首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bal Ram Singh  Pill-Soon Song 《Planta》1990,181(2):263-267
Tryptophan (Trp) surface topography of the red- and far-red-absorbing forms of phytochrome (Pr, Pfr) ofAvena sativa L. has been investigated by analyzing quenching of the two components of Trp fluorescence decay, in order to understand the differences in the two forms at the molecular level. Stern-Volmer kinetic analysis of the quenching data for two cationic surface quenchers, Cs+ and Tl+, showed strong quenching of the short component of the Pr fluorescence (Stern-Volmer constants,K sv , 27.2 and 21.4 M−1, respectively) relative to that of Pfr fluorescenceK sv , 10.4 and 12.3 M−1, respectively). The long component of the Trp fluorescence was quenched differentially by Cs+ and Tl+, withK sv of 9.0 and 19.8 M−1, respectively, for the Pr fluorescence andK sv of 13.7 and 8.7 M−1, respectively, for the Pfr fluorescence. The results indicate that the phytochrome Trp residues with short fluorescence lifetime are more accessible to the cationic surface quenchers than those with long fluorescence lifetime. The data, taken together with our earlier study (Singh et al. 1988, Biochim, Biophys. Acta936, 395–405), indicate that most, if not all the ten Trp residues of phytochrome, are fluorescent and exist in distinct groups differing in their topography and microenvironment, and the peptide segment containing Trp-774 and Trp-778 within the 55-kilodalton C-terminal domain of phytochrome also undergoes a subtle alteration in its surface topography during Pr→Pfr phototransformation. This paper is dedicated to Professor Hans Mohr in commemoration of his 60th birthday  相似文献   

2.
Since addition of 10?4M AgNO3 to either an inside or outside bathing medium containing sulfate had no effect on short-circuit current (SCC), a measure of net Na+ transport, or transmural potential difference (PD) in the isolated surviving toadskin, the effect of adding Ag+ to chloridebased Ringer solution was studied. Exposure of the outside bathing medium to 10?4M AgNO3 resulted in, after a 20 minute time lag, a 250 ± 51% (N=6) increase in SCC within 100 minutes as opposed to an immediate response which had a 350 ± 26% (N=8) increase in SCC by addition of 10?4M AgNO3 to the inside bathing solution. The dose response curve relating change in SCC to the Ag+ concentration added to the inside bathing medium was saturable at 10?5M Ag+. The uptake of Ag+ by the tissue, as measured by atomic absorption spectrophotometry, showed no correlation to the relative change in SCC. Na+ flux experiments under short-circuited conditions showed that Ag+Cl? stimulated only the unidirectional outside to inside Na+ flux. These results indicate that Ag+Cl? enhances active sodium transport and that Ag+Cl? binding to specific membrane groups is required for this effect.  相似文献   

3.
Curtis RW 《Plant physiology》1981,68(6):1249-1252
To obtain information regarding the antiethylene properties and binding site of Ag+, studies were initiated to define conditions under which Ag+ does or does not inhibit ethylene action. AgNO3, applied as a leaf spray, inhibited 2-chloroethylphosphonic acid (Ethrel)-induced leaf abscission from green cuttings of Vigna radiata in white light but lost considerable activity in the dark. In the absence of Ethrel, AgNO3 stimulated abscission in the dark. When cuttings were dark-aged for 24 hours prior to treatment with AgNO3 and aged for an additional 24 hours in the dark after treatment, good inhibition of subsequent Ethrel-induced abscission was restored by returning the cuttings to light. However, when dark aging was preceded by far-red irradiation, considerably less inhibition of Ethrel-induced abscission was restored in the light. AgNO3 was completely inactive on cuttings aged in the dark and treated with Ethrel in the dark. Light is required for the antiethylene activity of AgNO3 with regard to leaf abscission of Vigna.  相似文献   

