首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the changes occurring in the membrane environment of prion protein (PrP) during apoptosis induced by low potassium in primary rat cerebellar neurons. Ceramide levels increased during apoptosis-inducing treatment, being doubled with respect to time-matched controls after 24 h. Sphingomyelin levels were parallely decreased, while cholesterol and ganglioside contents were not affected. Changes in ceramide and sphingomyelin composition were exclusively restricted to a detergent-resistant membrane fraction. The pro-apoptotic treatment was accompanied by the down-regulation of PrP and of the non-receptor kinase Fyn. The levels of PrP and Fyn were correspondingly reduced in the detergent-resistant membrane fraction. In control cells, the membrane microenvironment separated by immunoprecipitation with anti-PrP antibody contained 80% of the detergent-resistant PrP and 35% and 38% of the sphingolipids and cholesterol respectively. Upon low potassium treatment, 20% of the PrP originally present in the detergent-resistant fraction was immunoprecipitated, together with 19% of sphingolipids and 22% of cholesterol. Thus, PrP in the immunoprecipitate from apoptotic cells was ninefold less than in control ones, while sphingolipids and cholesterol were about 50% with respect to controls cells. The molar ratio between cholesterol, sphingomyelin and ceramide was 15 : 6 : 1 in the PrP-rich environment from control neurons, and 6 : 2 : 1 in that from apoptotic cells.  相似文献   

2.
Sphingolipid-enriched membrane domains, characterized by a particular protein and lipid composition, have been detected in a variety of cells. However, limited data are available concerning these domains in neuronal cells. We analyzed the lipid and protein composition of a sphingolipid-enriched membrane fraction prepared from primary rat cerebellar granule cells differentiated in culture. Although the protein content of this fraction was only 1.4% of total cellular protein, 60% of the gangliosides, 67% of the sphingomyelin, 50% of the ceramide, and 40% of the cholesterol were located in this fraction. The protein pattern of the sphingolipid-enriched domain fraction was dramatically different from that associated with the cell homogenate. This fraction contained 25% of the tyrosine-phosphorylated proteins and was enriched in two proteins with apparent molecular masses of 135 and 15 kDa. 12% of cellular glycerophospholipids were located in the fraction, with phosphatidylcholine having the highest enrichment. The molar ratio between proteins, glycerophospholipids, cholesterol, sphingomyelin, ceramide and gangliosides in cerebellar granule cells was 1.6:41.6:6. 1:1.3:0.3:1 in the cell homogenate and 0.04:8.3:4.0:1.4:0.2:1 in the sphingolipid-enriched membrane fraction. These data indicate that selected proteins segregate with sphingolipids in specialized domains in the membrane of cultured neurons.  相似文献   

3.
The mode of internalization of glycosylphosphatidylinositol-anchored proteins, lacking any cytoplasmic domain by which to engage adaptors to recruit them into coated pits, is problematical; that of prion protein in particular is of interest since its cellular trafficking appears to play an essential role in its pathogenic conversion. Here we demonstrate, in primary cultured neurons and the N2a neural cell line, that prion protein is rapidly and constitutively endocytosed. While still on the cell surface, prion protein leaves lipid 'raft' domains to enter non-raft membrane, from which it enters coated pits. The N-terminal domain (residues 23-107) of prion protein is sufficient to direct internalization, an activity dependent upon its initial basic residues (NH(2)-KKRPKP). The effect of this changing membrane environment upon the susceptibility of prion protein to pathogenic conversion is discussed.  相似文献   

