首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato consumption modulates oxidative DNA damage in humans.   总被引:3,自引:0,他引:3  
Consumption of a single serving of tomatoes by healthy human volunteers was sufficient to alter levels of oxidative DNA base damage in white cell DNA within 24 h. Levels of the mutagenic oxidized purine base 8-hydroxyguanine decreased, especially in those subjects whose initial levels of this base were higher than the mean. However, total DNA base damage remained unchanged since levels of 8-hydroxyadenine rose. The ability of tomato consumption to modulate oxidative DNA damage in the short term may indicate why daily consumption of fruits and vegetables is beneficial in decreasing cancer incidence.  相似文献   

2.
In the present study, we have studied the level of oxidative DNA base damage in lymphocytes of HIV-infected intravenous drug users (IDUs) and a seronegative control group. Chromatin was isolated from the lymphocytes and then analyzed by gas chromatography/isotope-dilution mass spectrometry with selectedion monitoring (GC/IDMS-SIM). Significantly greater levels of four oxidatively modified DNA bases were observed in chromatin samples from the symptomatic HIV-infected patients than in those from the seronegative patients. These were 5-hydroxyuracil, 5-hydroxycytosine, 8-hydroxyadenine and 8-hydroxyguanine. In the case of 5-hydroxyuracil and 8-hydroxyguanine, a statistically significant difference was also found between the control group and the asymptomatic HIV-positive patients. These results suggest that oxidative stress may play an important role in the pathogenesis of acquired immune deficiency syndrome (AIDS), and that administration of antioxidant drugs to HIV-infected patients may offer protection against AIDS-related carcinogenesis.  相似文献   

3.
Damage to the bases in DNA produced by the hypoxanthine/xanthine oxidase system in the presence of iron ions was studied. The base products in DNA were measured using gas chromatography-mass spectrometry with selected ion monitoring after acidic hydrolysis of DNA and trimethylsilylation. Products identified were cytosine glycol, thymine glycol, 5,6-dihydroxycytosine, 4,6-diamino-5-formamidopyrimidine, 8-hydroxyadenine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, and 8-hydroxyguanine. These are typical hydroxyl radical-induced products of the bases in DNA. 2,6-Diamino-4-hydroxy-5-formamidopyrimidine was the major product, followed by 8-hydroxyguanine, in DNA treated with hypoxanthine/xanthine oxidase/Fe3+-EDTA. The use of Fe3+ did not cause as much damage to the bases in DNA as did the use of Fe3+-EDTA. In both systems, the formation of the products was inhibited by superoxide dismutase, catalase, dimethyl sulfoxide, mannitol, and desferrioxamine, but inhibitions were much stronger in the systems containing EDTA. Hence formation of hydroxyl radicals by a superoxide radical-assisted Fenton reaction is proposed to account for the results obtained. 2,6-Diamino-4-hydroxy-5-formamidopyrimidine, 5,6-dihydroxycytosine, 4,6-diamino-5-formamidopyrimidine, and 8-hydroxyguanine were proposed as the products in DNA to measure if one aims to measure DNA products as indices of oxidative DNA damage involving hydroxyl radicals in vivo.  相似文献   

4.
Chronic inflammation results in increased nitric oxide formation and nitrite (NO-2) accumulation. Activated phagocytes release myeloperoxidase generating the cytotoxic agent hypochlorous acid (HOCl). Reaction of HOCl with NO-2 results in the formation of nitryl chloride (NO2Cl), a potent oxidising, nitrating and chlorinating species. Exposure of DNA to NO-2 alone (up to 250 microM) at pH 7.4 did not induce oxidative DNA base damage. However, incubation of DNA with NO-2 in the presence of HOCl led to increases in thymine glycol, 5-hydroxyhydantoin, 8-hydroxyadenine and 5-chlorouracil to levels higher than those achieved by HOCl alone. No significant increases in 8-hydroxyguanine, xanthine, hypoxanthine, 2-hydroxyadenine, FAPy guanine, FAPy adenine and 8-chloroadenine were observed. HOCl-induced depletion of FAPy guanine and 8-hydroxyguanine was reduced in the presence of NO-2. Modification of DNA by HOCl/NO-2 (presumably generating NO2Cl) produces a pattern of DNA base damage products in isolated DNA that is similar to the pattern produced by HOCl but not other reactive species.  相似文献   

