首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Five peptides containing the amino acids alanine, asparagine, histidine, isoleucine and tryptophan were investigated by partial methanolysis and fast atom bombardment mass spectrometry in order to examine the behaviour of these amino acid residues under the conditions employed in the methanolytic step. The results obtained confirm that partial methanolysis prior to mass analysis increases considerably the content of sequence information in the mass spectra and that no secondary reactions occur in the residues of the amino acids now investigated, with the exception of the esterification of the glutamic acid carboxyl group and partial conversion of the asparagine amide group in the corresponding methyl ester.  相似文献   

2.
A newly isolated strain, designated as Pseudomonas sp. DSY-82, synthesized medium-chain-length polyhydroxyalkanoate (MCL-PHA) copolyesters when grown on alkanoates from hexanoate to undecanoate as the sole carbon source. When used alone, butyrate and valerate supported the growth of the isolate but not PHA production. However, unusual polyesters containing 3-hydroxyvalerate, as well as various MCL 3-hydroxyalkanoate monomeric units, were synthesized when valerate was cofed with either nonanoate or 10-undecenoate, suggesting the formation of monomer units from both substrates. Concentrations of 3-hydroxyvalerate, 3-hydroxyoctanoate, and 3-hydroxydecanoate in the PHAs produced were significantly elevated by the addition of valerate, indicating that the incorporation of these monomer units to PHA occurred primarily through cometabolism. The total amount of these monomer units in the PHAs reached up to 30%. The PHAs produced in this study were most likely random copolyesters as determined by differential scanning calorimetric analysis. This is the first case of microbial synthesis of copolyesters consisting of 3-hydroxyvalerate and MCL 3-hydroxyalkanoate monomer units through cometabolism.  相似文献   

3.
Rhodococcus ruber and related Gram-positive bacteria synthesized and accumulated novel copolyesters containing 3-hydroxypivalic acid as constituent if the cells were cultivated in a mineral salts medium containing 3-hydroxypivalic acid and glucose as carbon sources. The copolyesters contributed 0.4–10% of the cellular dry mass, and they contained up to 78 mol% of 3-hydroxypivalic acid in addition to 3-hydroxybutyric acid and 3-hydroxyvaleric acid; a homopolyester of 3-hydroxypivalic acid was also synthesized under certain conditions. The presence of 3-hydroxypivalic acid in the accumulated copolyesters was confirmed by nuclear magnetic resonance spectrometry as well by coupled gas chromatography/mass spectrometry. This is the first time that the incorporation of 3-hydroxypivalic acid and therefore of a hydroxyalkanoic acid with two methyl group substituents at the α-carbon atom in a naturally occurring copolyester is reported. It indicates that 3-hydroxypivalic acid-coenzyme A is accepted by polyhydroxyalkanoic acid synthase as a substrate.  相似文献   

4.
The microstructure of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolyesters (PHBV) as well as a mixture of two PHBV copolyesters of different comonomer composition and sequence distribution was studied by 13C NMR based on dyad and triad analysis and multistage electrospray ionization mass spectrometry (ESI-MSn). Both techniques gave results that were in good agreement for all investigated samples. The effect of microstructure on PHBV thermal properties was investigated from the melting behavior of samples. A PHBV copolyester with randomly distributed hydroxyvalerate units (12.0 mol % HV) showed a single melting peak, whereas samples with nonrandom composition distribution showed multiple melting peaks in their thermograms. Such complex melting behavior suggested that the 12.9 and 27.1 mol % PHBV copolyesters were actually blends of several copolymers with widely different comonomer-unit composition.  相似文献   

5.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), copolyesters with a variety of 3HV contents (ranging from 17 to 60 mol%) were produced by Alcaligenes sp. MT-16 grown on a medium containing glucose and levulinic acid in various ratios, and the effects of hydrophilicity and crystallinity on the degradability of the copolyesters were evaluated. Measurements of thermo-mechanical properties and Fourier-transform infrared spectroscopy in the attenuated total reflectance revealed that the hydrophilicity and crystallinity of poly(3HB-co-3HV) copolyesters decreased as 3HV content in the copolyester increased. When the prepared copolyester film samples were non-enzymatically hydrolysed in 0.01 N NaOH solution, the weights of all samples were found to have undergone no changes over a period of 20 weeks. In contrast, the copolyester film samples were degraded by the action of extracellular polyhydroxybutyrate depolymerase from Emericellopsis minima W2. The overall rate of weight loss was higher in the films containing higher amounts of 3HV, suggesting that the enzymatic degradation of the copolyester is more dependent on the crystallinity of the copolyester than on its hydrophilicity. Our results suggest that the degradability characteristics of poly(3HB-co-3HV) copolyesters, as well as their thermo-mechanical properties, are greatly influenced by the 3HV content in the copolyesters.  相似文献   

