首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V N Uverski? 《Tsitologiia》1999,41(2):173-182
The dependence of spectral properties of Mg2+ and NH4+ salt of 8-anilino-1-naphthalenesulfonic acid (Mg-(ANS)2 and NH4-ANS, respectively) on the dye concentration and solvent composition was investigated by means of steady-state and time-resolved fluorescence spectroscopy. We have shown that the increase in ANS concentrations leads to changes in the shape of absorption and fluorescence spectra of the dye, accompanied by the decrease in its fluorescence decay time values. Such changes, observed in aqueous and organic solvents for both salts of ANS, reflect the existence of self-association of the dye molecules. The decrease in fluorescence intensity induced by self-association of the probe molecules is too small to explain a weak fluorescence of ANS in water. At the same time, it expounds the difference between the decay times of protein-embedded ANS molecules upon interaction of this probe with native and molten globule proteins.  相似文献   

2.
We continue our investigation of the photophysics of 1,8-anilinonaphthalenesulfonate in protein and solvent systems. In this report, we concentrate on the nature of the excited states as observed in UV spectra. We develop a fairly general formalism for handling the coupled transitions we observe in the partial systems aniline and naphthalene. We assign one of the near-UV transitions, which is more clearly discernible in congeners of 1,8-ANS, but still present in 1,8-ANS as we postulate it, to a charge-transfer band. The other transition is from aniline itself. The expected energies of these now coupled bands in anilinonaphthalene and ANS are calculated, and the transition dipole moment for these transitions is derived.  相似文献   

3.
V N Uverski? 《Tsitologiia》1999,41(2):183-189
Changes in ANS fluorescence decay parameters induced by the interaction of the probe with proteins have been investigated. The existence of at least two different modes of interactions between the ANS and protein was established. The interactions of the first type are connected with binding of an ANS molecule with the surface of a protein molecule. In this case ANS molecules are well acceptable for a solvent. The interactions of the second type are characteristic of the protein-embedded ANS molecules. The decay time values of the second type complexes change considerably (> 1.5-fold) during the protein molecule transformation into the molten globule-like conformation. The molecular model explaining such a behaviour is suggested.  相似文献   

4.
It is generally assumed that the rotational diffusion coefficients of fluorophores are independent of time subsequent to excitation, and that the rotational diffusion coefficients of the ground and the excited states are the same. We now describe a linkage between the extent of solvent relaxation and the rate of fluorescence depolarization. Specifically, if a fluorophore displays time-dependent solvent relaxation it may also show a time-dependent decrease in its rotational rate. A decreased rate of rotation could result from the increased interaction with polar solvent molecules which occurs as a result of solvent relaxation. The decays of anisotropy predicted from our model closely mimic those often observed for fluorophores which are bound to macromolecules. For example, the decays are more complex than a single exponential, and the time-resolved anisotropy can display a limiting value which does not decay to zero. The effect of solvent relaxation upon the rates of rotational diffusion is expected to be most dramatic for solvent-sensitive fluorophores in a viscous environment. These conditions are frequently encountered for fluorophore-macromolecule complexes. Consideration of the linkage between solvent relaxation and rotational diffusion leads to two unusual predictions. First even spherical fluorophores in an isotropic environment could display multi- or nonexponential decays of fluorescence anisotropy. Secondly, for the special case in which the fluorophore dipole moment decreases upon excitation, the theory predicts that the anisotropy decay rate may increase with time subsequent to pulsed excitation. The predictions of this theory are consistent with published data on the effects of red-edge excitation upon the apparent rotational rates of fluorophores in polar solvents.  相似文献   

5.
A theoretical model for the effect of the dielectric constant (c) of the solvent medium on ferrocytochrome c oxidation by ferricyanide is developed to account for the observed variations of the rate constant (k) of reactions in aqueous binary mixtures with alcohols (less than 5-10 mol% ethanol and propranolol). A correlation between k and c is found if ln k is expressed as a function of the Kirkwood parameter (c-1)(2c+1). The results of calculations indicate that the use of the 'overall dipole moment' of cytochrome c in oxidoreduction studies is likely to be unreliable. Instead, the decrease in k in alcohol/water mixtures is best explained--in conformity with Onsager's theory of the reaction field--by a polarity effect on the dipole moment of the cytochrome c heme upon diffusion of the polar solvent molecules into the low dielectric constant heme crevice.  相似文献   