5.
To determine whether replicational mutagenesis in the yeast genome is influenced by the positions of active origins, a reporter gene was placed in two orientations at multiple locations within a 39,000 bp region of chromosome III possessing two strong origins. The frequency of mutations resulting from misincorporation of adenine opposite 8-hydroxyguanine in one strand and 6-hydroxylaminopurine opposite cytosine in the other strand differed by 3- to 10-fold, depending on the gene orientation and its distance from the origins. The observed patterns indicate that active origins establish a strand bias for mutations that is maintained over thousands of base pairs and results from lower nucleotide selectivity and/or less efficient proofreading or mismatch repair during leading strand DNA replication.  相似文献   

6.
7.
GC-MS is a widely used tool to measure oxidative DNA damage because of its ability to identify a wide range of base modification products. However, it has been suggested that the derivatization procedures required to form volatile products prior to GC-MS analysis can sometimes produce artifactual formation of certain base oxidation products, although these studies did not replicate previously-used reaction conditions, e.g. they failed to remove air from the derivatization vials. A systematic examination of this problem revealed that levels of 8-hydroxyguanine, 8-hydroxyadenine,5-hydroxycytosine and 5-(hydroxymethyluracil) in commercial calf thymus DNA determined by GC-MS are elevated by increasing the temperature at which derivatization is performed in our laboratory. In particular, 8-hydroxyguanine levels after silylation at 140°C were raised 8-fold compared to derivatization at 23°C. Experiments on the derivatization of each undamaged base revealed that the artifactual oxidation of guanine, adenine, cytosine and thymine respectively was responsible. Formation of the above products was potentiated by not purging with nitrogen prior to derivatization. Increasing the temperature to 140°C or allowing air to be present during derivatization did not significantly increase levels of the other oxidized bases measured.

This work suggests that artifactual oxidation during derivatization is restricted to certain products (8-hydroxyguanine, 8-hydroxyadenine, 5-hydroxycytosine and 5-[hydroxymethyluracil]) and can be decreased by reducing the temperature of the derivatization reaction to 23°C and excluding as much air possible. Despite some recent reports, we were easily able to detect formamidopyrimidines in acid-hydrolyzed DNA. Artifacts of derivatization are less marked than has been claimed in some papers and may vary between laboratories, depending on the experimental procedures used, in particular the efficiency of exclusion of O2 during the derivatization process.  相似文献   

8.
An endonuclease that specifically removes 8-hydroxyguanine (oh8Gua) from DNA has been isolated from Escherichia coli. As the amount of oh8Gua produced in DNA of X-ray-irradiated mice is known to decrease with time after irradiation, an attempt was made to find a similar activity in human polymorphonuclear neutrophils (PMNs) using a synthetic dsDNA containing oh8Gua as a substrate. The PMN enzyme was isolated free of other DNases, and found to cleave the substrate DNA simultaneously at 2 sites, the phosphodiester bonds 5' and 3' to oh8Gua, producing free hydroxyl and phosphate groups, respectively. The enzyme showed almost no activity on DNAs containing other kinds of modified base tested or mismatched DNA. Thus human cells also contain an endonuclease that specifically removes oh8Gua residues from DNA.  相似文献   

