首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies of reproductive skew have revealed great variationin the distribution of direct fitness among group members, yetthere have been surprisingly few attempts to explore the consequencesof such variation for stable group size, and none that takeinto account the future benefits of group membership to nonbreeders.This means that the existing theory is not suited to explainthe group size of most cooperatively breeding vertebrates andprimitively social insects in which group membership involvessubstantial future benefits. Here we model the group size ofsuch species as social queues in which nonbreeders can inherita breeding position if they outlive those ahead of them in thequeue. We demonstrate, however, that the results can be generalizedto systems in which inheritance occurs via scramble competition,rather than via a strict queue. The model predicts that stablegroup size will depend on the number of breeding positions inthe group and the mortality rates of breeders and nonbreeders,but not on the distribution of reproduction among the pool ofbreeders. This is because deaths occur at random, so that eachindividual has the same chance of surviving to reach each breedingposition. We tested a specific prediction of the model usingdata on ovarian development in the paper wasp, Polistes dominulus.We found a positive correlation between group size and the proportionof females with fully developed eggs, as predicted. Our resultsclarify the interaction between the dominance structure andsize of animal groups and add to the growing recognition ofthe potential for inheritance as a major determinant of bothindividual behavior and group-level characteristics of animalsocieties.  相似文献   

2.
Costly young and reproductive skew in animal societies   总被引:6,自引:3,他引:3  
Many recent models of reproductive skew explain subordinatereproduction as a staying incentive offered by dominants, whocan produce more young with a helper present than without. Here,we present a new, alternative explanation for subordinate reproduction,which applies whenever the fitness cost to a parent of producingyoung is an accelerating function of the number produced (ascommonly assumed in optimal clutch size theory). Under these circumstances,a dominant individual may be selected to offer a share of reproductionto a related subordinate, not as an incentive to stay, but becauseadditional offspring that would be expensive for the dominantto produce are cheap for the subordinate. "Beneficial sharing"of this kind is more likely the more closely related the subordinateis to the dominant, so that the model predicts a negative relationshipbetween skew and relatedness. This result runs directly counterto the positive relationship predicted by previous incentive-basedmodels. We explore the interaction of these contrasting effectsby developing an integrated model that allows for both beneficialsharing and staying incentives. When offspring are cheap to produce,this integrated model predicts that the incentive effect will dominate,and skew will increase with relatedness. When young are costly,in contrast, beneficial sharing will be of greater importance,and skew will decrease with relatedness.  相似文献   

3.
A multitude of factors may determine reproductive skew among cooperative breeders. One explanation, derived from inclusive fitness theory, is that groups can partition reproduction such that subordinates do at least as well as noncooperative solitary individuals. The majority of recent data, however, fails to support this prediction; possibly because inclusive fitness models cannot easily incorporate multiple factors simultaneously to predict skew. Notable omissions are antagonistic selection (across generations, genes will be in both dominant and subordinate bodies), constraints on the number of sites suitable for successful reproduction, choice in which group an individual might join, and within‐group control or suppression of competition. All of these factors and more are explored through agent‐based evolutionary simulations. The results suggest the primary drivers for the initial evolution of cooperative breeding may be a combination of limited suitable sites, choice across those sites, and parental manipulation of offspring into helping roles. Antagonistic selection may be important when subordinates are more frequent than dominants. Kinship matters, but its main effect may be in offspring being available for manipulation while unrelated individuals are not. The greater flexibility of evolutionary simulations allows the incorporation of species‐specific life histories and ecological constraints to better predict sociobiology.  相似文献   

4.
Extrapair fertilizations complicate our understanding of cooperativebreeding in a number of ways. For example, auxiliaries may reducethe costs of seeking extrapair fertilizations for breeding malesor females, and auxiliary males may themselves seek copulationswith the breeding female in their own group. We employed microsatellitemarkers to examine patterns of parentage in the cooperativelybreeding splendid fairy-wren (Malurus splendens melanotus).Our study population exhibited a relatively high level of extrapairpaternity (42% of 386 offspring) with considerable annual variation(range = 24–52%). Across years the proportion of offspringsired by extrapair males was significantly correlated with theaverage number of auxiliaries per group. Furthermore, the proportionof extrapair young within a brood was related to group composition;groups with multiple auxiliaries were twice as likely as groupswith zero or one auxiliary to contain extrapair young. Mostoffspring were sired by dominant breeding males, but auxiliarymales sired approximately 25% of all extrapair young (10% ofall offspring), and about half of these were cases in whichthe auxiliary male sired offspring in his own group. Within-groupsirings by auxiliary males were most common after replacementof the breeding female, and they also appeared to be more likelywhen the auxiliary was not related to the breeding male. Thus,the presence of auxiliary males increased the likelihood thatfemales would produce extrapair young, and although incest avoidancemechanisms usually prevent within-group copulations by auxiliarymales, a conflict of interest among group males arises whena new female joins the group.  相似文献   

