首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: We have shown previously that a neurofilament (NF)-associated kinase (NFAK) extracted from chicken NF preparations phosphorylates selectively the middle molecular mass NF subunit (NF-M). Here we show that the major kinase activity in NFAK is indistinguishable from enzymes of the casein kinase I (CKI) family based on the following criteria: (1) inhibition of NFAK phosphorylation by the selective CKI inhibitor CKI-7, (2) the similarity in substrate specificity of NFAK and authentic CKI, (3) the correspondence of two-dimensional phosphopeptide maps of NF-M phosphorylated in vitro by NFAK with those generated by CKI under similar conditions, and (4) immunological cross-reactivity of NFAK with an antibody raised against CKI. We have also identified Ser502, Ser528, and Ser536 as phosphorylation sites by NFAK/CKI in vitro, each of which is also phosphorylated in vivo. All three serines are found in peptides with CKI phosphorylation consensus sequences, and Ser528 and Ser536 and flanking amino acids are highly conserved in higher vertebrate NF-M sequences. Neither Ser502 nor Ser536 has been identified previously as NF-M phosphorylation sites.  相似文献   

2.
Abstract: In previous studies we have identified Ser502, Ser528, and Ser534 as target sites in chicken neurofilament middle molecular mass protein (NF-M) for casein kinase I (CKI) in vitro and have shown that these sites are also phosphorylated in vivo. We now make use of a combination of molecular biological and protein chemical techniques to show that two additional in vivo phosphorylation sites in chicken NF-M, Ser464 and Ser471, can also be phosphorylated by CKI in vitro. These two sites are conserved in higher vertebrate NF-M molecules, and recombinant protein constructs containing the homologous rat NF-M peptides can be phosphorylated by CKI in vitro, suggesting that phosphorylation of these sites is conserved at least in higher vertebrates. The two new sites are adjacent to a conserved peptide sequence (VEE-IIEET-V) found once in higher vertebrate NF-M molecules and twice in lamprey NF-180. Variants of this sequence are also found in neurofilament low and high molecular mass proteins (NF-L and NF-H) and α-internexin, and in mammalian NF-L are known to be associated with in vivo phosphorylation sites. We speculate that CKI phosphorylation in general, and these sites in particular, may be important in neurofilament function.  相似文献   

3.
Abstract : We have shown previously that phosphate groups on the amino-terminal head domain region of the middle molecular mass subunit of neurofilament proteins (NF-M) are added by second messenger-dependent protein kinases. Here, we have identified Ser23 as a specific protein kinase A phosphorylation site on the native NF-M subunit and on two synthetic peptides, S1 (14RRVPTETRSSF24) and S2 (21RSSFSRVSGSPSSGFRSQSWS41), localized within the amino-terminal head domain region. Ser23 was identified as a phosphorylation site on the 32P-labeled α-chymotryptic peptide that carried >80% of the 32P-phosphates incorporated into the NF-M subunit by protein kinase A. The synthetic peptides S1 and S2 were phosphorylated 18 and two times more efficiently by protein kinase A than protein kinase C, respectively. Neither of the peptides was phosphorylated by casein kinase II. The sequence analyses of the chemically modified phosphorylated serine residues showed that Ser23 was the major site of phosphorylation for protein kinase A on both S1 and S2 peptides. Low levels of incorporation of 32P-phosphates into Ser22, Ser28, and Ser32 by protein kinase A were also observed. Protein kinase C incorporated 32P-phosphates into Ser22, Ser23, Ser25, Ser28, Ser32, and a threonine residue, but none of these sites could be assigned as a major site of phosphorylation. Analyses of the phosphorylated synthetic peptides by liquid chromatography-tandem mass spectrometry also showed that protein kinase A phosphorylated only one site on peptide S1 and that ions with up to four phosphates were detected on peptide S2. Analysis of the data from the tandem ion trap mass spectrometry by using the computer program PEPSEARCH did not unequivocally identify the specific sites of phosphorylation on these serine-rich peptides. Our data suggest that Ser23 is a major protein kinase A-specific phosphorylation site on the amino-terminal head region of the NF-M subunit. Phosphorylation of Ser23 on the NF-M subunit by protein kinase A may play a regulatory role in neurofilament assembly and/or the organization of neurofilaments in the axon.  相似文献   