4.
Plant regeneration and transformation in vitro is often improved by adding silver ion (Ag+) to the culture media as AgNO3 or silver thiosulfate (STS). Ag+ reacts with substances to form insoluble precipitates, while thiosulfate (S2O3 2−) interferes with these reactions. We studied the implications of silver precipitation and S2O3 2− in the medium for culture development by (1) examining formation of Ag+ precipitates from AgNO3 versus STS in agar gels and their possible dependence on agar type; (2) comparing Corymbia maculata culture responses to AgNO3 and STS and determining which better suits control of culture development; (3) clarifying whether STS-dependent alterations in culture development are due to Ag+ alone or also to a separate influence of S2O3 2−. Silver precipitates appeared in aqueous gels of four agar brands supplemented with AgNO3, but not in Phytagel, which remained transparent. No precipitation was observed in gels with STS. Indole-3-butyric acid (IBA)-mediated adventitious root induction and shoot growth were higher in C. maculata shoot tips cultured on gels with STS versus AgNO3 (6–25 μM Ag+). IBA-treated shoot tips exhibited enhanced adventitious root regeneration, accelerated root elongation, increased frequency of lateral root formation, and stimulated shoot growth mediated by 100–250 μM sodium thiosulfate (Na2S2O3) in medium without Ag+. The potency of S2O3 2− in facilitating culture development has never been recognized. It is inferred that superiority of STS in stimulating multiple responses of C. maculata culture results from sustained biological activity of Ag+ through prevention of its precipitation, and from impact of S2O3 2− on cell differentiation and growth.  相似文献   

5.
Summary The initial mechanisms of injury to the proximal tubule following exposure to nephrotoxic heavy metals are not well established. We studied the immediate effects of silver (Ag+) on K+ transport and respiration with extracellular K+ and O2 electrodes in suspensions of renal cortical tubules. Addition of silver nitrate (AgNO3) to tubules suspended in bicarbonate Ringer's solution caused a rapid, dose-dependent net K+ efflux (K m =10–4 m,V max=379 nmol K+/min/mg protein) which was not inhibited by furosemide, barium chloride, quinine, tetraethylammonium, or tolbutamide. An increase in the ouabain-sensitive oxygen consumption rate (QO2) (13.9±1.1 to 25.7±4.4 nmol O2/min/mg,P<0.001), was observed 19 sec after the K+ efflux induced by AgNO3 (10–4 m), suggesting a delayed increase in Na+ entry into the cell. Ouabain-insensitive QO2, nystatin-stimulated QO2, and CCCP-uncoupled QO2 were not significantly affected, indicating preserved function of the Na+, K+-ATPase and mitochondria. External addition of the thiol reagents dithiothreitol (1mm) and reduced glutathione (1mm) prevented and/or immediately reversed the effects on K+ transport and QO2. We conclude that Ag+ causes early changes in the permeability of the cell membrane to K+ and then to Na+ at concentrations that do not limit Na+, K+-ATPase activity or mitochondrial function. These alterations are likely the result of a reversible interaction of Ag+ with sulfhydryl groups of cell membrane proteins and may represent initial cytotoxic effects common to other sulfhydryl-reactive heavy metals on the proximal tubule.  相似文献   

6.
Silver nanoparticles (AgNPs) were biosynthesized using the cell-free filtrate of bacterium Proteus mirabilis, reacted with 1 mM of AgNO3 solutions at 37 °C. The synthesis of AgNPs was monitored by UV–Vis spectroscopy and transmission electron microscopy (TEM) equipped with selected area electron diffraction (SAED). The results point to formation of spherical to cubical particles of AgNPs ranging in size from 5 to 35 nm with an average of 25 nm in diameter. The toxicity of Ag on barley (Hordeum vulgare L. cv. Gustoe) that was subjected to Ag+ as AgNO3 and AgNPs was explored. The grain germination and seedling growth of barley decreased in the presence of 0.1 mM Ag+ and was inhibited at 1 mM Ag+. In contrast, our results indicated that the AgNPs at low concentration (0.1 mM) could be useful for barley grain germination and seedling growth. However, the higher concentrations of AgNPs (0.5 and 1 mM) reduced grain germination and exhibited a stronger reduction in the root length. A decline in the photosynthetic pigments and disorganization of chloroplast grana thylakoids in Ag+ and AgNPs-treated plants confirmed the leaf chlorosis. An increase of plastoglobuli within chloroplasts was observed in Ag+ and AgNPs-treated leaves. Ag+ caused dense aggregation of nuclear chromatin materials and degeneration of mitochondria. Ag+ and AgNPs increased contents of malondialdehyde, soluble proteins, total phenolic compounds and activity of guaiacol peroxidase in barley leaves; these results point to activation of plant defence mechanisms against oxidative stress in barley.  相似文献   