4.
Treatment with methyl-beta-cyclodextrin (MCD) induced a time- and dose-dependent efflux of cholesterol, sphingolipids, and phosphatidylcholine (PC) from cerebellar neurons differentiated in culture. With a "mild" treatment, the loss of cell lipids induced a deep reorganization of the remaining membrane lipids. In fact, the amount of PC associated with a Triton X-100-insoluble membrane fraction (highly enriched in sphingolipids and cholesterol in nontreated cells) was lowered by the treatment. This suggested a reduction of the lipid domain area. However, the cholesterol and sphingolipid enrichment of this fraction remained substantially unchanged, suggesting the existence of dynamic processes aimed at preserving the segregation of cholesterol and sphingolipids in membrane domains. Under these conditions, the lipid membrane domains retained the ability to sort signaling proteins, such as Lyn and c-Src, but cells displayed deep alterations in their membrane permeability. However, normal membrane permeability was restored by loading cells with cholesterol. When MCD treatment was more stringent, a large loss of cell lipids occurred, and the lipid domains were much less enriched in cholesterol and lost the ability to sort specific proteins. The loss of the integrity and properties of lipid domains was accompanied by severe changes in the membrane permeability, distress, and eventually cell death.  相似文献   

5.
Approximately 25% of eukaryotic proteins possessing homology to at least two transmembrane domains are predicted to be embedded in biological membranes. Nevertheless, this group of proteins is not usually well represented in proteome-wide experiments due to their refractory nature. Here we present a quantitative mass spectrometry-based comparison of membrane protein expression in cerebellar granule neurons grown in primary culture that were isolated from wild-type mice and mice lacking the cellular prion protein. This protein is a cell-surface glycoprotein that is mainly expressed in the central nervous system and is involved in several neurodegenerative disorders, though its physiological role is unclear. We used a low specificity enzyme α-chymotrypsin to digest membrane proteins preparations that had been separated by SDS-PAGE. The resulting peptides were labeled with tandem mass tags and analyzed by MS. The differentially expressed proteins identified using this approach were further analyzed by multiple reaction monitoring to confirm the expression level changes.  相似文献   

6.
Rat cerebellar granule cells differentiated in culture were fed [1-(3)H]sphingosine, allowing the metabolic radiolabelling of all cell sphingolipids and phosphatidylethanolamine. A detergent-insoluble sphingolipid-enriched membrane fraction, containing about 60% of cell sphingolipids, but only trace amounts of phosphatidylethanolamine, was prepared from [1-(3)H]sphingosine-fed cells by sucrose gradient centrifugation. This fraction was enriched in the Src family protein tyrosine kinases c-Src, Lyn and Fyn and in the GPI-anchored neuronal adhesion molecule TAG-1. The cell lysate and the sphingolipid-enriched membrane fraction were subjected to immunoprecipitation with anti-GD3 ganglioside monoclonal antibody R24, under experimental conditions designed to preserve the integrity of the domain. The radioactive lipid composition of the immunoprecipitates obtained from the cell lysate and from the sphingolipid-enriched fraction were very similar, and closely resembled the sphingolipid composition of the whole sphingolipid-enriched membrane fraction. In fact, the immunoprecipitates contained, together with GD3 ganglioside, all cell glycosphingolipids and sphingomyelin, whereas they did not contain phosphatidylethanolamine. Moreover, cholesterol and phosphatidylcholine were detected in the immunoprecipitates by qualitative TLC analysis followed by colourimetric visualization. c-Src, Lyn, Fyn and TAG-1 were associated with the anti-GD3 antibody immunoprecipitate. These proteins were not detected in the immunoprecipitates obtained under experimental conditions different from those designed to preserve the integrity of the domain. These data suggest that a membrane domain containing cholesterol, phosphatidylcholine, sphingolipids and proteins can be separated from the total cell membranes by anti-GD3 antibody immunoprecipitation, and that the association of c-Src, Fyn, Lyn, and TAG-1 with the sphingolipid-enriched domain is mediated by the interaction with a complex lipid environment, rather than by specific interactions with a single sphingolipid species.  相似文献   

7.
The pathological conversion of cellular prion protein (PrP(C)) into the scrapie prion protein (PrP(Sc)) isoform appears to have a central role in the pathogenesis of transmissible spongiform encephalopathies. However, the identity of the intracellular compartment where this conversion occurs is unknown. Several lines of evidence indicate that detergent-resistant membrane domains (DRMs or rafts) could be involved in this process. We have characterized the association of PrP(C) to rafts during its biosynthesis. We found that PrP(C) associates with rafts already as an immature precursor in the endoplasmic reticulum. Interestingly, compared with the mature protein, the immature diglycosylated form has a different susceptibility to cholesterol depletion vs. sphingolipid depletion, suggesting that the two forms associate with different lipid domains. We also found that cholesterol depletion, which affects raft-association of the immature protein, slows down protein maturation and leads to protein misfolding. On the contrary, sphingolipid depletion does not have any effect on the kinetics of protein maturation or on the conformation of the protein. These data indicate that the early association of PrP(C) with cholesterol-enriched rafts facilitates its correct folding and reinforce the hypothesis that cholesterol and sphingolipids have different roles in PrP metabolism.  相似文献   