6.
We used frequency-domain fluorometry to measure intensity and anisotropy decay of indole fluorescence in cyclohexane/ethanol mixtures at 20 degrees C. In 100% cyclohexane or 100% ethanol the intensity decay of indole appears to be a single exponential with decay times of 7.66 and 4.10 ns, respectively. In cyclohexane containing a small percentage of ethanol (up to 10%), we observed increased heterogeneity in intensity decay, resulting in a 10-fold increase in chi 2R for the single-exponential fit, as compared with the double-exponential model. We obtained comparable or better fits using unimodal Lorentzian and Gaussian lifetime distributions (two floating parameters) than for the two-exponential model (three floating parameters). We believe that the distribution of decay times reflects a range of indole solvation states in the dominately nonpolar solutions. This result suggests that a variety of hydrogen-bonding configurations could be one origin of the distributions of decay times observed for tryptophan emission from proteins. We also measured rotational diffusion of indole in cyclohexane, ethanol and its mixtures at 20 degrees C. The picosecond correlation times required that the mean decay times be decreased by acrylamide quenching (in ethanol) or energy transfer (in cyclohexane). In ethanol we observed nearly isotropic rotation of indole; in cyclohexane we obtained two correlation times of 17 and 73 ps. The shorter correlation time in cyclohexane appears to be due to the slip boundary condition, which was found to be progressively eliminated by small percentages of ethanol. Hence, hydrogen-bonding interactions appear to have a substantial effect on the rotational dynamics of indole.  相似文献   

7.
在278.2~308.2 K温度范围内,测定阿奇霉素在水/乙醇混合溶剂中的溶解度,根据固液平衡理论建立了该体系的溶解度修正模型。采用X线粉末衍射法和差示扫描量热法,对阿奇霉素在不同温度、不同体积比的水/乙醇混合溶剂中得到的晶体进行鉴别。同时利用溶解度数据估算了阿奇霉素在水/乙醇体系中的溶解热(-25.26~-16.11 k J/mol)、混合热(-9.94~-3.25 k J/mol)。通过溶液化学理论推导了阿奇霉素溶剂化平衡常数K与活度系数γ2的方程:γ2=1/(1+K),建立了溶剂化焓与温度、水/乙醇两者体积比(φ)之间的关系式,为ΔH=RTln(17.86exp(3.4φ)-1)。采用溶析结晶方法得到的6种阿奇霉素晶体,均属单斜晶系,但具有不同的晶胞参数且其密度和熔点也不同。同时发现温度越高,水/乙醇体积比越大,得到的晶体稳定性越差(晶体的熔点和密度降低)。在水/乙醇混合溶剂的溶析结晶体系中,产生阿齐霉素多晶型的现象与溶剂化作用的强弱有关。  相似文献   

8.
Ground powder of the leaf and fruit of Piper betle L., a tropical spice plant grown in Southeast Asia, was prepared and extracted by chloroform, ethanol and water with one solvent only or with 3 solvents in sequence. The betel powder and various extracts were added to YES broth to determine their effects on the growth and aflatoxin production by Aspergillus parasiticus. Results showed that betel leaf powder exhibited higher antimycotic activity than fruit. One half percent of ground leaf powder completely inhibited the growth and aflatoxin production by A. parasiticus. Among the solvent extracts, chloroform and ethanol extracts of betel leaf prepared from a single solvent extraction showed more antimycotic activity. The ethanol extract of betel leaf at the level of 450 micrograms/ml would eliminate A. parasiticus growth and aflatoxin production. The antimycotic activity of this ethanol extract was most pronounced at pH 4.  相似文献   

9.
The molecular motion of retinal within the purple membrane was investigated by flash-induced absorption anisotropies with or without ethanol. In the absence of ethanol, the measured anisotropies at several wavelengths exhibited almost the same slow decay. This slow decay was attributed to only the rotation of purple membrane sheet itself in the aqueous suspension. In the presence of ethanol, however, we observed the wavelength-dependent anisotropies. The fluidity of the purple membrane, investigated with a fluorescence anisotropy method, was increased by the addition of ethanol. These facts indicated that the characteristic motion of bacteriorhodopsin is induced in perturbed purple membrane with ethanol. The data analysis was performed, taking account of the overlapping of absorption from ground-state bacteriorhodopsin and photointermediates. The results showed that the rotational motion of photointermediates within the membrane was more restricted than that of nonexcited bacteriorhodopsin. The addition of ethanol facilitated the rotation of nonexcited protein, whereas it did not significantly affect the motion of photointermediates. The restricted motion of photointermediates is probably caused by a conformational change in them, which may hinder the rotation of monomer protein and/or induce the interaction between photointermediate and neighboring proteins.  相似文献   