4.
Abstract: The activation of cyclic AMP-dependent protein kinase (PKA) in rat dorsal root ganglion (DRG) cultures increased phosphorylation of the low-molecular-mass neurofilament subunit (NFL) at a site previously identified as Ser55 but had no effect on neurofilament integrity. When PKA was activated in DRG cultures treated with 20–250 n M okadaic acid, neurofilament fragmentation was enhanced, and there was a corresponding increase in phosphorylation of NFL at a novel site. This site was also phosphorylated by PKA in vitro and was determined to be Ser2 by mass spectrometric analysis of the purified chymotryptic phosphopeptide. The PKA sites in NFL were dephosphorylated by the purified catalytic subunit of protein phosphatase-2A but not that of protein phosphatase-1, and phosphoserine-2 was a better substrate than phosphoserine-55. The phosphorylation and dephosphorylation of Ser2 and Ser55 in NFL may therefore be involved in the modulation of neurofilament dynamics through the antagonistic effects of PKA and protein phosphatase-2A.  相似文献   

5.
6.
Abstract: In this report, the phosphorylation sites of neurofilament protein of medium molecular mass (NF-M) by protein kinase FA/glycogen synthase kinase 3α (kinase FA/GSK-3α) were determined by two-dimensional electrophoresis/TLC, phosphoamino acid analysis, HPLC, Edman degradation, and peptide sequencing. Kinase FA/GSK-3α phosphorylates NF-M predominantly on serine, residue. Three major tryptic phosphopeptide peaks were resolved by C18 reverse-phase HPLC. Edman degradation and peptide sequence analysis revealed that AKS(p)PVSK is the phosphorylation site sequence for the first major peak. When mapping with the amino acid sequence of neurofilament, we finally demonstrate Ser603-Pro, one of the in vivo sites in NF-M, as the major site phosphorylated by kinase FA/GSK-3α. By using the same approach, we also identified the in vivo sites of Ser502-Pro, Ser506-Pro, and Ser666-Pro as the other three major sites in NF-M phosphorylated by kinase FA/GSK-3α. Taken together, the results provide initial evidence that kinase FA/GSK-3α may represent a physiologically relevant protein kinase involved in the in vivo phosphorylation of NF-M. Because Ser502, Ser506, Ser603, and Ser666 are all flanked by a carboxyl-terminal proline residue, the results provide further evidence that FA/GSK-3α may represent a proline-directed protein kinase involved in the structure-function regulation of the neuronal cytoskeletal system.  相似文献   

7.
Abstract: The tail domain of the midsize chicken neurofilament polypeptide (NF-M) contains several different types of Ser-Pro and Thr-Pro putative phosphorylation sites. We determined which of these sites are actually phosphorylated in vivo. Chick sensory neuron cultures were incubated in [32P]phosphate, and the cytoskeletal fraction was mixed with a neurofilament fraction prepared from adult chicken brain. NF-M was purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and digested with chymotrypsin, and two large fragments were isolated. These were individually cleaved with trypsin, endoprotease Lys-C, or endoprotease Glu-C, and peptides separated by two-dimensional high-voltage electrophoresis and thin-layer chromatography. 32P-labeled phosphopeptides were eluted from the cellulose plates and subjected to microsequencing and mass spectometry. We found that of 21 potential Ser-Pro and Thr-Pro phosphoacceptor sites, at least 20 are phosphorylated in vivo: all four Lys-Ser-Pro sites and at least 16 of the 17 Lys-Xaa-Xaa-Ser/Thr-Pro repeats. In addition, a novel Ser-Pro site in the extreme carboxy terminus is phosphorylated. This site, which has no proximal Lys residue, is also found in mammalian NF-M, but has not been reported to be phosphorylated. Together with three casein kinase I sites we have found recently in the acidic amino-terminal segment of the tail, a total of 24 or 25 Ser and Thr phosphoacceptor sites have now been located in the chicken NF-M tail.  相似文献   