9.
A single 7,8-dihydro-8-oxoguanine (G8-OXO; 8-hydroxyguanine) adduct in the lacZ alpha gene of bacteriophage M13 DNA induces a targeted G-->T transversion after replication in Escherichia coli (Biochemistry, 29, 7024-7031 (1990)). This mutation is thought to be due to the facile formation during DNA synthesis of a G8-OXO.base pair, where G8-OXO is in the syn conformation about the deoxyglycosyl bond. A related modified purine, 7,8-dihydro-8-oxoadenine (A8-OXO; 8-hydroxyadenine), is an abundant product found in irradiated and oxidized DNAs. Similar to G8-OXO, as a mononucleoside A8-OXO assumes the syn conformation. This work has assessed the relative mutagenicities of A8-OXO and G8-OXO in the same experimental system. A deoxypentanucleotide containing A8-OXO [d(GCT-A8-OXOG)] was synthesized. After 5'-phosphorylation with [gamma-32P] ATP, the oligomer was ligated into a duplex M13mp19-derived genome at a unique NheI restriction site. Genomes containing either A8-OXO (at position 6275, [+] strand) or G8-OXO (position 6276) were denatured with heat and introduced into E.coli DL7 cells. Analysis of phage DNA from mutant plaques obtained by plating immediately after transformation (infective centers assay) revealed that G8-OXO induced G-->T transversions at an apparent frequency of approximately 0.3%. The frequency and spectrum of mutations observed in DNA sequences derived from 172 mutant plaques arising from the A8-OXO-modified DNA were almost indistiguishable from those generated from transfection of an adenine-containing control genome. We conclude that A8-OXO is at least an order of magnitude less mutagenic than G8-OXO in E.coli cells with normal DNA repair capabilities.  相似文献   

10.
Oxidative damage to DNA has been reported to occur in a wide variety of disease states. The most widely used "marker" for oxidative DNA damage is 8-hydroxyguanine. However, the use of only one marker has limitations. Exposure of calf thymus DNA to an .OH-generating system (CuCl(2), ascorbate, H(2)O(2)) or to hypochlorous acid (HOCl), led to the extensive production of multiple oxidized or chlorinated DNA base products, as measured by gas chromatography-mass spectrometry. The addition of peroxynitrite (ONOO(-)) (<200 microM) or SIN-1 (1mM) to oxidized DNA led to the extensive loss of 8-hydroxyguanine, 5-hydroxycytosine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 2-hydroxyadenine, 8-hydroxyadenine, and 4,6-diamino-5-formamidopyrimidine were lost at higher ONOO(-) concentrations (>200 microM). Exposure of DNA to HOCl led to the generation of 5-Cl uracil and 8-Cl adenine and addition of ONOO(-) (<200 microM) or SIN-1 (1mM) led to an extensive loss of 8-Cl adenine and a small loss of 5-Cl uracil at higher concentrations (>500 microM). An .OH-generating system (CuCl(2)/ascorbate/H(2)O(2)) could also destroy these chlorinated species. Treatment of oxidized or chlorinated DNA with acidified nitrite (NO(2)(-), pH 3) led to substantial loss of various base lesions, in particular 8-OH guanine, 5-OH cytosine, thymine glycol, and 8-Cl adenine. Our data indicate the possibility that when ONOO(-), nitrite in regions of low pH or .OH are produced at sites of inflammation, levels of certain damaged DNA bases could represent an underestimate of ongoing DNA damage. This study emphasizes the need to examine more than one modified DNA base when assessing the role of reactive species in human disease.  相似文献   

11.
Repair endonucleases, viz. endonuclease III, formamidopyrimidine-DNA glycosylase (FPG protein), endonuclease IV, exonuclease III and UV endonuclease, were used to analyse the modifications induced in bacteriophage PM2 DNA by 333 nm laser irradiation in the presence of acetone or acetophenone. In addition to pyrimidine dimers sensitive to UV endonuclease, 5,6-dihydropyrimidines (sensitive to endonuclease III) and base modifications sensitive to FPG protein were generated. The level of the last in the case of acetone was 50% and in the case of acetophenone 9% of the level of pyrimidine dimers. HPLC analysis of the bases excised by FPG protein revealed that least some of them were 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). In the damage induced by direct excitation of DNA at 254 nm, which was analysed for comparison, the number of FPG protein-sensitive base modifications was only 0.6% of that of the pyrimidine dimers. Mechanistic studies demonstrated that the formation of FPG protein-sensitive modifications did not involve singlet oxygen, as the damage was not increased in D2O as solvent. Hydroxyl radicals, superoxide and H2O2 were also not involved, since the relative number of single strand breaks and of sites of base loss (AP sites) was much lower than in the case of DNA damage induced by hydroxyl radicals and since the presence of SOD or catalase had no effect on the extent of the damage. However, the mechanism did involve an intermediate that was much more efficiently quenched by azide ions than the triplet excited carbonyl compounds and which was possibly a purine radical. Together, the data indicate that excited triplet carbonyl compounds react with DNA not only by triplet-triplet energy transfer yielding pyrimidine dimers, but also by electron transfer yielding preferentially base modifications sensitive to FPG protein, which include 8-hydroxyguanine.  相似文献   