5.
Helpers in cooperatively breeding species forego all or partof their reproduction when remaining at home and assisting breedersto raise offspring. Different models of reproductive skew generatealternative predictions about the share of reproduction unrelatedsubordinates will get depending on the degree of ecologicalconstraints. Concession models predict a larger share when independentbreeding options are good, whereas restraint and tug-of-warmodels predict no effects on reproductive skew. We tested thesepredictions by determining the share of reproduction by unrelatedmale and female helpers in the Lake Tanganyika cichlid Neolamprologuspulcher depending on experimentally manipulated possibilitiesfor helper dispersal and independent breeding and dependingon helper size and sex. We created 32 breeding groups in thelaboratory, consisting of two breeders and two helpers each,where only the helpers had access to a nearby dispersal compartmentwith (treatment) or without (control) breeding substrate, usinga repeated measures design. We determined the paternity andmaternity of 1185 offspring from 47 broods using five to nineDNA microsatellite loci and found that: (1) helpers participatedin reproduction equally across the treatments, (2) large malehelpers were significantly more likely to reproduce than smallhelpers, and (3) male helpers engaged in significantly morereproduction than female helpers. Interestingly, in four broods,extragroup helper males had fertilized part of the brood. Nohelper evictions from the group after helper reproduction wereobserved. Our results suggest that tug-of-war models based oncompetition over reproduction within groups describe best thereproductive skew observed in our study system. Female breedersproduced larger clutches in the treatment compared to the controlsituation when the large helpers were males. This suggests thatmale breeder-male helper reproductive conflicts may be alleviatedby females producing larger clutches with helpers around.  相似文献   

6.
7.
Two current models seek to explain reproduction of subordinatesin social groups: incentives given by dominants for peacefullyremaining in the group (reproductive skew model) or incompletecontrol by dominants. These models make different predictionsconcerning genetic relatedness between individuals for thedistribution of reproduction and the stability of cooperativebreeding associations. To test these models and to furtherexplore the relationships between reproductive skew, geneticrelatedness, and investment of each participant, we performedbehavioral observations of female wood mice (Apodemus sylvaticus)raising pups communally. Our results do not support previousmodels. Differences in lifetime reproductive success were significantlygreater within mother—daughter pairs than within pairsof sisters or unrelated females. Subordinate females of eitherbreeding unit did not differ in their direct reproduction.Calculations of inclusive fitness based on our results leadto the following predictions: (1) Communal nests should occuronly when ecological circumstances prevent solitary breeding.(2) Subordinate females gain the highest inclusive fitnessjoining their mothers; they also show the highest nursing investment.(3) Mothers should accept daughters, who have no opportunityfor solitary breeding. (4) Dominant sisters and unrelated femalesshould reject subordinate females because cooperative breedingreduces their reproductive success. However, breeding unitsof dominant sisters and unrelated females nevertheless occurand can be explained by our finding that such females significantlyreduce nursing time, which may help them save energy for futurebreeding cycles. Our data demonstrate that both genetic relatednessand investment skew are important in the complex evolutionof reproductive skew in cooperative breeding.  相似文献   

