首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The largest genetic risk for late-onset Alzheimer's disease (AD) resides at the apolipoprotein E gene (APOE) locus, which has three common alleles (?2, ?3, ?4) that encode three isoforms (apoE2, apoE3, apoE4). The very strong association of the APOE ?4 allele with AD risk and its role in the accumulation of amyloid β in brains of people and animal models solidify the biological relevance of apoE isoforms but do not provide mechanistic insight. The innate immune response is consistently observed in AD and is a likely contributor to neuronal injury and response to injury. Here we review emerging data showing that apoE isoform regulation of multiple facets of the innate immune response in the brain may alter AD not only through amyloid β-dependent mechanisms, but also through other, amyloid β-independent mechanisms.  相似文献   

2.
3.
Progressive dysfunction and death of neurons in Alzheimer's dementia is enhanced in patients carrying one or more APOE4 alleles who also display increased presence of oxidative stress markers. Modulation of oxidative stress is a nontraditional and physiologically relevant immunomodulatory function of apolipoprotein E (apoE). Stimulated peritoneal macrophages from APOE-transgenic replacement (APOE-TR) mice expressing only human apoE3 or human apoE4 protein isoforms were utilized as mouse models to investigate the role of apoE protein isoforms and gender in the regulation of oxidative stress. Macrophages from male APOE4/4-TR mice produced significantly higher levels of nitric oxide than from male APOE3/3-TR mice, while macrophages from female APOE3/3-TR and female APOE4/4-TR mice produced the similar levels of nitric oxide. Primary cultures of microglial cells of APOE4 transgenic mice also produced significantly more nitric oxide than microglia from APOE3 transgenic mice. These data suggest a potentially novel mechanism for gender-dependent and apoE isoform-dependent immune responses that parallel the genetic susceptibility of APOE4 carriers for the development of Alzheimer's disease.  相似文献   

4.
Assessment of the apolipoprotein E (apoE) phenotype by isoelectric focusing of both hyperlipidemic and normolipidemic individuals identified five new variants. All mutations were confined to the downstream part of the APOE gene by using denaturing gradient gel electrophoresis (DGGE). Sequence analysis revealed five new mutations causing unique amino acid substitutions in the carboxyl-terminal part of the protein containing the putative lipid-binding domain. Three hyperlipoproteinemic probands were carriers of the APOE*2(Val236→Glu) allele, the APOE*3(Cys112→Arg; Arg251→Gly) allele, or the APOE*1(Arg158→Cys; Leu252→Glu) allele. DGGE of the region encoding the receptor-binding domain was useful for haplotyping the mutations at codons 112 and 158. Family studies failed to demonstrate cosegregation between the new mutations and severe hyperlipoproteinemia, although a number of carriers for the APOE*3(Cys112→Arg; Arg251→Gly) allele and the APOE*1(Arg158→Cys; Leu252→Glu) allele expressed hypertriglyceridemia and/or hypercholesterolemia. Two other mutant alleles, APOE*4 (Cys112→Arg; Arg274→His) and APOE*4+(Ser296→Arg), were found in normolipidemic probands. The lack of cosegregation of these new mutations with severe hyperlipoproteinemia suggests that these mutations do not exert a dominant effect on the functioning of apoE.  相似文献   

5.
Abstract: The ε4 allele of apolipoprotein E (apoE, protein; APOE, gene) is a major risk factor for Alzheimer's disease (AD). Genetically, the frequency of the ε4 allele is enriched in early-onset sporadic, late-onset familial, and common late-onset sporadic AD. ApoE is found in the extracellular amyloid-β (Aβ) deposits that are characteristic features of AD. In this study, we examined the interaction between Aβ and apoE isoforms. The apoE isoforms used in this study were either produced by stably transfected Chinese hamster ovary cells (CHO) or were from human plasma. We report that when similar concentrations of the apoE isoforms were used, native nonpurified apoE3 from recombinant CHO-derived sources bound Aβ, but apoE4 did not. In fact, in our system, binding of recombinant apoE4 to Aβ was never detectable, even after incubation for 4 days. Furthermore, using the same assay conditions, native apoE2, like apoE3, binds Aβ avidly. Furthermore, when human plasma apoE isoforms are tested in Aβ binding experiments, apoE3 bound Aβ more avidly than apoE4, and a major apoE/Aβ complex (the 40-kDa form) was observed with plasma apoE3 but not apoE4. These data extend our understanding of apoE isoform-dependent binding of Aβ by associating apoE2 with efficient apoE/Aβ complex formation and demonstrate that native apoE3 (whether recombinant or derived from human plasma) forms sodium dodecyl sulfate-stable apoE/Aβ complexes more readily than native apoE4. The different Aβ-binding properties of native apoE4 versus native apoE3 provide insight into the molecular mechanisms by which the APOE ε4 allele exerts its risk factor effects in AD.  相似文献   