12.
GC-MS is a widely used tool to measure oxidative DNA damage because of its ability to identify a wide range of base modification products. However, it has been suggested that the derivatization procedures required to form volatile products prior to GC-MS analysis can sometimes produce artifactual formation of certain base oxidation products, although these studies did not replicate previously-used reaction conditions, e.g. they failed to remove air from the derivatization vials. A systematic examination of this problem revealed that levels of 8-hydroxyguanine, 8-hydroxyadenine,5-hydroxycytosine and 5-(hydroxymethyluracil) in commercial calf thymus DNA determined by GC-MS are elevated by increasing the temperature at which derivatization is performed in our laboratory. In particular, 8-hydroxyguanine levels after silylation at 140°C were raised 8-fold compared to derivatization at 23°C. Experiments on the derivatization of each undamaged base revealed that the artifactual oxidation of guanine, adenine, cytosine and thymine respectively was responsible. Formation of the above products was potentiated by not purging with nitrogen prior to derivatization. Increasing the temperature to 140°C or allowing air to be present during derivatization did not significantly increase levels of the other oxidized bases measured.

This work suggests that artifactual oxidation during derivatization is restricted to certain products (8-hydroxyguanine, 8-hydroxyadenine, 5-hydroxycytosine and 5-[hydroxymethyluracil]) and can be decreased by reducing the temperature of the derivatization reaction to 23°C and excluding as much air possible. Despite some recent reports, we were easily able to detect formamidopyrimidines in acid-hydrolyzed DNA. Artifacts of derivatization are less marked than has been claimed in some papers and may vary between laboratories, depending on the experimental procedures used, in particular the efficiency of exclusion of O2 during the derivatization process.  相似文献   

13.
Base damage flanking a radiation-induced DNA double-strand break (DSB) may contribute to DSB complexity and affect break repair. However, to date, an isolated radiation-induced DSB has not been assessed for such structures at the molecular level. In this study, an authentic site-specific radiation-induced DSB was produced in plasmid DNA by triplex forming oligonucleotide-targeted (125)I decay. A restriction fragment terminated by the DSB was isolated and probed for base damage with the E. coli DNA repair enzymes endonuclease III and formamidopyrimidine-DNA glycosylase. Our results demonstrate base damage clustering within 8 bases of the (125)I-targeted base in the DNA duplex. An increased yield of base damage (purine > pyrimidine) was observed for DSBs formed by irradiation in the absence of DMSO. An internal control fragment 1354 bp upstream from the targeted base was insensitive to enzymatic probing, indicating that the damage detected proximal to the DSB was produced by the (125)I decay that formed the DSB. Gas chromatography-mass spectrometry identified three types of damaged bases in the approximately 32-bp region proximal to the DSB. These base lesions were 8-hydroxyguanine, 8-hydroxyadenine and 5-hydroxycytosine. Finally, evidence is presented for base damage >24 bp upstream from the (125)I-decay site that may form via a charge migration mechanism.  相似文献   

14.
Oxidative damage to DNA in human tissues can be determined by measuring multiple products of oxidative damage to the purine and pyrimidine bases using gas chromatography-mass spectrometry (GC-MS). Oxidative damage to lipids (lipid peroxidation) can be quantitated by the mass spectrometry-based determination of F2-isoprostanes, specific end-products of the peroxidation of arachidonic acid residues in lipids. For both DNA base damage products and 8-epi prostaglandin F2alpha (PGF2alpha), there is a wide variation in levels between different healthy human subjects. We measured multiple products of oxidative damage to DNA bases in white cells, and 8-epi PGF2alpha in plasma, from blood samples obtained from healthy human subjects in the UK and in Portugal. No correlation of 8-epi PGF2alpha levels with levels of any modified DNA base (including 8-hydroxyguanine) was observed. We conclude that no single parameter can be measured as an index of "oxidative stress" or "oxidative damage" in vivo.  相似文献   