8.
Src family kinases play a relevant role in the development and differentiation of neuronal cells. They are abundant in sphingolipid-enriched membrane domains of many cell types, and these domains are hypothesized to function in bringing together molecules important to signal transduction. We studied the association of Src family tyrosine kinases and their negative regulatory kinase, Csk, with sphingolipids in sphingolipid-enriched domains of rat cerebellar granule cells differentiated in culture. We find that c-Src, Lyn and Csk are enriched in the sphingolipid-enriched fraction prepared from these cells. Coimmunoprecipitation experiments show that these and sphingolipids are part of the same domain. Cross-linking experiments with a photoactivable, radioactive GD1b derivative show that c-Src and Lyn, which are anchored to the membrane via a myristoyl chain, associate directly with GD1b. Csk, which is not inserted in the hydrophobic core of the membrane, is not photolabeled by this ganglioside. These results suggest that lipid–lipid, lipid–protein, and protein–protein interactions cooperate to maintain domain structure. We hypothesize that such interactions might play a role in the process of neuronal differentiation.  相似文献   

9.
While a beta-sheet-rich form of the prion protein (PrPSc) causes neurodegeneration, the biological activity of its precursor, the cellular prion protein (PrPC), has been elusive. We have studied the effect of purified recombinant prion protein (recPrP) on rat fetal hippocampal neurons in culture. Overnight exposure to Syrian hamster or mouse recPrP, folded into an alpha-helical-rich conformation similar to that of PrPC, resulted in a 1.9-fold increase in neurons with a differentiated axon, a 13.5-fold increase in neurons with differentiated dendrites, a fivefold increase in axon length, and the formation of extensive neuronal circuitry. Formation of synaptic-like contacts was increased by a factor of 4.6 after exposure to recPrP for 7 days. Neither the N-terminal nor C-terminal domains of recPrP nor the PrP paralogue doppel (Dpl) enhanced the polarization of neurons. Inhibitors of protein kinase C (PKC) and of Src kinases, including p59Fyn, blocked the effect of recPrP on axon elongation, while inhibitors of phosphatidylinositol 3-kinase showed a partial inhibition, suggesting that signaling cascades involving these kinases are candidates for transduction of recPrP-mediated signals. The results predict that full-length PrPC functions as a growth factor involved in development of neuronal polarity.  相似文献   

10.
The biological functions of prion protein (PrPC) and its possible interaction with other specific molecular membrane partners remain largely unknown. The aim of this study is to gain information on the molecular environment of PrPC by analyzing the lipid and protein composition of a PrPC-enriched membrane subfraction, called prion domain, PrD . This domain was obtained by immunoprecipitation of detergent-resistant microdomains (DRM) of rat cerebellar granule cells under conditions designed to preserve lipid-mediated membrane organization. The electrophoretic pattern of PrD , after staining with Coomassie blue, showed the enrichment of some protein bands in comparison with DRM. μLiquid cromatography-electrospray ionization-mass spectrometry (μLC-ESI-MS)/MS analysis showed that Thy-1 and different types of myosin were strongly enriched in PrD and, in a lesser extent, also OBCAM, LSAMP and tubulin, present altogether in a single band. Experiments using the chemical cross-linker BS3 suggested the existence of an interaction between PrPC and neural cell adhesion molecule (NCAM). Concerning lipids, the comparison between PrD and DRM showed a similar phospholipid/sphingolipid ratio, a phospholipid/cholesterol ratio doubled, and a strong decrease of plasmenilethanolamine (19.7 ± 3.5% vs. 38.3 ± 1.2%). In conclusion, the peculiar lipid composition and in particular the presence of proteins involved in synaptic plasticity, cell adhesion, cytoskeleton regulation and signalling, suggest an important physiological role in neurons of Prion Domain.  相似文献   