7.
The influence of supplemented thiosulfate (S2O3 2−) as well as a complex of either Ag+ or Cu2+ with S2O3 2− in the culture medium on proliferating root cultures of tomato (Solanum lycopersicum) was investigated. The presence of 10–300 μM sodium thiosulfate (Na2S2O3) in half-strength Murashige and Skoog (MS) basal salt medium promoted root elongation and proliferation of lateral roots. Growth was enhanced by 1–2 μM AgNO3, but was completely arrested at 5 μM AgNO3; moreover, growth inhibition was elicited by dissolved silver (Ag+) and by silver in silver precipitate particles. Root elongation was also inhibited by 50 μM CuSO4 supplemented to the basal medium. Roots subjected to either AgNO3 or CuSO4 growth inhibiting treatments were unable to recover following transfer to medium lacking either Ag+ or Cu2+. When the basal medium was supplemented with either silver or copper in the form of silver thiosulfate complex or copper thiosulfate complex, root cultures continued to elongate and proliferate, thus either completely alleviating or diminishing the inhibitory effects of Ag+ and Cu2+, respectively. It was concluded that tomato roots sensed and responded to S2O3 2−, hence root proliferation could be promoted by adding Na2S2O3 to the medium. Moreover, a complex of Ag+ with S2O3 2− detoxified dissolved Ag+ and prevented the generation of toxic silver particle precipitates. Consequently, silver thiosulfate was superior to AgNO3 in enhancing root culture. Finally, a complex of Cu2+ with S2O3 2− ligand reduced toxicity of Cu2+ to root cultures of tomato.  相似文献   

8.
The red fluorescent protein, DsRed, and a few of its mutants have been shown to bind copper ions resulting in quenching of its fluorescence. The response to Cu2+ is rapid, selective, and reversible upon addition of a copper chelator. DsRed has been employed as an in vitro probe for Cu2+ determination by us and other groups. It is also envisioned that DsRed can serve as an intracellular genetically encoded indicator of Cu2+ concentration, and can be targeted to desired subcellular locations for Cu2+ determination. However, no information has been reported yet regarding the mechanism of the fluorescence quenching of DsRed in the presence of Cu2+. In this work, we have performed spectroscopic investigations to determine the mechanism of quenching of DsRed fluorescence in the presence of Cu2+. We have studied the effect of Cu2+ addition on two representative mutants of DsRed, specifically, DsRed-Monomer and DsRed-Express. Both proteins bind Cu2+ with micromolar affinities. Stern-Volmer plots generated at different temperatures indicate a static quenching process in the case of both proteins in the presence of Cu2+. This mechanism was further studied using absorption spectroscopy. Stern-Volmer constants and quenching rate constants support the observation of static quenching in DsRed in the presence of Cu2+. Circular dichroism (CD)-spectroscopic studies revealed no effect of Cu2+-binding on the secondary structure or conformation of the protein. The effect of pH changes on the quenching of DsRed fluorescence in the presence of copper resulted in pKa values indicative of histidine and cysteine residue involvement in Cu2+-binding.  相似文献   