8.
Reproductive skew has been identified as a major dimension along which animal societies vary. Two major kinds of reproductive skew models are transactional models, which explain the distribution of reproduction within animal societies as the result of reproductive payments exchanged among group members with differential leverage, and tug-of-war models, in which the reproductive shares are determined by costly ‘tugs-of-war’. These two models have recently been synthesized to yield the mutual-pay, bordered tug-of-war model. In this paper, we extend the latter, show its evolutionary stability, and demonstrate that the generalized model yields four sub-models, namely the mutual-pay, alpha-pay, beta-pay, and pure tug-of-war. The alpha-pay sub-model turns out to closely resemble the original “concessions” transactional skew model, and the beta-pay sub-model turns out to have properties similar to the “restraint” transactional skew model. Thus, the general model unifies the four major models of reproductive skew and is rich in its predictions, as each sub-model exhibits different qualitative and quantitative relationships between reproductive skew or intra-group conflict and the ecological and genetic factors that determine skew and conflict. The conditions favoring transitions among these sub-models also are precisely predicted by the general model. The general model accommodates data from acorn woodpeckers and primitively eusocial bees potentially can account for many of the highly varied empirical findings on reproductive skew. We suggest further research that focuses on (1) determining which model is suitable for certain species and (2) understanding why and how various social animals resolve their breeding conflict by different conflict resolution mechanisms.  相似文献   

9.
Genetic relatedness and group size in an aggregation economy   总被引:3,自引:0,他引:3  
Summary We use Hamilton's Rule to investigate effects of genetic relatedness on the predicted size of social groups. We assume an aggregation economy; individual fitness initially increases with group size, but in sufficiently large groups each member's individual fitness declines with further increments in the size of the group. We model two processes of group formation, designated free entry and group-controlled entry. The first model assumes that solitary individuals decide to join groups or remain alone; group size equilibrates when solitaries no longer choose to join. The second model allows group members to regulate the size of the group, so that the predicted group size results from members' decisions to repel or accept intruding solitaries. Both the Nash equilibrium group size and any change in the equilibrium caused by varying the level of relatedness depend on the particular entry rule assumed. The largest equilibrium group size occurs when solitaries choose between joining or not joining and individuals are unrelated. Increasing genetic relatedness may reduce and can never increase, equilibrium group size when this entry rule applies. The smallest equilibrium group size occurs when group members choose between repelling or accepting intruders and individuals are unrelated. Under this entry rule, increasing genetic relatedness can increase and can never decrease, equilibrium group size. We extend the models' predictions to suggest when individuals should prefer kin vs non-kin as members of the same group.  相似文献   

10.
While competition for limited breeding positions is a common feature of group life, species vary widely in the extent to which reproduction is shared among females (‘reproductive skew’). In recent years, there has been considerable debate over the mechanisms that generate variation in reproductive skew, with most evidence suggesting that subordinates breed when dominants are unable to prevent them from doing so. Here, we suggest that viviparity reduces the ability of dominant females to control subordinate reproduction and that, as a result, dominant female birds are more able than their mammal counterparts to prevent subordinates from breeding. Empirical data support this assertion. This perspective may increase our understanding of how cooperative groups form and are stabilized in nature.  相似文献   

11.
Social species show considerable variation in the extent to which dominant females suppress subordinate reproduction. Much of this variation may be influenced by the cost of active suppression to dominants, who may be selected to balance the need to maximize the resources available for their own offspring against the costs of interfering with subordinate reproduction. To date, the cost of reproductive suppression has received little attention, despite its potential to influence the outcome of conflict over the distribution of reproduction in social species. Here, we investigate possible costs of reproductive suppression in banded mongooses, where dominant females evict subordinates from their groups, thereby inducing subordinate abortion. We show that evicting subordinate females is associated with substantial costs to dominant females: pups born to females who evicted subordinates while pregnant were lighter than those born after undisturbed gestations; pups whose dependent period was disrupted by an eviction attained a lower weight at independence; and the proportion of a litter that survived to independence was reduced if there was an eviction during the dependent period. To our knowledge, this is the first empirical study indicating a possible cost to dominants in attempting to suppress subordinate breeding, and we argue that much of the variation in reproductive skew both within and between social species may be influenced by adaptive variation in the effort invested in suppression by dominants.  相似文献   

12.
Heg D 《Biology letters》2008,4(6):606-609
Suppression by dominants of female subordinate reproduction has been found in many vertebrate social groups, but has rarely been shown experimentally. Here experimental evidence is provided for reproductive suppression in the group-living Lake Tanganyika cichlid Neolamprologus pulcher. Within groups of three unrelated females, suppression was due to medium- and small-sized females laying less frequently compared with large females, and compared with medium females in control pairs. Clutch size and average egg mass of all females depended on body size, but not on rank. In a second step, a large female was removed from the group and a very small female was added to keep the group size constant. The medium females immediately seized the dominant breeding position in the group and started to reproduce as frequently as control pairs, whereas clutch size and egg mass did not change. These results show that female subordinate cichlids are reproductively capable, but apparently suppressed with respect to egg laying. Nevertheless, some reproduction is tolerated, possibly to ensure continued alloparental care by subordinate females.  相似文献   