6.
7.
A great number of epidemiological studies have demonstrated that the frequency of the epsilon4 allele of the apolipoprotein E gene (APOE) is markedly higher in sporadic and in familial late onset Alzheimer disease (AD). In the frontal cortex of AD patients, oxidative damage is elevated. We address the hypothesis that the APOE genotype and reactive oxygen-mediated damage are linked in the frontal cortex of AD patients. We have related the APOE genotype to the levels of lipid oxidation (LPO) and to the antioxidant status, in frontal cortex tissues from age-matched control and AD cases with different APOE genotypes. LPO levels were significantly elevated in tissues from Alzheimer's cases which are homozygous for the epsilon4 allele of APOE, compared to AD epsilon3/epsilon3 cases and controls. Activities of enzymatic antioxidants, such as catalase and glutathione peroxidase (GSH-PX), were also higher in AD cases with at least one epsilon4 allele of APOE, while superoxide dismutase (SOD) activity was unchanged. In the frontal cortex, the concentration of apoE protein was not different between controls and AD cases, and was genotype independent. The Ginkgo biloba extract (EGb 761), the neurosteroid dehydroepiandrosterone (DHEA) and human recombinant apoE3 (hapoE3rec) were able to protect control, AD epsilon3/epsilon3 and epsilon3/epsilon4 cases against hydrogen peroxide/iron-induced LPO, while hapoE4rec was completely ineffective. Moreover, EGb 761 and DHEA had no effect in homozygous epsilon4 cases. These results demonstrate that oxidative stress-induced injury and protection by antioxidants in the frontal cortex of AD cases are related to the APOE genotype.  相似文献   

8.
Poduslo  S.E.  Neal  M.  Herring  K.  Shelly  J. 《Neurochemical research》1998,23(3):361-367
The E4 allele for the apolipoprotein E gene has been shown to be a significant risk factor for Alzheimer's disease. The gene is located in a conserved gene cluster on chromosome 19q12-13.2. Downstream from APOE is the gene for apolipoprotein CI. We had previously shown that the presence of a restriction site in the 5end of APOCI (the A allele) was present at increased frequency in Alzheimer's patients and could also be considered as a risk factor for the disease. We have extended these studies and find that both familial and sporadic cases of Alzheimer's disease have a higher frequency of the APOCI A allele than control spouses. In addition, male patients with the APOCI A allele and/or the APOE4 allele tend to have an earlier age of onset of the disease than female patients.  相似文献   

9.
The ε4 allele of the gene that encodes apolipoprotein E (APOE4) is the greatest genetic risk factor for Alzheimer''s disease (AD), while APOE2 reduces AD risk, compared to APOE3. The mechanism(s) underlying the effects of APOE on AD pathology remains unclear. In vivo, dendritic spine density is lower in APOE4-targeted replacement (APOE-TR) mice compared with APOE2- and APOE3-TR mice. To investigate whether this apoE4-induced decrease in spine density results from alterations in the formation or the loss of dendritic spines, the effects of neuron age and apoE isoform on the total number and subclasses of spines were examined in long-term wild-type neurons co-cultured with glia from APOE2-, APOE3- and APOE4-TR mice. Dendritic spine density and maturation were evaluated by immunocytochemistry via the presence of drebrin (an actin-binding protein) with GluN1 (NMDA receptor subunit) and GluA2 (AMPA receptor subunit) clusters. ApoE isoform effects were analyzed via a method previously established that identifies phases of spine formation (day-in-vitro, DIV10–18), maintenance (DIV18–21) and loss (DIV21–26). In the formation phase, apoE4 delayed total spine formation. During the maintenance phase, the density of GluN1+GluA2 spines did not change with apoE2, while the density of these spines decreased with apoE4 compared to apoE3, primarily due to the loss of GluA2 in spines. During the loss phase, total spine density was lower in neurons with apoE4 compared to apoE3. Thus, apoE4 delays total spine formation and may induce early synaptic dysfunction via impaired regulation of GluA2 in spines.  相似文献   