9.
The phosphorescence of tryptophan and proteins was examined in the presence of silver nitrate in order to obtain information on the mechanisms by which Ag+ quenches fluorescence. The 1:1 Ag+-Trp complex is nonfluorescent both at 77 °C and 296 °C and has 3-fold higher phosphorescence quantum yield than the free amino acid. Silver ion causes loss of vibrational structure in the phosphorescence spectrum, and the lifetime decreases from 7.2 to 0.02. These findings are consistent with an intramolecular heavy-atom effect. A nonsulfhydryl protein, trypsinogen, shows changes in phosphorescence which are qualitatively, but not quantitatively, similar to tryptophan in the presence of silver nitrate. Yeast and liver alcohol dehydrogenases have many sulfhydryl groups and show only phosphorescence quenching on addition of Ag+. In this case, quenching occurs by an energy-transfer mechanism. The phosphorescence yield and spectrum of mercuripapain differed from those of papain and were consistent with a heavy atom effect due to Hg2+.The study was technically much facilitated by the use of aqueous snows containing 10% (vv) methanol. Among the advantages of such aqueous snows is the lack of gross denaturation which has in the past been a major objection to protein phosphorescence studies utilizing glasses of organic solvents.  相似文献   

10.
The rate of photosynthetic electron transport measured in the absence of ADP and Pi is stimulated by low levels of Hg2+ or Ag+ (50% stimulation ≈ 3 Hg2+ or 6 Ag+/100 chlorophyll) to a plateau equal to the transport rate under normal phosphorylating conditions (i.e. +ADP, +Pi). Chloroplasts pretreated in the light under energizing conditions with N-ethylmaleimide show a similar stimulation of non-phosphorylating electron transport. The stimulations of non-phosphorylating electron transport by Hg2+, Ag+ and N-ethylmaleimide are reversed by the CF1 inhibitor phlorizin, the CF0 inhibitor triphenyltin chloride, and can be further stimulated by uncouplers such as methylamine. The Hg2+ and N-ethylmaleimide stimulations, but not the Ag+ stimulation, are completely reversed by low levels of ADP (2 μM), ATP (2 μM), and Pi (400 μM). Ag+, which is a potent inhibitor of ATP synthesis, has little or no effect upon phosphorylating electron transport (+ADP, +Pi). Concomitant with the stimulations of non-phosphorylating electron transport by Hg2+, Ag+ and ADP + Pi, there is a decrease in the level of membrane energization (as measured by atebrin fluorescence quenching) which is reversed when the CF0 channel is blocked by triphenyltin. These results suggest that modification of critical CF1 sulfhydryl residues by Hg2+, Ag+ or N-ethylmaleimide leads to the loss of intra-enzyme coupling between the transmembrane protontransferring and the ATP synthesis activities of the CF0-CF1 ATP synthase complex.  相似文献   

11.
W Altekar 《Biopolymers》1977,16(2):369-386
The effects of varying concentrations of monovalent cation chlorides on the fluorescence of nine proteins were studied. These are discussed in terms of “direct” or “indirect” interactions with the aromatic amino acid residues. Cs+ is the only cation that quenches fluorescence of proteins due to “direct” interaction with aromatic amino acid residues. Quenching is due to collisional processes. An agreement with the Stern-Volmer relationship is shown and the values of [(KQ)eff] and [(fa)eff] are calculated. These values confirm that the fraction of fluorescence accessible to Cs+ belongs to the “exposed” fluorophors. The mechanism of quenching by Cs+ is due to the heavy-atom effect because phosphorescence enhancement is also seen at the same time. The chlorides of Na+, K+, Rb+, NH4+, and Li+ do not have a similar effect on the fluorescence of all proteins. For a given protein a gradation of the same effect (i.e., quenching or dequenching) is seen. Interactions with factors that “inderectly” affect fluorescence of any protein are involved and the structural features of the protein are responsible for such “indirect” effects. The results indicate that neutral salts can act in more than one manner. The changes in fluorescence are indicative of electrostatic and lyotropic effects of ions. Only electrostatic interactions which occur in the vicinity of tryptophan in proteins are reflected. Li+ shows strong interactions with proteins. In 4 M LiCl, BSA, papain, and trypsin show fluorescence changes that are indicative of changes in protein structure.  相似文献   