6.
Twelve bacterial polysaccharides of known structure containing a representative range of pyruvated monosaccharides, were methanolysed, trimethylsilylated, and analysed by g.l.c. and g.l.c.-m.s. Except for 3,4-O-(1-carboxyethylidene)-L-rhamnose, which was unusually labile, the pyruvic acid substituents were largely retained during methanolysis and the Me3Si derivatives of the resulting pyruvated methyl glycosides gave distinctive g.l.c. peaks with characteristic mass spectra. The pyranose rings of 4,6-O-(1-carboxyethylidene)-D-glucose, 4,6-O-(1-carboxyethylidene)-D-mannose, 4,6-O-(1-carboxyethylidene)-D-galactose, and 3,4-O-(1-carboxyethylidene)-D-galactose survived the methanolysis, but that of 2,3-O-(1-carboxyethylidene)-D-glucuronic acid was cleaved to give the methyl ester of 2,3-O-(1-carboxyethylidene)-aldehydo-D-glucuronic acid dimethyl acetal. In the case of 2,3-O-(1-carboxyethylidene)-D-galactose, cleavage of the pyranose ring was less complete; under the conditions used in these experiments two-thirds of the pyranose rings were intact while one-third were cleaved to give the methyl ester of 2,3-O-(1-carboxyethylidene)-aldehydo-D-galactose dimethyl acetal. A very small amount of 3,4-O-(1-carboxyethylidene)-L-rhamnose from one polysaccharide retained its pyruvic acid substituent after gentle methanolysis to give the methyl ester of 3,4-O-(1-carboxyethylidene)-aldehydo-L-rhamnose dimethyl acetal. Susceptibility to cleavage of the pyranose ring during methanolysis appears to be a property of pyruvated monosaccharides with trans-fused 1,3-dioxolane rings.  相似文献   

7.
Pseudomonas aeruginosa ATCC 27853 accumulated poly(3-hydroxyalkanoates) (PHAs) after growth on saturated fatty acids with an odd number of carbon atoms. No nutrient limitation was required to induce PHA synthesis, although better yields were obtained when the medium was magnesium deprived. A comparative study was carried out between PHAs obtained from C-odd and those from C-even carbon sources. Repeating units identification was performed by gas chromatography (GC) and capillary liquid chromatography-electrospray mass spectrometry (LC-ESI MS) of methanolyzed samples. When C-odd n-alkanoic acids from nonanoic to pentadecanoic were used the lowest hydroxyalkanoate unit found was 3-hydroxyvalerate and the highest 3-hydroxypentadecanoate, whereas when C-even acids from octanoic to eicosanoic were used these were 3-hydroxycaproate and 3-hydroxyeicosanoate, respectively. Weight average molecular weights were in the range 187 000-596 000. DSC traces showed Tm and DeltaHm which varied from 43 to 58 degrees C and from 5.9 to 24.8 J/g, with the PHAs generated from C-odd carbon sources having lower values. ESI MS of partially pyrolyzed samples allowed the identification of oligomers up to heptamers, and statistical analysis of the ions intensity in the mass spectra showed that these PHAs are random copolyesters.  相似文献   

8.
A simple and sensitive gas chromatographic method was designed for quantitative analysis of Streptococcus pneumoniae capsular polysaccharides, activated polysaccharides, and polysaccharide conjugates. Pneumococcal serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F polysaccharide or conjugate were subjected to methanolysis in 3N hydrochloric acid in methanol followed by re-N-acetylation and trimethylsilylation. Derivatized samples were chromatographed and detected using gas chromatography with mass selective detector. Gas chromatographic results were compared with colorimetric values with agreement of 92 to 123% over the range of all samples tested. Monosaccharides released during methanolysis included hexoses, uronic acids, 6-deoxy-hexoses, amino sugars, and alditols. Quantitative recovery of monosaccharides was achieved for all serotypes by the use of a single methanolysis, derivatization, and chromatography procedure. Response factors generated from authentic monosaccharide standards were used for quantitation of pneumococcal polysaccharides and conjugates with confirmation of peak assignments by retention time and mass spectral analysis. This method allows saccharide quantitation in multivalent pneumococcal vaccine intermediates and final drug products with low-level detection (10 pg) and peak purity.  相似文献   