10.
Extracellular amyloid plaques, intracellular neurofibrillary tangles, and loss of basal forebrain cholinergic neurons in the brains of Alzheimer's disease (AD) patients may be the end result of abnormalities in lipid metabolism and peroxidation that may be caused, or exacerbated, by beta-amyloid peptide (Abeta). Apolipoprotein E (apoE) is a major apolipoprotein in the brain, mediating the transport and clearance of lipids and Abeta. ApoE-dependent dendritic and synaptic regeneration may be less efficient with apoE4, and this may result in, or unmask, age-related neurodegenerative changes. The increased risk of AD associated with apoE4 may be modulated by diet, vascular risk factors, and genetic polymorphisms that affect the function of other transporter proteins and enzymes involved in brain lipid homeostasis. Diet and apoE lipoproteins influence membrane lipid raft composition and the properties of enzymes, transporter proteins, and receptors mediating Abeta production and degradation, tau phosphorylation, glutamate and glucose uptake, and neuronal signal transduction. The level and isoform of apoE may influence whether Abeta is likely to be metabolized or deposited. This review examines the current evidence for diet, lipid homeostasis, and apoE in the pathogenesis of AD. Effects on the cholinergic system and response to cholinesterase inhibitors by APOE allele carrier status are discussed briefly.  相似文献   

11.
The apoE phenotype of 83 patients with probable Alzheimer's disease (AD) and of 164 non-demented controls was determined by isoelectric focusing and Western blotting. The proportion of the e4 allele was 0.548 in AD and 0.202 in controls (P<0.0001). The effect was seen in both early-onset and late-onset AD patients. The risk of AD in 4 homozygotes was 18-fold greater than in individuals without the 4 allele. ApoE concentrations were measured in serum and cerebrospinal fluid (CSF) from a subgroup of patients with AD (n=72) and controls (n=84) by a sandwich enzyme-linked immunosorbent assay. Although serum apoE concentrations were lower in individuals with the 4 allele than in those without the e4 allele, CSF apoE concentrations did not vary in different phenotype groups. However, CSF apoE levels were lower in AD patients than in controls. We conclude that the inheritance of the 4 allele of apoE is a risk factor for AD in the Finnish population.  相似文献   

12.
Genetic association of apolipoprotein E with age-related macular degeneration.   总被引:20,自引:1,他引:19  
Age-related macular degeneration (AMD) is the most common geriatric eye disorder leading to blindness and is characterized by degeneration of the neuroepithelium in the macular area of the eye. Apolipoprotein E (apoE), the major apolipoprotein of the CNS and an important regulator of cholesterol and lipid transport, appears to be associated with neurodegeneration. The apoE gene (APOE) polymorphism is a strong risk factor for various neurodegenerative diseases, and the apoE protein has been demonstrated in disease-associated lesions of these disorders. Hypothesizing that variants of APOE act as a potential risk factor for AMD, we performed a genetic-association study among 88 AMD cases and 901 controls derived from the population-based Rotterdam Study in the Netherlands. The APOE polymorphism showed a significant association with the risk for AMD; the APOE epsilon4 allele was associated with a decreased risk (odds ratio 0.43 [95% confidence interval 0.21-0. 88]), and the epsilon2 allele was associated with a slightly increased risk of AMD (odds ratio 1.5 [95% confidence interval 0.8-2. 82]). To investigate whether apoE is directly involved in the pathogenesis of AMD, we studied apoE immunoreactivity in 15 AMD and 10 control maculae and found that apoE staining was consistently present in the disease-associated deposits in AMD-maculae-that is, drusen and basal laminar deposit. Our results suggest that APOE is a susceptibility gene for AMD.  相似文献   

13.
Lee G  Pollard HB  Arispe N 《Peptides》2002,23(7):1249-1263
Amyloid-beta-protein (betaA/4, AbetaP) accumulates in the brains of patients with Alzheimer's disease (AD), regardless of genetic etiology, and is thought to be the toxic principle responsible for neuronal cell death. The varepsilon4 allele of apoE has been linked closely to earlier onset of AD and increased deposition of the amyloid peptide, regardless of the clinical status of AD, while the apoE varepsilon2 allele is generally protective. We have previously hypothesized that the cell target for amyloid peptide might be the apoptotic signal molecule phosphatidylserine (PS). We report here that annexin 5, a specific ligand for PS, not only blocks amyloid peptide AbetaP[1-40] cytotoxicity, but competitively inhibits AbetaP[1-40]-dependent aggregation of PS liposomes. In addition, we find that apoE2, but not apoE4, can not only perform the same protective effect on cells exposed to AbetaP[1-40], but can also competitively inhibit PS liposome aggregation and fusion by the amyloid peptide. Altogether, the in vivo and in vitro results reported here provide fundamental insight to the process by which amyloid targets specific neurons for destruction, and suggest that PS may be a surface "receptor" site for AbetaP binding. These results also provide a biochemical mechanism by which the apoE varepsilon2 allele, but not apoE varepsilon4, can be protective towards the incidence and progression of Alzheimer's disease.  相似文献   