8.
Abstract: Bovine chromaffin cells contain a family of renaturable protein kinases. One of these, a 60,000 Mr kinase (PK60) that phosphorylated myelin basic protein in vitro, was activated fourfold when cells were treated with the protein kinase inhibitor Staurosporine. Because staurosporine inhibits protein kinase C, the role of this kinase in the regulation of PK60 activity was investigated. Fifty nanomolar Staurosporine produced half-maximal inhibition of protein kinase C activity in chromaffin cells, whereas ∼225 n M Staurosporine was required to induce half-maximal activation of PK60. Other protein kinase C inhibitors, H-7 and K-252a, did not mimic the effect of Staurosporine on PK60 activity. Chromaffin cells have three protein kinase C isoforms: α, ε, and ζ. Prolonged treatment with phorbol esters depleted the cells of protein kinase C α and ε, but not ζ. Neither activation nor depletion of protein kinase C affected the basal activity of PK60. Moreover, Staurosporine activated PK60 in cells depleted of protein kinase C α and e; thus, Staurosporine appeared to activate PK60 by a mechanism that does not require these protein kinase C isoforms. Incubation of cell extracts with Staurosporine in vitro did not activate PK60. Incubation of these extracts with adenosine 5'-O-(3-thiotriphosphate), however, caused a twofold activation of PK60. Although this suggests that PK60 activity is regulated by phosphorylation, the mechanism by which Staurosporine activates PK60 is not known. Staurosporine has been reported to promote neurite outgrowth from chromaffin cells. The role of PK60 in mediating the effects of Staurosporine on chromaffin cell function remains to be determined.  相似文献   

9.
The neural cell adhesion molecule L1 is a phosphorylated integral membrane glycoprotein that is recovered from adult mouse brain by immunoaffinity chromatography as a set of polypeptides with apparent molecular masses of 200, 180, 140, 80, and 50 kilodaltons (L1-200, L1-180, L1-140, L1-80, and L1-50, respectively). In the present study, we show that two kinase activities are associated with immunopurified L1: One specifically phosphorylates L1-200 and L1-80 but not L1-180, L1-140, or L1-50. This pattern of phosphorylation corresponds to the one described for L1 after metabolic phosphate incorporation into cultures of cerebellar cells. In both cases, serine is the main amino acid that is labeled by radioactive phosphate. The kinase activity is not activated by Ca2+, calmodulin, phosphatidylserine, diolein, cyclic AMP, or cyclic GMP, a result suggesting that the enzyme is distinct from Ca2+/calmodulin-dependent kinases, from protein kinase C, or from cyclic AMP/cyclic GMP-dependent kinases and may belong to the independent kinase group. The other kinase phosphorylates only casein but not L1, utilizes GTP as well as ATP, and is strongly inhibited by heparin. Because the primary structure of the L1 protein does not contain consensus sequences characteristic for known kinases, we believe that the catalytic activities detectable in immunopurified L1 are due to kinases that are strongly enough associated with L1 to withstand the stringent purification procedures.  相似文献   

10.
Phospholipid-sensitive Ca2+ -dependent protein kinase (PL-Ca-PK) and cyclic AMP-dependent protein kinase (A-PK) both preferentially phosphorylated serine residues of bovine myelin basic protein (MBP). Tryptic peptide maps of MBP phosphorylated by PL-Ca-PK or A-PK, however, revealed different phosphopeptides, suggesting a difference in the intramolecular substrate specificity for the two enzymes. Serine-115 of MBP, in the sequence (-Arg-Phe-Ser(115)-Trp-), was found to be a preferred and probably major phosphorylation site for PL-Ca-PK. Because serine-115 of bovine MBP corresponds to serine-113 of rabbit MBP, an in vivo phosphorylation site reported by Martenson et al. (1983), and PL-Ca-PK is present at a very high level in brain and myelin, it is suggested that the enzyme may be responsible for the in vivo phosphorylation of this and other sites in MBP.  相似文献   