9.
High molar mass random poly(butylene succinate-co-butylene sebacate), P(BS-co-BSe), and poly(butylene succinate-co-butylene adipate), P(BS-co-BA), with different composition, were synthesized and subjected to enzymatic hydrolysis by Lipase from Mucor miehei or from Rhizopus arrhizus. The enzymatic hydrolysis of P(BS-co-BSe)s and P(BS-co-BA)s films produced a mixture of water-soluble monomers and co-oligomers that were separated and identified by on-line high performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS). Optimization of the HPLC analysis allowed the separation of isobar co-oligomers, differing only for the co-monomers sequence. Oligomers with the same monomer composition and molar mass but different sequence were identified by HPLC/ESI-MS-MS on-line analysis. The results obtained show a preferential hydrolytic cleavage induced by the lipases used. In particular, these enzymes prefer cleaving sebacic ester bonds in P(BS-co-BSe) copolymers, whereas succinic ester bonds appear to be hydrolyzed faster than adipic ester bonds in P(BS-co-BA) copolyesters. 1H NMR analysis further substantiates these findings. The primary products generated by lipase hydrolysis of polyester films underwent further degradation at longer reaction times. The HPLC/ESI-MS analysis of these mixtures at various times provided the first evidence that lipase catalysis is active also in water solution, a hydrophobic effect induced by the aliphatic units of these polyesters.  相似文献   

10.
Poly(3-hydroxybutyrate) [P(3HB)] and its copolymers with hydroxyalkanoates are naturally occurring thermoplastic materials produced by bacteria. There are many potential uses for these copolyesters owing to their biodegradability and biocompatibility. The physical properties of the copolyesters vary depending on the chemical structure as well as the composition of the comonomers. Usually, we expect, copolymers to have a narrow chemical composition distribution (CCD). Several reports, however, have pointed out that some bacterial copolyesters have broad and/or multimodal CCD. Fractionation based on the chemical composition has also been reported for several bacterial copolyester samples. In this review, the literature concerning CCD and fractionation based on chemical composition is summarized. The width of CCD is approximated based on the data of diad sequence distribution. Generality of the complex CCD in bacterial copolyesters is also discussed.  相似文献   

11.
Burkholderia sp. IS-01 capable of biosynthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)] copolyesters with a high molar fraction of 3HV was isolated from the gut of the adult longicorn beetle, Moechotypa diphysis. The strain IS-01 was relatively tolerant to high concentrations of levulinic acid and accumulated a poly(13.5 mol% 3HB-co-86.5 mol% 3HV) copolyester when cultivated on a mixture of gluconate (20 g/L) and levulinic acid (12.5 g/L). In this case, the content of the copolyester in the cells was approximately 60.0%. The compositions of the copolyesters were easily regulated by altering the molar ratio of gluconate and levulinic acid in the medium. The organism was found to possess a class I PHA synthase (PhaC) gene (1,881 bp) that encodes a protein with a deduced molecular mass of 68,538 Da that consists of 626 amino acids. The PhaC of this organism was most similar to that of B. cenocepacia PC184 (92% similarity).  相似文献   