14.
Apolipoprotein E (apoE) is the major cholesterol transport protein in the brain. Among the three human APOE alleles (APOE2, APOE3, and APOE4), APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease (AD). The accumulation of amyloid-β (Aβ) is a central event in AD pathogenesis. Increasing evidence demonstrates that apoE isoforms differentially regulate AD-related pathways through both Aβ-dependent and -independent mechanisms; therefore, modulating apoE secretion, lipidation, and function might be an attractive approach for AD therapy. We performed a drug screen for compounds that modulate apoE production in immortalized astrocytes derived from apoE3-targeted replacement mice. Here, we report that retinoic acid (RA) isomers, including all-trans-RA, 9-cis-RA, and 13-cis-RA, significantly increase apoE secretion to ∼4-fold of control through retinoid X receptor (RXR) and RA receptor. These effects on modulating apoE are comparable with the effects recently reported for the RXR agonist bexarotene. Furthermore, all of these compounds increased the expression of the cholesterol transporter ABCA1 and ABCG1 levels and decreased cellular uptake of Aβ in an apoE-dependent manner. Both bexarotene and 9-cis-RA promote the lipidation status of apoE, in which 9-cis-RA promotes a stronger effect and exhibits less cytotoxicity compared with bexarotene. Importantly, we showed that oral administration of bexarotene and 9-cis-RA significantly increases apoE, ABCA1, and ABCG1 levels in mouse brains. Taken together, our results demonstrate that RXR/RA receptor agonists, including several RA isomers, are effective modulators of apoE secretion and lipidation and may be explored as potential drugs for AD therapy.  相似文献   

15.
The allele E4 of apolipoprotein E4 (apoE4), which is the most prevalent genetic risk factor of Alzheimer's disease (AD), inhibits synaptogenesis and neurogenesis and stimulates apoptosis in brains of apoE4 transgenic mice that have been exposed to an enriched environment. In the present study, we investigated the hypothesis that the brain activity-dependent impairments in neuronal plasticity, induced by apoE4, are mediated via the amyloid cascade. Importantly, we found that exposure of mice transgenic for either apoE4, or the Alzheimer's disease benign allele apoE3, to an enriched environment elevates similarly the hippocampal levels of amyloid-beta peptide (Abeta) and apoE of these mice, but that the degree of aggregation and spatial distribution of Abeta in these mice are markedly affected by the apoE genotype. Accordingly, environmental stimulation triggered the formation of extracellular plaque-like Abeta deposits and the accumulation of intra-neuronal oligomerized Abeta specifically in brains of apoE4 mice. Further experiments revealed that hippocampal dentate gyrus neurons are particularly susceptible to apoE4 and environmental stimulation and that these neurons are specifically enriched in both oligomerized Abeta and apoE. These findings show that the impairments in neuroplasticity which are induced by apoE4 following environmental stimulation are associated with the accumulation of intraneuronal Abeta and suggest that oligomerized Abeta mediates the synergistic pathological effects of apoE4 and environmental stimulation.  相似文献   

16.
The H2 allele of APOC1, giving rise to increased gene expression of apolipoprotein C-I (apoC-I), is in genetic disequilibrium with the APOE4 allele and may provide a major risk factor for Alzheimer's disease (AD). We found that apoC-I protein is present in astrocytes and endothelial cells within hippocampal regions in both human control and AD brains. Interestingly, apoC-I colocalized with beta-amyloid (Abeta) in plaques in AD brains, and in vitro experiments revealed that aggregation of Abeta was delayed in the presence of apoC-I. Moreover, apoC-I was found to exacerbate the soluble Abeta oligomer-induced neuronal death. To establish a potential role for apoC-I in cognitive functions, we used human (h) APOC1(+/0) transgenic mice that express APOC1 mRNA throughout their brains and apoC-I protein in astrocytes and endothelial cells. The hAPOC1(+/0) mice displayed impaired hippocampal-dependent learning and memory functions compared with their wild-type littermates, as judged from their performance in the object recognition task (P = 0.012) and in the Morris water maze task (P = 0.010). ApoC-I may affect learning as a result of its inhibitory properties toward apoE-dependent lipid metabolism. However, no differences in brain mRNA or protein levels of endogenous apoE were detected between transgenic and wild-type mice. In conclusion, human apoC-I expression impairs cognitive functions in mice independent of apoE expression, which supports the potential of a modulatory role for apoC-I during the development of AD.  相似文献   