11.
We have investigated the organization, on the plasma membrane and in detergent-insoluble membrane vesicles, of two neuronal glycosylphosphatidylinositol-anchored (GPI) proteins: Thy-1, a negative regulator of transmembrane signalling; and prion protein, whose rapid endocytosis and Cu(2+) binding suggest that it functions in metal ion uptake. Prion protein occurred on the neuronal surface at high density in domains, located primarily at the cell body, which were relatively soluble in detergent. Thy-1, although much more abundantly expressed on neurons, occurred at lower density over much of the surface of neurites (and in lower abundance at the cell body) in domains that were highly resistant to detergent solubilization. Detergent-insoluble membrane vesicles contained Thy-1 at a density similar to that on the neuronal surface. Vesicles containing each protein could be separated by immunoaffinity isolation; lectin binding showed that they were enriched in different glycoproteins. Our results demonstrate a structural diversity of the domains occupied by functionally different GPI proteins.  相似文献   

12.
Src family kinases play a relevant role in the development and differentiation of neuronal cells. They are abundant in sphingolipid-enriched membrane domains of many cell types, and these domains are hypothesized to function in bringing together molecules important to signal transduction. We studied the association of Src family tyrosine kinases and their negative regulatory kinase, Csk, with sphingolipids in sphingolipid-enriched domains of rat cerebellar granule cells differentiated in culture. We find that c-Src, Lyn and Csk are enriched in the sphingolipid-enriched fraction prepared from these cells. Coimmunoprecipitation experiments show that these and sphingolipids are part of the same domain. Cross-linking experiments with a photoactivable, radioactive GD1b derivative show that c-Src and Lyn, which are anchored to the membrane via a myristoyl chain, associate directly with GD1b. Csk, which is not inserted in the hydrophobic core of the membrane, is not photolabeled by this ganglioside. These results suggest that lipid-lipid, lipid-protein, and protein-protein interactions cooperate to maintain domain structure. We hypothesize that such interactions might play a role in the process of neuronal differentiation.  相似文献   

13.
The cellular prion protein (PrPC), which is present ubiquitously in all mammalian neurons, is normally found to be linked to the cell membrane through a glycosylphosphatidylinositol (GPI) anchor. The conformational conversion of PrPC into misfolded and aggregated forms is associated with transmissible neurodegenerative diseases known as prion diseases. The importance of different misfolded conformations in prion diseases, and the mechanism by which prion aggregates induce neurotoxicity remain poorly understood. Multiple studies have been shown that the toxicity of misfolded prion protein is directly correlated with its ability to interact with and perturb membranes. This review describes the current progress toward understanding prion protein misfolding and aggregation, as well as the interaction of prion protein aggregates with lipid membrane.  相似文献   

14.
Detection of immiscible lipid domains in biological membranes offers an alternative support to protein sorting. Liquid ordered domains ("rafts") comprising cholesterol and saturated sphingolipids incorporate saturated glycosyl-phosphatidylinositol (GPI)-anchored or acylated (palmitoyl- and myristoyl-) proteins or particular transmembrane protein sequences. These lipid domains can be isolated in the form of Detergent resistant membranes (DRM) from biological plasma membrane preparations. Caveolae appear to be a differentiated fraction of plasma membranes comprising such numerous cross-linked microdomains associated with caveolin in different cell types. While the biological relevance of such membrane domains is evidenced in vivo by co-patching of proteins sharing the identical affinity for sphingolipids and by the disruption of co-patching following cell cholesterol depletion, only a few physical studies confort the principle of membrane heterogeneity. Results are now presented where cholesterol addition in a tertiary lipid mixture forces outphase-separation, as a realistic model where the lipid segregation can promote protein sorting to the segregated Lo phase. A lipid mixture comprising phosphatidylserine, phosphatidylethanolamine and sphingomyelin of natural origin in the ratio (1/4/3: mole/mole) has been rendered neatly heterogeneous after the addition of cholesterol (27 mole%). Xray diffraction (Small angle Xray scattering) showed the splitting of two neatly resolved lamellar diffractions in the presence of cholesterol. Above 37 degrees C the heterogeneity was traceable by a broadened diffraction spot up to the complete get-to-liquid transition of sphingomyelin at temperatures > 40 degrees C where the spot became again symmetrical and narrow. The large temperature range where the immiscible lamellar phases are detected, the specific requirement for cholesterol association with sphingomyelin, the positive influence of calcium and the reversibility of domain formation support the occurrence for such domains at the inner side of the plasma membrane whereon lipids-bound proteins concentrate.  相似文献   