12.
In support of programs to identify polyhydroxyalkanoates with improved materials properties, we report on our efforts to characterize the mechanical and thermal properties of copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx). The copolyesters, having molar fraction of 3HHx ranging from 2.5 to 35 mol % and average molecular weights ranging from 1.15 x 10(5) to 6.65 x 10(5), were produced by fermentation using Aeromonas hydrophila and a recombinant strain of Pseudomonas putida GPp104. The polymers were chloroform extracted and characterized by solution-state and solid-state nuclear magnetic resonance (NMR) spectroscopy and a variety of mechanical and thermal tests. Solution-state (1)H NMR data were used to determine polymer composition-of-matter, while solution-state (13)C NMR data provided polymer-sequence information. Solvent fractionation and NMR spectroscopic characterization of these polymers showed that polymers containing up to 9.5 mol % 3HHx had a Bernoullian compositional distribution. By contrast, polymers containing more than 9.5 mol % 3HHx had a bimodal polymer composition. Solvent fractionation of these 3HHx-rich polyesters produced two polymer fractions, each of which was again consistent with Bernoullian polymerization statistics. Solid-state NMR relaxation experiments provided insight into aging in poly(3HB-co-3HHx) copolymers, demonstrating increased polymer-chain motion with increasing 3HHx content. The elongation-to-break ratio in the polyesters increased with increasing molar fraction of 3HHx monomers. Aging properties of the poly(3HB-co-3HHx) copolymers were very similar to copolymers of 3HB and 3-hydroxyvalerate (3HV). However, poly(3HB-co-3HHx) exhibited increased activation energy to thermal degradation with increasing 3HHx content.  相似文献   

13.
Summary New copolyesters of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) were produced by Alcaligenes eutrophus from various carbon sources of 4-hydroxybutyric acid, 4-chlorobutyric acid, 1,4-butanediol, and -butyrolactone. The composition of copolyesters varied from 0 to 37 mol% 4HB, depending on the carbon sources supplied. The biosynthetic pathway of copolyesters has been discussed. The copolyester film was biodegradable in soil and activated sludge. The rate of biodegradation was enhanced by the presence of 4HB units.  相似文献   

14.
The escalating problems regarding the treatment of plastic waste materials have led to development of biodegradable plastics. At present, a number of aliphatic polyesters; such as poly[(R)-3-hydroxybutyrate] (PHB), poly(l-lactide), polycaplolactone, poly(ethylene succinate) and poly(butylene succinate) have been developed. Among these aliphatic polyesters, PHB is one of the most attractive since it can undergo biodegradation at various environmental conditions and has properties similar to polypropylene. Although much effort has been made to produce PHB and its copolyesters from renewable resources or through microbial processes, their commercialization and widespread application are still not economically attractive compared to conventional non-biodegradable plastic. Moreover, wide application of PHB and its copolyesters as biodegradable plastic have not only been limited by the cost of production but also by their stinky smell during industrial processing. However, (R)-3-hydroxybutyric acid, a monomer of PHB has wide industrial and medical applications. (R)-3-hydroxybutyric acid can also serve as chiral precursor for synthesis of pure biodegradable PHB and its copolyesters. A number of options are available for production of (R)-3-hydroxybutyric acid. This review discusses each of these options to assess the alternatives that exist for production of pure biodegradable PHB and its copolyesters with good properties.  相似文献   

15.
Copolyesters of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) were produced by Alcaligenes eutrophus at 30 degrees C in nitrogen-free culture solutions containing gamma-butyrolactone alone or with fructose or butyric acid as the carbon sources. When gamma-butyrolactone was used as the sole carbon source, the 4HB fraction in copolyester increased from 9 to 21 mol% as the concentration of gamma-butyrolactone in the culture solution increased from 10 to 25 g/l. The addition of fructose to the culture solution of gamma-butyrolactone resulted in a decrease in the 4HB fraction in copolyester. The copolyesters produced from gamma-butyrolactone and fructose by A. eutrophus were shown to have random sequence distribution of 3HB and 4HB units by analysis of the 125 MHz 13C n.m.r. spectra. In contrast, a mixture of random copolyesters with two different 4HB fractions was produced by A. eutrophus when gamma-butyrolactone and butyric acid were used as the carbon sources. These results are discussed on the basis of a proposed biosynthetic pathway of P(3HB-co-4HB). The copolyester films became soft with an increase in the 4HB fraction, and the elongation to break at 23 degrees C increased from 5 to 444% as the 4HB fraction increased from 0 to 16 mol%. The P(3HB-co-10% 4HB) film was shown to be biodegradable in an activated sludge.  相似文献   