12.
The fluorescence of the ionophore A23187 has been monitored in suspensions of egg yolk phosphatidylcholine (EYPC) and dipalmitoyl phosphatidylcholine (DPPC) vesicles. Both the protonated form of A23187 and the Ca2+ complex exhibit fluorescence enhancement when extracted into a hydrophobic environment. Measurements of fluorescence intensity versus lipid concentration were thus used to establish lower limits to the lipid/ water partition coefficients. Values obtained in this way were ? 50 ml water/mg phosphatidylcholine. Quenching of A23187 fluorescence by the spin labels 5NMS (methyl ester of 5-nitroxyl stearate), 12NMS, 16NMS, and TEMPO stearamide in EYPC and DPPC vesicles was also investigated. In EYPC all the labels yielded fairly linear Stern-Volmer plots, with TEMPO stearamide quenching about half as strong as the other probes. Quenching in DPPC was generally much stronger than in EYPC, but 12 NMS and 16NMS gave hyperbolic Stern-Volmer plots, apparently due to clustering of the labels. In all the cases the protonated form of A23187 was quenched approximately twice as efficiently as the Ca2+ complex, possibly due to a longer fluorescence lifetime for the former. Calculations based on measured spectral properties were performed which indicate that the Förster transfer mechanism extends the nitroxides' quenching range to ~- 10 Å.  相似文献   

13.
The effect of α-tocopherol on the lipid fluidity of porcine intestinal brush-border membranes was studied using pyrene as a fluorescent probe. Addition of α-tocopherol to the medium decreased fluorescence intensity and lifetime, but increased the fluorescence polarization of pyrene-labeled membranes. β-, γ-, and δ-Tocopherols gave no appreciable effect on the fluorescence intensity and polarization of the complex. The apparent dissociation constant (3.1 ± 0.12 μM) of the interaction of α-tocopherol with the membranes, estimated from the change in the fluorescence intensity with varying concentrations of α-tocopherol, was in good agreement with the concentration required to cause the half-maximal inhibition of lipid peroxidation of the membranes performed by incubation with 100 μM ascorbic acid and 10 μM Fe2+. Decrease of the slope in the thermal Perrin plot of the polarization of pyrene-labeled membranes by α-tocopherol suggests that the movement of pyrene molecules in the membranes is restricted by binding of the tocopherol. This interpretation was confirmed by an increased harmonic mean of the rotational relaxation time of the dye molecules in the membranes from 10.9 ± 0.16 to 18.5 ± 0.51 μs after addition of 25 μM α-tocopherol to the medium. The perturbation of lipid phase in the membranes induced by α-tocopherol was also suggested from a decreased quenching rate constant of pyrene fluorescence in the membranes for Tl+. Based on these results, the effect of α-tocopherol on the lipid fluidity of the membranes is discussed.  相似文献   

14.
Summary Growth of Escherichia coli in chloridefree medium in batch culture is inhibited completely at concentrations of AgNO3 greater than 2.5x10-6 M. Incubation of non-growing cells in HEPES buffer (pH 7.4) at increasing levels of Ag+ results in the progressive saturation of two types of binding site. At one site, the Ag+ is not released by washing with 0.1 M nitric acid, and is probably intracellular. Silver bound to the second site is released by acid-washing, but not by buffer washing, and is assumed to be surface-bound. The amounts of Ag+ taken up from solution at the two sites is 1.6x10-7 and 4.6x10-7 mol (mg dry weight)-1, respectively. Total accumulation of silver is 67 mg (g dry weight)-1, similar to literature values found for silver-resistant bacteria. Binding of Ag+ at intracellular sites (observed at low [Ag+]) appears to be independent of pH. Addition of AgNO3 to growing cells in mid-exponential phase of growth in concentrations that will inhibit growth results in substantially decreased accumulation of silver. Growth yield in chemostat culture is diminished in the presence of added Ag+, but this effect is moderated by added Cu2+, which may protect copper sites from Ag+ or compete with Ag+ for other sites at which Ag+ exerts toxic effects. Very small amounts of Cu2+ are found in cell samples from the chemostat compared to the substantial amounts of Ag+ taken up, but uptake of Cu2+ is decreased at higher [Ag+]/[Cu2+]ratios.  相似文献   