15.
Increased Nuclear DNA Oxidation in the Brain in Alzheimer's Disease   总被引:19,自引:6,他引:13  
Abstract: Multiple lines of evidence indicate that oxidative stress is a contributor to neuronal death in Alzheimer's disease (AD). The oxidative damage that occurs to DNA may play a role in both normal aging and neurodegenerative diseases, including AD. This is a study of the oxidative damage that occurs in nuclear DNA in the brains of AD patients and cognitively intact, prospectively evaluated, age-matched control subjects. Nuclear DNA from frontal, temporal, and parietal lobes and cerebellum was isolated from 11 control subjects and 9 AD subjects, and oxidized purine and pyrimidine bases were quantitated using gas chromatography/mass spectrometry. Stable isotope-labeled oxidized base analogues were used as internal standards to measure 5-hydroxyuracil, 5-hydroxycytosine, 8-hydroxyadenine, 4,6-diamino-5-formamidopyrimidine (Fapy-adenine), 8-hydroxyguanine, and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-guanine). Statistically significant elevations of 5-hydroxycytosine, 5-hydroxyuracil, 8-hydroxyadenine, and 8-hydroxyguanine were found in AD brain compared with control subjects ( p < 0.05). There was an increased trend in the levels of Fapy-adenine in the AD brain, and Fapy-guanine showed a trend toward higher levels in control brains compared with AD. A generally higher level of oxidative DNA damage was present in neocortical regions than cerebellum. No significant correlation was observed between the oxidized bases and neurofibrillary tangle and senile plaque counts. Our results demonstrate that nuclear DNA damage by oxygen-derived radicals is increased in AD and support the concept that the brain is under increased oxidative stress in AD.  相似文献   

16.
Genotoxicity of singlet oxygen   总被引:9,自引:0,他引:9  
Singlet oxygen, 1O2(1Δg), fulfills essential prerequisites for a genotoxic substance, like hydroxyl radicals and other oxygen radicals: it can react efficiently with DNA and it can be generated inside cells, e.g. by photosensitization and enzymatic oxidation. As might be anticipated from the non-radical character of singlet oxygen, the pattern of DNA modifications it produces is very different from that caused by hydroxyl radicals. While hydroxyl radicals produce DNA strand breaks and sites of base loss (AP sites) in high yield and react with all four bases of DNA, singlet oxygen generates predominantly modified guanine residues and few strand breaks and AP sites. There is now convincing evidence that a major product of base modification caused by singlet oxygen is 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). Indeed, the recently reported miscoding properties of 8-hydroxyguanine can explain the predominant type of mutations observed when DNA modified by singlet oxygen is replicated in cells. There are also strong indications that singlet oxygen generated by photosensitization can act as an ultimate DNA modifying species inside cells. However, indirect genotoxic mechanisms involving other reactive oxygen species produced from singlet oxygen are also possible and appear to predominate in some cases. The cellular defense system against oxidants consists of effective singlet oxygen scavengers such as carotenoids. The observation that carotenoids can inhibit neoplastic cell transformation when administered not only together with but also after the application of chemical or physical carcinogens might indicate a role of singlet oxygen in tumor promotion that could be independent of the direct or indirect DNA damaging properties.  相似文献   

17.
Methylene blue (MB) plus light, in the presence of oxygen, mediates formation of 8-hydroxyguanine in DNA. The yield of 8-hydroxyguanine may be as much as from 2 to 4% of the guanines present. The results presented here show that treatment of supercoiled plasmid DNA with methylene blue plus light causes single-stranded nicks. However, single-stranded nicking occurs approximately 17-fold less frequently than does formation of 8-hydroxyguanine. The nicking rate is reduced in the presence of Mg ion but is not prevented by inhibitors of the iron-catalyzed Fenton reaction or by scavengers of hydroxyl free radicals. Extensive exposure of DNA to light in the presence of MB produces no detectable thiobarbital reactive material thus implicating that single strand nicking does not occur by hydroxyl free radical attack on deoxyribose. Formation of 8-hydroxyguanine is apparently not dependent upon intercalative binding of MB to DNA, since it is formed in polydeoxyguanylic acid.  相似文献   