10.
J Kottalam  D A Case 《Biopolymers》1990,29(10-11):1409-1421
Langevin modes describe the behavior of atoms moving on a harmonic potential surface subject to viscous damping described by a classical Langevin equation. We present applications to the protein crambin and to the DNA duplex d(CpGpCpGpCpG)2 and its complex with ethidium. Our friction matrix is weighted according to surface area exposed to solvent, and results are reported for various values of the solvent viscosity and models for hydrodynamic interactions. Even for relatively small solvent friction (eta = 0.3 cp) a substantial number of modes are overdamped, and time correlation functions decay smoothly without the oscillations characteristic of gas-phase calculations. Perturbation theory starting from the gas-phase modes is accurate for many low-frequency modes (which are overdamped in the presence of solvent), but fails badly for higher modes. For correlation functions of interest to fluorescence depolarization or nmr relaxation, the plateau values are insensitive to solvent viscosity, but the relaxation times are not. The advantages and limitations of this analysis of macromolecular motions are discussed.  相似文献   

11.
Clostridium thermocellum strains SS21 and SS22, producing high yields of ethanol, were tolerant to 4.0 and 5.0% (v/v) ethanol, respectively. This is the highest ethanol tolerance so far reported by wild type strains of C. thermocellum. In the presence of added ethanol, both the strains had extended period of growth arrest. On addition of ethanol at different culture ages increase in ethanol tolerance upto 7.0 and 8.0% (v/v) by strains SS21 and SS22, respectively was observed. The optimum growth temperature for strain SS21 decreased as the concentration of ethanol in the medium increased and remained constant for strain SS22. Both the strains were tolerant to various solvents and acetic acid indicating that high ethanol tolerance of the strains is due to the general solvent tolerance of the organisms.  相似文献   

12.
We investigate the circular dichroism of the I-FABP system with the ligands ANS (1,8-anilinonaphthalene sulfonate) and AnN (anilinonaphthalene) as previously reported in our earlier publications in the series (referred to as I and II here) on ANS photophysics. We employ our semi-empirical calculated spectral functions (from II) to compute the actual CD spectra, without any additional assumptions or data except what we have previously presented with respect to binding geometry (in I). The common mechanisms fail to produce the observed spectra. However, we identify a novel mechanism of induced CD activity, which does succeed. This new mechanism also suggests how it is that near UV CD can often show extreme sensitivity to local 'order' effects.  相似文献   

13.
The kinetics of bimolecular decay of alpha-tocopheroxyl free radicals (T) was studied by ESR mainly in ethanol and heptanol solvents. A second-order kinetic law was observed during the whole course of reaction (-d[T]/dt = 2k[T]2) and the following rate constants were determined with good accuracy in the temperature range 281-321 K: ethanol: log(2k) = 8.2 +/- 0.5--(6.6 +/- 0.7 kcal/mol)/(2.3RT) M-1.s-1; heptanol: log(2k) = 6.1 +/- 0.4--(4.3 +/- 0.6 kcal/mol)/(2.3RT) M-1.s-1. The global rate constant clearly increases with solvent polarity.  相似文献   