11.
Abstract: The six neurofilament proteins (NFPs) in the goldfish Mauthner axon (M-axon) have molecular sizes of 235, 145, 123, 105, 80, and 60 kDa. To determine if NFPs in the M-axon are phosphorylated, isolated Mauthner axoplasm (M-axoplasm) and a neurofilament-enriched extract (NFE) prepared from M-axoplasm were incubated with 32P, which resulted in the radiolabeling of NFPs as determined by their detection on autoradiograms. Kinase inhibitors directed against cyclic AMP-dependent kinases (PKAs) or cofactor-independent kinases significantly reduced the in vitro phosphorylation of NFPs in NFE, whereas inhibitors directed against protein kinase C did not significantly reduce the in vitro phosphorylation of NFPs in NFE. Experiments using two kinase inhibitors directed against different kinases significantly reduced the in vitro phosphorylation of NFPs in NFE to a greater extent than the reduction produced using any single kinase inhibitor. These data suggest that NFPs in the M-axon are phosphorylated and that the in vitro (and perhaps the in vivo) phosphorylation of NFPs is mediated by PKA and/or cofactor-independent kinases that copurify with NFPs.  相似文献   

12.
We examined the short-term regulation of the phosphorylation of the mid-sized neurofilament subunit (NF-M) by kinases which were activated in rat pheochromocytoma (PC12) cells by nerve growth factor (NGF) and/or 12-O-tetradecanoylphorbol 13-acetate (TPA). We found that NGF and TPA, alone or in combination, increased (a) the incorporation of [32P]Pi into NF-M and (b) the rate of conversion of NF-M from a poorly phosphorylated to a more highly phosphorylated form. This was not due to increased synthesis of NF-M, because NGF alone did not increase NF-M synthesis and TPA alone or TPA and NGF together inhibited the synthesis of NF-M. Further, an increase in calcium/phospholipid-dependent kinase (PKC) activity resulting from the treatment of PC12 cells with NGF and TPA was observed concomitant with the increased phosphorylation of NF-M. This PKC activity was determined to be derived from the PKC alpha and PKC beta isozymes. Finally, when PC12 cells were rendered PKC-deficient by treatment with 1 muM TPA for 24 h, NGF maintained the ability to induce an increase in NF-M phosphorylation, though not to the level attained in cells which were not PKC-deficient. These data suggest that NGF with or without TPA stimulates NF-M phosphorylation as a result of a complex series of events which include PKC-independent and PKC-dependent pathways.  相似文献   

13.
Abstract: Ser55 within the head domain of neurofilament light chain (NF-L) is a target for phosphorylation by protein kinase A. To understand further the physiological role(s) of NF-L Ser55 phosphorylation, we generated transgenic mice with a mutant NF-L transgene in which Ser55 was mutated to Asp so as to mimic permanent phosphorylation. Two lines of NF-L(Asp) mice were created and these animals express the transgene in many neurones of the central and peripheral nervous systems. Both transgenic lines display identical, early onset, and robust pathological changes in the brain. These involve the formation of NF-L(Asp)-containing perikaryal neurofilament inclusion bodies and the development of swollen Purkinje cell axons. Development of these pathologies was rapid and fully established in mice as young as 4 weeks of age. The two transgenic lines show no elevation of NF-L, neurofilament middle chain (NF-M), or neurofilament heavy chain (NF-H), and transgenic NF-L(Asp) represents only a minor proportion of total NF-L protein. Because other published transgenic lines expressing higher levels of wild-type NF-L do not exhibit phenotypic changes that in any way resemble those in the NF-L(Asp) mice and because the two different NF-L(Asp) transgenic lines display identical neuropathological changes, it is likely that the pathological alterations observed in the NF-L(Asp) mice are the result of properties of the mutant NF-L. These results support the notion that phosphorylation of Ser55 is a mechanism for regulating neurofilament organisation in vivo.  相似文献   