15.
The loss of the antiethylene activity of Ag+ on leaf abscission by incubation in the dark was investigated. When primary leaves were removed from cuttings of Vigna radiata previously sprayed with AgNO3, dark-induced abscission of the petioles was inhibited, compared to untreated leafless controls, in the presence or absence of ethephon, an ethylene-releasing compound. Malformin did not negate inhibition of petiole abscission induced by Ag+. Although leaf removal restored the antiethylene activity of Ag+ in the dark, macerates of leaves from dark-aged cuttings did not negate the ability of Ag+ to inhibit petiole abscission in the dark. Abscisic acid completely abolished the ability of Ag+ to counteract ethephon-induced leaf abscission in the light, and almost completely abolished the Ag+-induced inhibition of petiole abscission from explants in the dark. It is proposed that the phytochrome requirement for the antiethylene activity of Ag+ on ethephon-induced leaf abscission involves prevention of the formation, accumulation, or transport of a substance in leaves in the dark which negates Ag+ activity. This substance may be abscisic acid or another substance with similar biological activity.  相似文献   

16.
M R Eftink  D M Jameson 《Biochemistry》1982,21(18):4443-4449
The fluorescence lifetime of liver alcohol dehydrogenase (LADH) has been determined by phase fluorometry at various emission wavelengths and as a function of the concentration of the quencher acrylamide. Acrylamide selectively quenches the fluorescence of the surface tryptophanyl residue Trp-15, thus allowing the fluorescence lifetime of this residue and the buried residue Trp-314 to be evaluated. Values of tau15 = 6.9 ns and tau314 = 3.6 ns are obtained, in qualitative agreement with lifetimes of these residues determined from fluorescence decay studies [Ross, J.B.A., Schmidt, C.J., & Brand, L. (1981) Biochemistry 20, 4369-4377]. The quenching of the fluorescence of LADH by oxygen has also been studied. Quenching by oxygen results in a blue shift in the fluorescence of the protein and a downward-curving Stern-Volmer plot. These data, along with oxygen quenching studies in the presence of 1 M acrylamide, are consistent with a model in which oxygen quenches the fluorescence of Trp-314 and -15 with quenching constants of 3.5 and 25 M-1, respectively. Thus, as in studies with other quenchers, Trp-314 is found to be less accessible to the quencher oxygen than is Trp-15. A lifetime Stern-Volmer plot has also been obtained for the oxygen quenching of LADH. Such a plot deviates somewhat from the intensity Stern-Volmer plot as predicted by simulations of the quenching of two-component systems.  相似文献   

17.
Summary Debaryomyces hansenii (NCYC 459 and strain 75-21),Candida albicans (3153A),Saccharomyces cerevisiae (X2180-1B),Rhodotorula rubra (NCYC 797) andAureobasidium pullulans (IMI 45533 and ATCC 42371) were grown on solid medium supplemented with varying concentrations of AgNO3. Although Ag+ is highly toxic towards yeasts, growth on solid media was still possible at Ag concentrations of 1–2 mM. Further subculture on higher Ag concentrations (up to 5 mM) resulted in elevated tolerance. The extent of Ag tolerance depended on whether Ag-containing plates were exposed to light prior to inoculation since light-mediated reduction of Ag+ to Ag0 resulted in the production of a less toxic silver species. Experimental organisms exhibited blackening of colonies and the surrounding agar during growth on AgNO3-containing medium especially at the highest Ag concentrations tested. All organisms accumulated Ag from the medium; electron microscopy revealed that silver was deposited as electron-dense granules in and around cell walls and in the external medium. X-ray microprobe analysis indicated that these granules were metallic Ag0 although AgCl was also present in some organisms. Volatile and non-volatile reducing compounds were produced by several test organisms which presumably effected Ag+ reduction to Ag0.  相似文献   