14.
The deoxyguanosine-5'-monophosphate in aqueous solution self-associates into stable structures, which include hexagonal and cholesteric columnar phases. The structural unit is a four-stranded helix, composed of a stacked array of Hoogsteen-bonded guanosine quartets. We have measured by osmotic stress method the force per unit length versus interaxial distance between helices in the hexagonal phase under various ionic conditions. Two contributions have been recognized: the first one is purely electrostatic, is effective at large distances, and shows a strong dependence on the salt concentration of the solution. The second contribution is short range, dominates at interaxial separations smaller than about 30-32 A, and rises steeply as the columns approach each other, preventing the coalescence of the helices. This repulsion has an exponential nature and shows a magnitude and a decay length insensitive to the ionic strength of the medium. Because these features are distinctive of the hydration force detected between phospholipid bilayers or between several linear macromolecules (DNA, polysaccharides, collagen), we conclude that the dominant force experienced by deoxyguanosine helices approaching contact is hydration repulsion. The observed decay length of about 0.7 A has been rationalized to emerge from the coupling between the 3-A decay length of water solvent and the helically ordered structure of the hydrophilic groups on the opposing surfaces. The present results agree with recent measurements, also showing the dependence of the hydration force decay on the structure of interacting surfaces and confirm the correlations between force and structure.  相似文献   

15.
Huang VW  Emerson JP  Kurtz DM 《Biochemistry》2007,46(40):11342-11351
Stopped-flow mixing of the Desulfovibrio vulgaris two-iron superoxide reductase (2Fe-SOR) containing the ferrous active site with superoxide generates a dead time intermediate whose absorption spectrum is identical to that of a putative ferric-hydroperoxo intermediate previously observed by pulse radiolysis. The dead time intermediate is shown to be a product of reaction with superoxide and to be generated at a much higher proportion of active sites than by pulse radiolysis. This intermediate decays smoothly to the resting ferric active site ( approximately 30 s-1 at 2 degrees C and pH 7) with no other detectable intermediates. Deuterium isotope effects demonstrate that solvent proton donation occurs in the rate-determining step of dead time intermediate decay and that neither of the conserved pocket residues, Glu47 or Lys48, functions as a rate-determining proton donor between pH 6 and pH 8. Fluoride, formate, azide, and phosphate accelerate decay of the dead time intermediate and for azide or fluoride lead directly to ferric-azido or -fluoro complexes of the active site, which inhibit Glu47 ligation. A solvent deuterium isotope effect is observed for the azide-accelerated decay, and the decay rate constants are proportional to the concentrations and pKa values of HX (X- = F-, HCO2-, N3-). These data indicate that the protonated forms of the anions function analogously to solvent as general acids in the rate-determining step. The results support the notion that the ferrous SOR site reacts with superoxide by an inner sphere process, leading directly to the ferric-hydroperoxo intermediate, and demonstrate that the decay of this intermediate is subject to both specific- and general-acid catalysis.  相似文献   

16.
Protein function is intimately related to the dynamics of the protein as well as to the dynamics of the solvent shell around the protein. Although it has been argued extensively that protein dynamics is slaved to solvent dynamics, experimental support for this hypothesis is scanty. In this study, measurements of fluorescence anisotropy decay kinetics have been used to determine the motional dynamics of the fluorophore acrylodan linked to several locations in a small protein barstar in its various structural forms, including the native and unfolded states as well as the acid and protofibril forms. Fluorescence upconversion and streak camera measurements have been used to determine the solvation dynamics around the fluorophore. Both the motional dynamics and solvent dynamics were found to be dependent upon the location of the probe as well as on the structural form of the protein. While the (internal) motional dynamics of the fluorophore occur in the 0.1-3 ns time domain, the observed mean solvent relaxation times are in the range of 20-300 ps. A strong positive correlation between these two dynamical modes was found in spite of the significant difference in their time scales. This observed correlation is a strong indicator of the coupling between solvent dynamics and the dynamics in the protein.  相似文献   

17.
The photophysical properties of a series of helicene cations in various solvents have been investigated using stationary and time-resolved spectroscopy. These compounds fluoresce in the near infrared region with a quantum yield ranging between 2 and 20% and a lifetime between 1 and 12 ns, depending of the solvent. No clear solvent dependence could be recognized except for a decrease of fluorescence quantum yield and lifetime with increasing hydrogen-bond donating ability of the solvent. In water, the helicene cations undergo aggregation. This effect manifests itself by the presence of a slow fluorescence decay component, whose amplitude increases with dye concentration, and by a much slower decay of the polarization anisotropy in water compared to an organic solvent of similar viscosity. However, aggregation has essentially no effect on the stationary fluorescence spectrum, whereas relatively small changes can be seen in the absorption spectrum. Analysis of the dependence of aggregation on the dye concentration reveals that the aggregates are mostly dimers and that the aggregation constant is substantially larger for hetero- than homochiral dimers.  相似文献   