14.
Abstract: Neurofibrillary tangles, one of the major pathological hallmarks of Alzheimer-diseased brains, consist primarily of aggregated paired helical filaments (PHFs) of hyperphosphorylated τ protein. τ from normal brain and especially from foetal brain is also phosphorylated on some of the sites phosphorylated in PHFs, mainly at serines or threonines followed by prolines. A number of protein kinases can phosphorylate τ in vitro; those that require or accept prolines include GSK3 and members of the mitogen-activated protein (MAP) kinase family, ERK1, ERK2, and SAP kinase-β/JNK. In this report, we show that another member of the MAP kinase family, the stress-activated kinase p38/RK, can phosphorylate τ in vitro. Western blots with phosphorylation-sensitive antibodies showed that p38, like ERK2 and SAP kinase-β/JNK, phosphorylated τ at sites found phosphorylated physiologically (Thr181, Ser202, Thr205, and Ser396) and also at Ser422, which is phosphorylated in neurofibrillary tangles but not in normal adult or foetal brain. These findings support the possibility that cellular stress might contribute to τ hyperphosphorylation during the formation of PHFs, and hence, to the development of τ pathology.  相似文献   

15.
The hypothesis that casein kinase II (CKII) is a microtubule-associated protein kinase was investigated using a neuronal cell line and bovine brain. Heparin, an inhibitor of CKII, inhibited the phosphorylation of a PC12 cytosolic protein whose molecular weight was similar to that of beta-tubulin. Partially purified PC12 CKII was immunoreactive to an antibody directed against bovine CKII and was able to phosphorylate purified beta-tubulin in a heparin-inhibitable manner when the concentration of tubulin was less than 50 micrograms/ml. To better determine if CKII is a microtubule-associated protein kinase, bovine brain tubulin was chromatographed on FPLC Mono Q and phosphocellulose columns. Several tubulin casein kinase (TCK) activities were apparent. All TCK activities phosphorylated tubulin and casein, but none was able to phosphorylate the CKII-specific synthetic peptide RRREEETEEE. One of these TCK fractions was immunoreactive to the antibody directed against CKII, and this antibody labeled a 50-kDa molecular mass band that had a molecular mass distinctly different from those of the subunits of CKII. Thus, we suggest that a CKII-like protein, but not CKII, might be a microtubule-associated protein.  相似文献   

16.
Proline-directed protein kinase (PDPK), a complex of p34cdc2 and p58cyclin A, phosphorylates bovine neurofilaments (NFs) in vitro. Incubation of intact filaments with PDPK led to strong labeling of the heavy (NF-H) and middle (NF-M) molecular weight NF proteins and weaker labeling of the low molecular weight protein (NF-L). All three proteins were phosphorylated in solution, with the best substrate being NF-H. Proteins that had been dephosphorylated by enzymatic treatment were better substrates than native proteins--as many as 6 mol of phosphate were incorporated per mole of NF-H. Partial proteolytic cleavage experiments combined with two-dimensional peptide mapping indicated that NF-H and NF-M were phosphorylated predominantly in the tail domains, with some phosphate also appearing in the heads. Soluble NF-L is phosphorylated on the head domain peptide L-3, whereas NF-L within intact filaments is phosphorylated only on the tail domain peptide L-1. Phosphorylation does not lead to filament disassembly. A possible role for PDPK in NF phosphorylation in vivo is discussed.  相似文献   

17.
Abstract: Neurofilament polypeptides phosphorylated in vitro by incubation of neurofilament-enriched preparations from rat CNS with [γ-32P]ATP were compared with the corresponding polypeptides labeled in vivo by injection of 32Pi into the lateral ventricles of rats. Autoradiography of sodium dodecyl sulfate (SDS)-polyacrylamide gels revealed that the major phosphorylated species in both preparations were the three neurofilament subunits, which have molecular weights of 200K, 145K, and 68K. However, the relative levels of 32P detected in the three in vitro -labeled subunits differed from the relative in vivo levels. The two larger neurofilament polypeptides displayed similar 32P isoprotein distribution patterns on two-dimensional gels, whereas additional isoproteins were seen in the in vitro -labeled 68K species. Limited proteolysis in SDS-polyacrylamide gels revealed the presence of common phosphopeptides in the corresponding pairs of in vitro- and in vivo-labeled subunits, but the in vivo -labeled 145K and in vitro -labeled 200K polypeptides contained additional digestion products. Two-dimensional peptide mapping of the 68K polypeptide digested with a mixture of trypsin and chymotrypsin indicated that this component was phosphorylated at a single, identical site, both in vivo and in vitro. These results indicate that the protein kinase that copurifies with neurofilament preparations may be involved in their in vivo phosphorylation.  相似文献   