17.
In our studies apolipoprotein E4 (APOE4) is associated with both early- and late-onset Alzheimer's disease. Alzheimer's patients from West Texas were screened for the APOE4 allele, which was found at frequencies of 0.43 and 0.59 in familial late- and early-onset cases. Sporadic cases had lower frequencies, but they still were 2–4 times higher than control spouses. To determine whether the APOE association may be a risk factor for coronary disease as well, we examined two APOB gene restriction sites that have previously been found to be associated with coronary artery disease, especially myocardial infarctions. The APOB alleles were found at similar frequencies in Alzheimer's patients and control spouses.  相似文献   

18.
The association of inheritance of different apolipoprotein E (APOE, gene; apoE, protein) alleles with the risk and rate of onset of Alzheimer's disease (AD) is now well established and widely confirmed. While there are now a collection of hypotheses concerning the specific relationship of APOE polymorphisms to various phenotypic manifestations of AD, no single compelling theory has been tested and universally accepted. The only clear fact emerging during the past 6 years is that differences in APOE genotype affect the average rate of disease onset as a predictable function of the inheritance of this polymorphic gene. Methods now exist to enable experimental designs to study the metabolic effects of inheriting different APOE alleles, addressing what differences that may be present for many years, perhaps over the entire lifetime, can lead to earlier or later manifestations of the disease and are therapeutically tractable. This review summarizes part of an experimental approach to identify biological pathways influenced by the different APOE polymorphisms that are relevant to the pathogenesis of AD.  相似文献   

19.
Neurodegeneration in Alzheimer's disease (AD) is associated with the activation of neurogenesis. The mechanisms underlying this crosstalk between neuronal death and birth and the extent to which it is affected by genetic risk factors of AD are not known. We employed transgenic mice expressing human apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for AD, or expressing human apoE3 (an AD-benign allele), in order to examine the hypothesis that apoE4 tilts the balance between neurogenesis and neuronal cell death in favor of the latter. The results showed an isoform-specific increase in neurogenesis in the hippocampal dentate gyrus (DG) under standard conditions in apoE4-transgenic mice. Environmental stimulation, which increases neurogenesis in the DG of apoE3-transgenic and wild-type mice, had the opposite effect on the apoE4 mice, where it triggered apoptosis while decreasing hippocampal neurogenesis. These effects were specific to the DG and were not observed in the subventricular zone, where neurogenesis was unaffected by either the apoE genotype or the environmental conditions. These in vivo findings demonstrate a linkage between neuronal apoptosis and the impaired neuronal plasticity and cognition of apoE4-transgenic mice, and suggest that similar interactions between apoE4 and environmental factors might occur in AD.  相似文献   

20.
Background: Apolipoprotein E (apoE) with three major alleles E2, E3 and E4 is one of the critical genes in lipid metabolism. Common apoE alleles are in association with an increase in risk for central nervous and cardiovascular diseases such as Alzheimer’s disease, dementia, multiple sclerosis, atherosclerosis, coronary heart disease, hyperlipoproteinemia and stroke. ApoE3 is known as the most frequent allele in all populations, while association of apoE gene polymorphism with reported diseases have mostly been related to other two major alleles especially apoE4. Objective: To determine of apoE alleles frequencies in Southern Iran and comparison of those frequencies with other populations. Methods: DNA was extracted from the whole blood of 198 healthy unrelated candidates from population of Fars Province, Southern Iran, for apoE genotyping who were checked up by a physician. The frequencies of apoE alleles were compared with other populations by χ2 test. Results: The frequencies of E2, E3 and E4 were 0.063, 0.886 and 0.051 respectively. These values were similar to those reported from populations of Kuwait, Oman, Lebanon, India, Turkey, Greece, Spain, Sardinia Islands of Italy and two Iranian populations but were different from South of Italy and Caucasians in other Europe regions, American, American-Indian, African, East Asian and Saudi populations (P < 0.05). Conclusion: The frequency of E4 allele as a genetic risk factor for some multifactorial diseases in the population of Southern Iran is in the lowest reported amounts in the world. Iranian population has Caucasoid origin but differs from some Caucasian populations in Europe and America. The results of present study are in agreement with the historical evidences which show admixture of Iranian population with other populations and some studies based on genetic polymorphisms in the population of Southern Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号