18.
T J McIntosh  A D Magid  S A Simon 《Biochemistry》1989,28(19):7904-7912
Well-ordered multilamellar arrays of liquid-crystalline phosphatidylcholine and equimolar phosphatidylcholine-cholesterol bilayers have been formed in the nonaqueous solvents formamide and 1,3-propanediol. The organization of these bilayers and the interactions between apposing bilayer surfaces have been investigated by X-ray diffraction analysis of liposomes compressed by applied osmotic pressures up to 6 X 10(7) dyn/cm2 (60 atm). The structure of egg phosphatidylcholine (EPC) bilayers in these solvents is quite different than in water, with the bilayer thickness being largest in water, 3 A narrower in formamide, and 6 A narrower in 1,3-propanediol. The incorporation of equimolar cholesterol increases the thickness of EPC bilayers immersed in each solvent, by over 10 A in the case of 1,3-propanediol. The osmotic pressures of various concentrations of the neutral polymer poly(vinylpyrrolidone) dissolved in formamide or 1,3-propanediol have been measured with a custom-built membrane osmometer. These measurements are used to obtain the distance dependence of the repulsive solvation pressure between apposing bilayer surfaces. For each solvent, the solvation pressure decreases exponentially with distance between bilayer surfaces. However, for both EPC and EPC-cholesterol bilayers, the decay length and magnitude of this repulsive pressure strongly depend on the solvent. The decay length for EPC bilayers in water, formamide, and 1,3-propanediol is found to be 1.7, 2.4, and 2.6 A, respectively, whereas the decay length for equimolar EPC-cholesterol bilayers in water, formamide, and 1,3-propanediol is found to be 2.1, 2.9, and 3.1 A, respectively. These data indicate that the decay length is inversely proportional to the cube root of the number of solvent molecules per unit volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A series of anthroyloxy fatty acid (AF) fluorescent probes, with the anthroyloxy group covalently linked at various positions along the alkyl chain, were studied in solvents exhibiting a wide range of polarity and hydrogen-bond donor (Hd) and acceptor (Ha) ability. These probes were sensitive to the solvent polarity as reflected by the Stokes' shift observed in steady state fluorescence. As determined by multi-linear regression analysis of the observed Stokes' shift and solvent parameters, such as orientation polarizability (Δf), Hd and Ha of the solvents, all the probes were sensitive to the Hd of solvents but were not affected by the Ha of solvents except the 2-AF. Due to the proximity of the polar headgroup to the fluorophore, it appears that some intramolecular hydrogen-bonding is present in 2-AF, an interaction that is sensitive to the pH of the solvent, but is less sensitive to the Hd and Ha of the solvents. Fluorescence lifetimes measured by the multi-frequency phase-modulation technique in mixtures of hexane and ethanol reflect a modified Stern-Volmer behavior suggesting the second solvent, ethanol, specifically interacts with the probe, in part through collisional quenching. Also, the lifetime data were sensitive to very low concentrations of the second solvent (0–0.1%, by vol.). The results from this study provide insight into the intrinsic differences between the different AF positions that must be taken into consideration while investigating the dynamics of lipid bilayer systems. Moreover, this study illustrates the utility and resolving power of lifetime based measurements needed for the interpretation of heterogeneous biophysical environments.  相似文献   

20.
The fluorescence emission decay of ANS (1,8-anilinonaphthalenesulfonate) in reversed AOT (sodium bis-(2-ethyl-1-hexy)sulfosuccinate) micelles at different water contents was investigated by frequency domain fluorometry. The whole ANS emission decay in reversed AOT micelles could not be fitted in terms of discrete lifetime values, i.e., mono-exponential and bi-exponential models. Better fits were obtained when using continuous unimodal Lorentzian lifetime distributions. This was interpreted as arising from the reorientation processes of water molecules around the excited state of ANS or probe exchange among different probe locations, occurring on a time scale longer than fluorophore lifetime. The dependence of ANS fluorescence anisotropy on the emission wavelength was consistent with the existence of a great emission heterogeneity especially for inverted micelles having reduced H2O/AOT molar ratio. Finally, the observation that the distribution width decreases with increasing temperature and/or micelle size suggested that fast processes of water dipolar reorganization around the fluorophore are facilitated under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号