15.
A conformational change of the cellular prion protein (PrP(c)) underlies formation of PrP(Sc), which is closely associated with pathogenesis and transmission of prion diseases. The precise conformational prerequisites and the cellular environment necessary for this post-translational process remain to be completely elucidated. At steady state, glycosylated PrP(c) is found primarily at the cell surface, whereas a minor fraction of the population is disposed of by the ER-associated degradation-proteasome pathway. However, chronic ER stress conditions and proteasomal dysfunctions lead to accumulation of aggregation-prone PrP molecules in the cytosol and to neurodegeneration. In this study, we challenged different cell lines by inducing ER stress or inhibiting proteasomal activity and analyzed the subsequent repercussion on PrP metabolism, focusing on PrP in the secretory pathway. Both events led to enhanced detection of PrP aggregates and a significant increase of PrP(Sc) in persistently prion-infected cells, which could be reversed by overexpression of proteins of the cellular quality control. Remarkably, upon proteasomal impairment, an increased fraction of misfolded, fully glycosylated PrP molecules traveled through the secretory pathway and reached the plasma membrane. These findings suggest a novel pathway that possibly provides additional substrate and template necessary for prion formation when protein clearance by the proteasome is impaired.  相似文献   

16.
Much evidence has accumulated to show that cellular membranes such as the plasma membrane, contain multiple "microdomains" of differing lipid and protein composition and function. These domains are sometimes enriched in cholesterol and sphingolipids and are believed to be important structures for the regulation of many biological and pathological processes. This review focuses on the use of fluorescent (Bodipy) labeled analogs of sphingolipids and cholesterol to study such domains. We discuss the similarities between the behavior of Bodipy-cholesterol and natural cholesterol in artificial bilayers and in cultured cells, and the use of Bodipy-sphingolipid analogs to visualize membrane domains in living cells based on the concentration-dependent monomer-excimer fluorescence properties of the Bodipy-fluorophore. The use of Bodipy-D-erythro-lactosylceramide is highlighted for detection of domains on the plasma membrane and endosome membranes, and the importance of the sphingolipid stereochemistry in modulating domain formation is discussed. Finally, we suggest that Bodipy-sphingolipids may be useful in future studies to examine the relationship between membrane domains at the cell surface and domains enriched in other lipids and proteins on the inner leaflet of the plasma membrane.  相似文献   

17.
In this paper, we show that caveolin-1 is abundantly present in a cell line of immortalized gonadotropin-releasing hormone-expressing neurons (GN11). In contrast to GN11, caveolin is undetectable in a cognate cell line of immortalized gonadotropin-releasing hormone-secreting neurons (GT1-7). These two cell lines are characterized by a radically different sphingolipid metabolism. After incubation in the presence of tracer amount of [1-3H]sphingosine, GN11 and GT1-7 neurons incorporated similar amounts of radioactivity. In GT1-7 neurons, [1-3H]sphingosine metabolism was markedly oriented toward the biosynthesis of complex sphingolipids. In fact, almost all the radioactivity in the lipid extracts from GT1-7 cells was associated with biosynthetic products (ceramide, sphingomyelin, and glycosphingolipids). In particular glycosphingolipids represented more than 65% of total lipid radioactivity in these cells, and the main glycosphingolipid was GM3 ganglioside (about 47% of total lipid radioactivity). In the case of GN11 neurons, a high portion of [1-3H]sphingosine underwent complete degradation, as indicated by the formation of high levels of radioactive phosphatidylethanolamine (about 23% of lipid radioactivity). Moreover, the main complex sphingolipid in GN11 neurons was not a glycolipid, but sphingomyelin (its level in these cells, about 54% of lipid radioactivity, was two-fold higher than in GT1-7). Glycolipids, gangliosides in particular, were present in low amount (9.5% of lipid radioactivity) if compared with the cognate GT1-7 cell line, and GM3 was almost absent in GN11 neurons. Despite the radical differences in ganglioside and caveolin content, from both cell types a membrane fraction similarly enriched in sphingolipids was prepared. In the case of GN11 cells, this fraction was also enriched in caveolin. The presence of caveolin or GM3 may correlate with different functional properties linked to the stage of neuronal maturation, since GN11 and GT1-7 are representative, respectively, of immature, migrating, and differentiated, postmigratory gonadotropin-releasing hormone-positive neurons.  相似文献   