13.
Reproductive skew models attempt to predict the fraction ofreproduction contributed by each individual that participatesin a communal brood. One potential limitation of these modelsis that individuals make a single, fixed decision about groupmembership and reproductive allocation at the beginning of thebreeding period. While this is appropriate for animals thatreproduce in a synchronous bout, many cooperative breeders produceoffspring over a prolonged period of time. It is likely thatthese species adjust reproductive allocation and group membershipover time in response to temporal shifts in group productivityand ecological constraints. In this paper we adapt transactionalmodels of reproductive skew to a continuous form, generatingtime-dependent functions of reproductive allocation. We derivea general method for predicting temporal changes in group membershipas well as a general expression for reproductive skew acrossthe regions over which a group is stable. Using a linear approximationfor time-dependent reproduction, we derive new expressions forreproductive skew in cases where the subordinate departs duringthe breeding period. In this case we find that the traditionalmodel always overestimates the subordinate's share of reproductionwhen dominants are in control of both reproductive shares andgroup membership (i.e., concessions models). Conversely, wefind that the traditional model always underestimates the subordinate'sshare of reproduction when subordinates are in control of reproductiveshares (i.e., constraint models). We discuss the implicationsof these new calculations in relation to the traditional skewmodels and more recent empirical tests of reproductive skewin animal societies.  相似文献   

14.
1. Senescence (or 'ageing') is a widespread and important process in wild animal populations, but variation in ageing patterns within and between species is poorly understood.
2. In cooperatively breeding species, the costs of reproduction are shared between breeders and one or more helpers. The effects of ageing in breeders may therefore be moderated by the presence of helpers, but there have been very few studies of senescence patterns in natural populations of cooperative breeders.
3. Here, we use 13 years of data from a long-term study population of wild meerkats ( Suricata suricatta ) to investigate age-related changes in several traits known to be key components of reproductive success in females of this species.
4. Four of the six traits studied exhibited significant declines with age, indicating senescence. Litter size, the number of litters produced per year and the number of pups that survived to emergence from the natal burrow per year all increased with female age up to a peak at c. 4 years, and declined steeply thereafter; the mean pup weight at emergence in a given litter declined steadily from age zero.
5. These results provide the first evidence of reproductive senescence in a wild population of a cooperatively breeding vertebrate. Breeding success declined with age despite the sharing of reproductive costs in this species, but further study is needed to investigate whether helping affects other aspects of senescence, including survival.  相似文献   

15.
In many social vertebrates, variation in group persistence exerts an important effect on individual fitness and population demography. However, few studies have been able to investigate the failure of groups or the causes of the variation in their longevity. We use data from a long‐term study of cooperatively breeding meerkats, Suricata suricatta, to investigate the different causes of group failure and the factors that drive these processes. Many newly formed groups failed within a year of formation, and smaller groups were more likely to fail. Groups that bred successfully and increased their size could persist for several years, even decades. Long‐lived groups principally failed in association with the development of clinical tuberculosis, Mycobacterium suricattae, a disease that can spread throughout the group and be fatal for group members. Clinical tuberculosis was more likely to occur in groups that had smaller group sizes and that had experienced immigration.  相似文献   

16.
Reproductive skew theory seeks to integrate social and ecologicalfactors thought to influence the division of reproduction amonggroup-living animals. However, most reproductive skew modelsonly examine interactions between individuals of the same sex.Here, we suggest that females can influence group stabilityand conflict among males by modifying their clutch size andmay do so if they benefit from the presence of subordinate malehelpers or from reduced conflict. We develop 3 models, basedon concessions-based, restraint, and tug-of-war models, in whichfemale clutch size is variable and ask when females will increasetheir clutch size above that which would be optimal in the absenceof male–male conflict. In concessions-based and restraintmodels, females should increase clutch size above their optimaif the benefits of staying for subordinate males are relativelylow. Relatedness between males has no effect on clutch size.When females do increase clutch size, the division of reproductionbetween males is not influenced by relatedness and does notdiffer between restraint and concessions-based models. Bothof these predictions are in sharp contrast to previous models.In tug-of-war models, clutch size is strongly influenced byrelatedness between males, with the largest clutches, but thefewest surviving offspring, produced when males are unrelated.These 3 models demonstrate the importance of considering third-partyinterests in the decisions of group-living organisms.  相似文献   