16.
In this study, hydrolysis and methanolysis of glycerol trioleate (TG) by lipase Candida sp. 99–125 were investigated under different water conditions. Both the reaction rates were relatively low without water, while increasing water content to 5 wt.% (or more, from 10–20%) based on the TG amount caused remarkable higher TG conversion for both reactions. Moreover, comparing the time course curves of the hydrolysis and methanolysis, it could be concluded that the methanolysis reaction catalyzed by this Candida sp. 99–125 appeared to accord with the successive reaction mechanism. TG was first hydrolyzed to partial glycerides and oleic acid (OA), then oleic acid methyl ester (OAME) was produced by esterification of the OA with methanol. This water effect was also confirmed by the experiments that water substitutions such as t-butanol and some surfactants added into the system did not get such high yields as that of the water included system. So these results showed that water took part in the methanolysis reaction, and successive hydrolysis–esterification process might be the catalytic mechanism of this lipase.  相似文献   

17.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), copolyesters, with 3-hydroxyvalerate (3HV) contents ranging from 17 to 60 mol%, were produced byAlcaligenes sp. MT-16, and their biocompatibility evaluated by the growth of Chinese hamster ovary (CHO) cells and the adsorption of blood proteins and platelets onto their film surfaces. The number of CHO cells that adhered to and grew on these films was higher with increasing 3HV content. In contrast, the tendency for blood proteins and platelets to adhere to the copolyester surfaces significantly decreased with increasing 3HV content. Examination of the surface morphology using atomic force microscopy revealed that the surface roughness was an important factor in determining the biocompatibility of theses copolyesters. The results obtained in this study suggest that poly(3HB-co-3HV) copolyesters, with >30 mol% 3HV, may be useful in biocompatible biomedical applications.  相似文献   

18.
Mass spectra for the various phosphatidylcholines, together with accurate mass measurements on the more abundant fragment ions, have been described in a previous paper (Ref. 5). No detailed fragmentation sequence was proposed on the evidence available. In the case of dioleoyl glycerylphosphorylcholine, some question arose as to whether certain ions were produced by electron impact or by pyrolysis. In this paper, results are reported which enable a more detailed fragmentation sequence to be proposed. By observing metastable transitions in the first field free region of a double-focusing mass spectrometer, it can be shown that the major ions in the spectrum are produced by electron impact processes, and not by pyrolysis; moreover, many of these ions are directly related to one another by metastable processes. In particular, it has been demonstrated that the ions at m/e 603 for dioleoyl glycerylphosphorylcholine and at m/e 604 for stearoyl-oleoyl glycerylphosphorylcholine are derived from the appropriate molecular ions by an electron impact-induced process. From measurements of the metastable ion intensities, as well as from the appearance potentials and ionization efficiency curves, conclusions may be drawn about many of the fragmentation mechanisms, allowing a distinction to be made between rearrangement and cleavage reactions.  相似文献   

19.
Summary Pseudomonas oleovorans grew well and synthesized copolyesters of 3-hydroxyalkanoates and 3-hydroxy--fluoroalkanoates in the mineral medium containing 1-fluorononane and sodium gluconate. The content of fluorinated units in copolyesters could be controlled from 0 to 40 mol%. The copolyesters were shown to have a random sequence distribution of different monomeric units by analysis of the13C NMR spectra. The melting temperatures of copolyesters were 52–58°C, and the enthalpy of fusion decreased with the content of fluorinated units.  相似文献   

20.
An original, unambiguous microassay of galactofuranose (Galf) residues in glycoconjugates is described. The method involves mild acid methanolysis (5 mM HCl) for 3 h at 84 degrees C followed by high pH anion-exchange chromatography using a routine monosaccharide system. The methanolysis products Mealpha-Galf and Mebeta-Galf were characterized chromatographically by comparison with the authentic compounds and by their response to treatment with mild acid and with beta-galactofuranosidase. Testing against p-nitrophenyl-beta-Galf and UDPalpha-Galf showed the method to be applicable to both alpha- and beta- galactofuranosides over the range 10-200 pmol. The results of partial mild methanolysis over shorter periods were consistent with initial inversion of anomeric configuration at methylation followed by anomerization to an equilibrium mixture of alpha- and beta-forms. When applied to a sample of invertase from Aspergillus nidulans, the method indicated that all of the mild acid-labile galactose (78% of the total galactose present) was in the form of a galactofuranoside and that much of this was in the beta-configuration. As expected, when applied to asialofetuin (known to contain galactose only in the pyranoside form, Galp), NPalpha-Galp, NPbeta-Galp, or UDPalpha-Galp, mild acid methanolysis failed to produce any galactofuranoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号