides in the yeast two-hybrid system. These peptides have a conserved GIPT/K/N sequence at the N-terminus and G/WD/IP at the C-terminus, and the region between the N-and C-terminus contains fifteen amino acids enriched with serines, threonines and prolines. The association between the nonphosphorylated peptides and the Grb7 SH2 domain occurred in vitro and ex vivo. When competing for binding to the Grb7 SH2 domain in a complex, one synthesized nonphosphorylated ligand, containing the twenty-two amino acid-motif sequence, showed at least comparable affinity to the phosphorylated ligand of ErbB3 in vitro, and its overexpression inhibited the proliferation of SK-BR-3 cells. Such nonphosphorylated peptides may be useful for rational design of drugs targeted against cancers that express high levels of Grb7 protein.  相似文献   

16.
We have studied the interactions between calmodulin (CaM) and three target peptides from the death-associated protein kinase (DAPK) protein family using both experimental and modeling methods, aimed at determining the details of the underlying biological regulation mechanisms. Experimentally, calorimetric binding free energies were determined for the complexes of CaM with peptides representing the DAPK2 wild-type and S308D mutant, as well as DAPK1. The observed affinity of CaM was very similar for all three studied peptides. The DAPK2 and DAPK1 peptides differ significantly in sequence and total charge, while the DAPK2 S308D mutant is designed to model the effects of DAPK2 Ser308 phosphorylation. The crystal structure of the CaM-DAPK2 S308D mutant peptide is also reported. The structures of CaM-DAPK peptide complexes present a mode of CaM-kinase interaction, in which bulky hydrophobic residues at positions 10 and 14 are both bound to the same hydrophobic cleft. To explain the microscopic effects underlying these interactions, we performed free energy calculations based on the approximate MM-PBSA approach. For these highly charged systems, standard MM-PBSA calculations did not yield satisfactory results. We proposed a rational modification of the approach which led to reasonable predictions of binding free energies. All three complexes are strongly stabilized by two effects: electrostatic interactions and buried surface area. The strong favorable interactions are to a large part compensated by unfavorable entropic terms, in which vibrational entropy is the largest contributor. The electrostatic component of the binding free energy followed the trend of the overall peptide charge, with strongest interactions for DAPK1 and weakest for the DAPK2 mutant. The electrostatics was dominated by interactions of the positively charged residues of the peptide with the negatively charged residues of CaM. The nonpolar binding free energy was comparable for all three peptides, the largest contribution coming from the Trp305. About two-thirds of the buried surface area corresponds to nonpolar residues, showing that hydrophobic interactions play an important role in these CaM-peptide complexes. The simulation results agree with the experimental data in predicting a small effect of the S308D mutation on CaM interactions with DAPK2, suggesting that this mutation is not a good model for the S308 phosphorylation.  相似文献   

17.
Summary One of the critical intracellular signaling pathways involves specific interactions between growth factor receptors and the adaptor protein Grb2. These interactions normally involve specific tyrosine phosphorylated regions in receptors and other cognate proteins. Following the lead of our recent findings that a phage library based non-phosphorylated disulfide linked 11-mer peptide inhibited such interactions, we report here the synthesis of novel redox-stable cyclic peptide analogs. These include thioether cyclized and backbone cyclized structures. The thioether analog was prepared under mild conditions from an N-terminally chloroacetylated and C-terminally cysteine extended peptide precursor. The thioether peptide showed equipotent binding affinity for the Grb2-SH2 domain (IC50=10–15 μM) when compared to the disulfide cyclized lead-peptide. The bioactive thioether linked peptide was demonstrated to offer advantages to the disulfide cyclized peptides under physiological conditions.  相似文献   

18.
Qin C  Wavreille AS  Pei D 《Biochemistry》2005,44(36):12196-12202
Src homology-2 (SH2) domains recognize specific phosphotyrosyl (pY) proteins and promote protein-protein interactions. In their classical binding mode, the SH2 domain makes specific contacts with the pY residue and the three residues immediately C-terminal to the pY, although for a few SH2 domains, residues N-terminal to pY have recently been shown to also contribute to the overall binding affinity and specificity. In this work, the ability of an SH2 domain to bind to the N-terminal side of pY has been systematically examined. A pY peptide library containing completely randomized residues at positions -5 to -1 (relative to pY, which is position 0) was synthesized on TentaGel resin and screened against the four SH2 domains of phosphatases SHP-1 and SHP-2. Positive beads that carry high-affinity ligands of the SH2 domains were identified using an enzyme-linked assay, and the peptides were sequenced by partial Edman degradation and matrix-assisted laser desorption ionization mass spectrometry. The N-terminal SH2 domain of SHP-2 binds specifically to peptides of the consensus sequence (H/F)XVX(T/S/A)pY. Further binding studies with individually synthesized pY peptides show that pY and the five residues N-terminal to pY, but not any of the C-terminal residues, are important for binding. The other three SH2 domains also bound to the library beads, albeit more weakly, and the selected peptides did not show any clear consensus. These results demonstrate that at least some SH2 domains can bind to pY peptides in an alternative mode by recognizing only the residues N-terminal to pY.  相似文献   

19.
A nonphosphorylated disulfide-bridged peptide, cyclo(Cys-Glu1-Leu-Tyr-Glu-Asn-Val-Gly-Met-Tyr9-Cys)-amide (termed G1) has been identified, by phage library, that binds to the Grb2-SH2 domain but not the src SH2 domain. Synthetic G1 blocks the Grb2-SH2 domain association (IC50 of 15.5 microM) with natural phosphopeptide ligands. As a new structural motif that binds to the Grb2-SH2 domain in a pTyr-independent manner, the binding affinity of G1 is contributed by the highly favored interactions of its structural elements interacting with the binding pocket of the protein. These interactions involve side-chains of amino acids Glu1, Tyr3, Glu4, Asn5, and Met8. Also a specific conformation is required for the cyclic peptide when bound to the protein. Ala scanning within G1 and molecular modeling analysis suggest a promising model in which G1 peptide binds in the phosphotyrosine binding site of the Grb2-SH2 domain in a beta-turn-like conformation. Replacement of Tyr3 or Asn5 with Ala abrogates the inhibitory activity of the peptide, indicating that G1 requires a Y-X-N consensus sequence similar to that found in natural pTyr-containing ligands, but without Tyr phosphorylation. Significantly, the Ala mutant of Glu1, i.e. the amino acid N-terminal to Y3, remarkably reduces the binding affinity. The position of the Glu1 side-chain is confirmed to provide a complementary role for pTyr3, as demonstrated by the low micromolar inhibitory activity (IC50 = 1.02 microM) of the nonphosphorylated peptide 11, G1(Gla1), in which Glu1 was replaced by gamma-carboxy-glutamic acid (Gla).  相似文献   

20.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号