17.
Reproductive skew is a measure of the proportion of individuals of each sex that breed in a group and is a valuable measure for understanding the evolution and maintenance of sociality. Here, we provide the first quantification of reproductive skew within social groups of European badgers Meles meles , throughout an 18-year study in a high-density population. We used 22 microsatellite loci to analyse within-group relatedness and demonstrated that badger groups contained relatives. The average within-group relatedness was high ( R =  0.20) and approximately one-third of within-group dyads were more likely to represent first-order kin than unrelated pairs. Adult females within groups had higher pairwise relatedness than adult males, due to the high frequency of extra-group paternities, rather than permanent physical dispersal. Spatial clustering of relatives occurred among neighbouring groups, which we suggest was due to the majority of extra-group paternities being attributable to neighbouring males. Reproductive skew was found among within-group candidate fathers ( B  = 0.26) and candidate mothers ( B  = 0.07), but not among breeding individuals; our power to detect skew in the latter was low. We use these results to evaluate reproductive skew models. Although badger society best fits the assumptions of the incomplete-control models, our results were not consistent with their predictions. We suggest that this may be due to female control of paternity, female–female reproductive suppression occurring only in years with high food availability resulting in competition over access to breeding sites, extra-group paternity masking the benefits of natal philopatry, and/or the inconsistent occurrence of hierarchies that are linear when established.  相似文献   

18.
Infanticide in species with shared reproduction may indicate attempts to control the degree of skew within groups. Alternatively, individuals that have done poorly in reproduction could use infanticide for hastening the next breeding attempt. Many factors influence the individual’s decision over whether it is best to cooperate or engage in destruction. We present a qualitative model incorporating kinship among adults and progeny, social status, group size and seasonality to predict behavioural options for individuals of diverse backgrounds. The social system used for the model was that of the guira cuckoo (Guira guira), a Neotropical bird that breeds communally. We suggest communal breeders utilise the best available predictors for enhancing seasonal reproductive success, with favourable consequences for lifetime inclusive fitness. Predictors rely upon parameters that change over time, including the individual’s assessment of present and future possibilities. The model produces predictions that may be tested through field observations and molecular analyses for species with similar social dynamics.  相似文献   

19.
A number of social mole-rat species maintain a strong reproductive skew (only one breeding pair in the group) solely through incest avoidance. Incest avoidance probably evolved for one of two reasons, namely for actually maintaining a reproductive skew or, alternatively, to avoid high inbreeding depression. In the latter case a strong reproductive skew would result as a fortuitous by-product of the combination of a cloistral family life style of mole-rats and incest avoidance. We undertook breeding experiments in which the fertility of pairs of unrelated individuals were compared with that of pairs of double first cousins. Inbreeding depression was remarkably high and an accompanying model suggests that it may be sufficient to support the idea that strong incest avoidance evolved primarily to eliminate the costs of inbreeding and subsequently facilitated the evolution of reproductive skew.  相似文献   

20.
Measurement of reproductive skew in social groups is fundamentalto understanding the evolution and maintenance of sociality,as it determines the immediate fitness benefits to helpers ofstaying and helping in a group. However, there is a lack ofstudies in natural populations that provide reliable measuresof reproductive skew and the correlates of reproductive success,particularly in vertebrates. We present results of a study thatuses a combination of field and genetic (microsatellite) dataon a cooperatively breeding mongoose, the meerkat (Suricatasuricatta). We sampled 458 individuals from 16 groups at twosites and analyzed parentage of pups in 110 litters with upto 12 microsatellites. We show that there is strong reproductiveskew in favor of dominants, but that the extent of skew differsbetween the sexes and between different sites. Our data suggestthat the reproductive skew arises from incest avoidance andreproductive suppression of the subordinates by the dominants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号