18.
Casein Kinase II Phosphorylates the Neural Cell Adhesion Molecule L1   总被引:7,自引:1,他引:6  
Abstract: L1 is an axonal cell adhesion molecule found primarily on projection axons of both the CNS and PNS. It is a phosphorylated membrane-spanning glycoprotein that can be immunoprecipitated from rat brain membranes in association with protein kinase activities. Western blot analysis demonstrates that casein kinase II (CKII), a ubiquitous serine/threonine kinase enriched in brain, is present in these immunoprecipitates. CKII preparations partially purified from PC12 cells are able to phosphorylate recombinant L1 cytoplasmic domain (L1CD), which consists of residues 1,144–1,257. Using these as well as more highly purified kinase preparations, phosphorylation assays of small peptides derived from the L1CD were performed. CKII was able to phosphorylate a peptide encompassing amino acids (aa) 1,173–1,185, as well as a related peptide representing an alternatively spliced nonneuronal L1 isoform that lacks aa 1,177–1,180. Both peptides were phosphorylated with similar kinetic profiles. Serine to alanine substitutions in these peptides indicate that the CKII phosphorylation site is at Ser1,181. This is consistent with experiments in which L1CD was phosphorylated by these kinase preparations, digested, and the radiolabeled fragments sequenced. Furthermore, when L1 immunoprecipitates were used to phosphorylate L1CD, one of the residues phosphorylated is the same residue phosphorylated by CKII. Finally, in vivo radiolabeling indicates that Ser1,181 is phosphorylated in newborn rat brain. These data show that CKII is associated with and able to phosphorylate L1. This phosphorylation may be important in regulating certain aspects of L1 function, such as adhesivity or signal transduction.  相似文献   

19.
Abstract: Neurofilament (NF) protein [high molecular mass (NF-H)] is extensively phosphorylated in vivo. The phosphorylation occurs mainly in its characteristic KSP (Lys-Ser-Pro) repeat motifs. There are two major types of KSP motifs in the NF-H tail domain: KSPXKX and KSPXXX. Recent studies by two different laboratories have demonstrated the presence of a cdc2-like kinase [cyclin-dependent kinase-5 (cdk5)] in nervous tissue that selectively phosphorylates KSPXKX and XS/TXK motifs in NF-H and lysine-rich histone (H1). This article describes the identification of phosphatases dephosphorylating three different substrates: histone (H1), NF-H in a NF preparation, and a bacterially expressed C-terminal tail domain of NF-H, each containing KSPXKX repeats phosphorylated in vitro by cdk5. Among various phosphatases identified, protein phosphatase (PP) 2A from rabbit skeletal muscle appeared to be the most effective phosphatase in in vitro assays. Three phosphatase activity peaks—P1, P2, and P3—were partially purified from frozen rat spinal cord by ion exchange and size exclusion column chromatography and then characterized on the basis of biochemical, pharmacological, and immunochemical studies. One of the three peaks was identified as PP2A, whereas the others were mixtures of both PP2A and PP1. These three peaks could dephosphorylate cdk5-phosphorylated 32P-histone (H1), 32P-NF-H in the NF preparation, and 32P-NF-H tail fusion protein. These studies suggest the involvement of PP2A or a PP2A-like activity in the regulation of the phosphorylation state of KSPXKX motifs in NF-H.  相似文献   

20.
毛细管电泳测定蛋白激酶A活力的新方法   总被引:2,自引:0,他引:2  
建立了以毛细管电泳为基础的蛋白激酶A活力测定的新方法,对其他一些激酶的活力测定具有一定的通用性。此方法是基于蛋白激酶A的检测底物及其磷酸化产物容易在毛细管电泳中分开,并且可以通过在线检测进行积分定量。同时发展了连续进样技术,使能在一个电泳过程中分析十个以上的样品,大大节省分析时间和费用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号