18.
The biology of the cellular prion protein   总被引:5,自引:0,他引:5  
Prions are the etiological agents for infectious degenerative encephalopaties acting by inducing conformational changes in the cellular prion protein (PrPc), which is a cell membrane GPI anchored glycoprotein. Besides its conservation among species and expression in most tissues, and in particular, in high levels in the nervous system, the role for cellular prion protein remained obscure for some time. Initial skepticism about such a role was mainly due to the absence of a gross phenotype alteration in cellular prion protein null mice. In the last few years, some possible biological functions for cellular prion protein have been described. Copper binds to the molecule and the resulting complex may be responsible for cell protection against oxidative stress. Cellular prion protein is also a high-affinity ligand for laminin, and induces neuronal cell adhesion, neurite extension and maintenance. The binding site resides in a carboxy-terminal peptide of the gamma-1 chain, which is very conserved among all laminin types, indicating that this interaction may be relevant in other tissues besides the brain. Moreover, cellular prion protein association with a peptide that mimics a putative ligand at the cell surface, p66, triggers neuroprotective signals through a cAMP/PKA-dependent pathway. Since PrPc recycles from membrane to an intracellular compartment, which is induced by copper binding, it is also possible that the internalization mechanism allows switching off elicited signals.  相似文献   

19.
Lipid rafts are membrane microdomains enriched in saturated phospholipids, sphingolipids, and cholesterol. They have a varied but distinct protein composition and have been implicated in diverse cellular processes including polarized traffic, signal transduction, endo- and exo-cytoses, entrance of obligate intracellular pathogens, and generation of pathological forms of proteins associated with Alzheimer's and prion diseases. Raft proteins can be permanently or temporarily associated to lipid rafts. Here, we review recent advances on the biochemical and cell biological characterization of rafts, and on the emerging concept of the temporary residency of proteins in rafts as a regulatory mechanism of their biological activity.  相似文献   

20.
The prion protein (PrPC) is highly expressed within the nervous system. Similar to other GPI-anchored proteins, PrPC is found in lipid rafts, membrane domains enriched in cholesterol and sphingolipids. PrPC raft association, together with raft lipid composition, appears essential for the conversion of PrPC into the scrapie isoform PrPSc, and the development of prion disease. Controversial findings were reported on the nature of PrPC-containing rafts, as well as on the distribution of PrPC between rafts and non-raft membranes. We investigated PrPC/ganglioside relationships and their influence on PrPC localization in a neuronal cellular model, cerebellar granule cells. Our findings argue that in these cells at least two PrPC conformations coexist: in lipid rafts PrPC is present in the native folding (α-helical), stabilized by chemico-physical condition, while it is mainly present in other membrane compartments in a PrPSc-like conformation. We verified, by means of antibody reactivity and circular dichroism spectroscopy, that changes in lipid raft-ganglioside content alters PrPC conformation and interaction with lipid bilayers, without modifying PrPC distribution or cleavage. Our data provide new insights into the cellular mechanism of prion conversion and suggest that GM1-prion protein interaction at the cell surface could play a significant role in the mechanism predisposing to pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号