18.
Mutations caused by oxidative DNA damage may contribute to human disease. A major product of that damage is 8-hydroxyguanine (oh8Gua). Because of differences in experimental design, the base pairing specificity of oh8G in vivo is not completely resolved. Here, oh8dGTP and DNA polymerase were used in two complementary bacteriophage plaque color assays to examine the mutagenic specificity of oh8Gua in vivo. The first is a reversion assay that detects all three single-base substitutions caused by misreading of guanine analogues inserted at a specific site. oh8Gua at that site gave a mutation frequency of 0.7%. Twenty-two of the 23 mutations were G----T substitutions. The second assay, a forward mutation assay, tests the mispairing potential of any altered nucleotide 1) during incorporation as substrate nucleotide, and 2) after multiple incorporations into a single-stranded DNA gap region of M13mp2. Substituting oh8dGTP for dGTP during polymerization produced 16% mutants; two classes of mutations were observed, both caused by pairing of oh8Gua with A. Seventy-six of 78 mutations were A----C substitutions, and two were G----T substitutions. These assays thus illustrate mutagenic replication of oh8Gua as template causing G----T substitutions and misincorporation of oh8Gua as substrate causing A----C substitutions, both caused by oh8Gua.A mispairs.  相似文献   

19.
In order to investigate whether several DNA lesions (O6-methylguanine, 8-hydroxyguanine, xanthine, an abasic site analogue and hypoxanthine) activate a c-Ha-ras gene and to determine the type of mutations induced by the DNA lesions, they were introduced into a synthetic c-Ha-ras gene by DNA cassette mutagenesis techniques. The modified genes were transfected into mouse NIH3T3 cells and the c-Ha-ras genes present in transformed cells were analysed. O6-methylguanine and xanthine induced a mutation to A, hypoxanthine induced a mutation to G. 8-hydroxyguanine and the abasic site analogue caused random mutations in the modified and adjacent positions. These results indicated that the synthetic c-Ha-ras gene is very useful for the detection of mutations caused by a DNA lesion.  相似文献   

20.
A physical interpretation of the Topal-Fresco [Nature 263, 285 (1976)] model for spontaneous base substitutions suggests that hydrogen-bonded DNA protons satisfy the criteria for a classical noninteracting isolated system. Accessible states for duplex G-C protons include the keto-amino state and the six complementary enol-imine isomers. Hydrogen-bonded enol and imine protons occupy symmetric double-minima created by the two sets of indistinguishable electron lone pairs and a single proton belonging to each enol-imine end group. These protons will consequently participate in coupled quantum mechanical flip-flop, tunneling back and forth between symmetric energy wells. This results in a quantum mixing of proton energy states where the lowest energy state will be a linear combination of available G-C isomers. The resulting conclusion is that metastable keto-amino G-C protons will populate accessible enol-imine stationary states at rates governed by quantum laws of statistical equilibrium, consistent with achieving the lowest energy condition for duplex G-C protons. Enol-imine G-C stationary states are bound more tightly, of the order of 3 to 12 kcal/mol, which requires a modified mode of Topal-Fresco replication that will inhibit reequilibration of enol and imine G and C template isomers and, thus, promote the formation of complementary mispairs. The model is demonstrated on time-dependent base substitutions expressed by T4 phage DNA systems where data are consistent with model explanations, including the prediction that time-dependent evolutionary transversion sites will exhibit both G-C-to-T-A and G-C-to-C-G transversions at replication, due to proton flip-flop alteration of G template genetic specificity. The observation that A-T sites are resistant to time-dependent evolutionary base substitutions, expressed exclusively at G-C sites, allows codons to be classified as either evolutionary sensitive (16 codons) or evolutionary resistant (8 codons). These criteria provide possible explanations for expansion properties of the CGG fragile X sequences. Enol-imine G-C stationary states appear to have been misdiagnosed as deamination of cytosine and oxidation of guanine to 8-hydroxyguanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号