18.
Summary Exposure of thein vitro rabbit corneal epithelium to Ag+ by the addition of AgNO3 (10–7–10–5)m) to the apical surface or by the use of imperfectly chlorided Ag/AgCl half-cells in Ussing-style membrane chambers, greatly increases short-circuit current and transepithelial potential. The early phase (the first 30 min) of the short-circuit current stimulation by Ag+ is linearly dependent on tear-side sodium concentration, is largely a result of a tenfold increase in net Na+ uptake and is incompletely inhibited by ouabain, suggesting that Ag+ increases cation (primarily Na+) conductance of the apical membrane. This mechanism for the Ag+ effect is supported by microelectrode experiments, wherein Ag+ depolarizes specifically the apical barrier potential and increases apical barrier conductance. A later phase in the effect (0.5–3 hr) is characterized by a gradual increase in36Cl and14C-mannitol unidirectional fluxes, by a decline in epithelial resting potential and short-circuit current, by complete ouabain inhibition and by fit to saturation kinetics with respect to Na+ concentration in the bathing media. This pahse of the effect apparently reflects a nonselective opening of the paracellular pathway in the epithelium and is rate-limited by Na+ pump activity at the basolateral membrane. Both phases are associated with swelling of the corneal stroma and may be rapidly reversed using thiol agents (reduced glutathione and dithiothreitol). The results suggest that Ag+ may be useful in the study of cation transport by epithelia and the work provides basic physiological information that is pertinent to the prophylactic use of AgNO3 in clinical ophthalmology.  相似文献   

19.
A new ion sensor based on hybrid SiO2‐coated CdTe nanocrystals (NCs) was prepared and applied for sensitive sensing of Cu2+ and Ag+ for the selective quenching of photoluminescence (PL) of NCs in the presence of ions. As shown by ion detection experiments conducted in pure water rather than buffer solution, PL responses of NCs were linearly proportional to concentrations of Cu2+ and Ag+ ions < 3 and 7 uM, respectively. Much lower detection limits of 42.37 nM for Cu2+ and 39.40 nM for Ag+ were also observed. In addition, the NC quenching mechanism was discussed in terms of the characterization of static and transient optical spectra. The transfer and trapping of photoinduced charges in NCs by surface energy levels of CuS and Ag2S clusters as well as surface defects generated by the exchange of Cu2+ and Ag+ ions with Cd2+ ion in NCs, resulted in PL quenching and other optical spectra changes, including steady‐state absorption and transient PL spectra. It is our hope that these results will be helpful in the future preparation of new ion sensors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Sarcoplasmic reticulum ATPase was specifically labeled by the fluorescent probe N-(1-pyrene)maleimide which modified 1 mol of a highly reactive thiol residue per mol of ATPase under appropriate conditions, when the probe concentration was varied in the range 0.1-1.5 microM. Addition of inorganic phosphate to the labeling medium increased both the rate of labeling and the number of modified thiol residues. Addition of ATP gave a marked kinetic protection from labeling, suggesting that the label was attached to a protein domain which is sensitive to changes at the catalytic site. Quenching of pyrene fluorescence emission of labeled ATPase by acrylamide and cesium chloride gave linear Stern-Volmer plots. The Stern-Volmer quenching constants of pyrene-ATPase fluorescence were 10 times lower than the constant obtained for acrylamide quenching of the fluorescent adduct of pyrene-maleimide-cystein used as a control, indicating that the pyrene moiety of the probe was considerably shielded from the medium solvent when covalently attached to the ATPase. The efficiency of quenching of pyrene-ATPase fluorescence increased by a significant amount upon addition of 100 microM Ca2+, when compared to the quenching in the presence of a Ca2+ chelator. It suggests that occupancy of the high affinity Ca2+ sites of the ATPase increases the accessibility of medium solvent into hydrophobic domains of the enzyme. The fluorescence lifetime of the solubilized pyrene-ATPase emission was 144-149 ns. The fluorescence polarization of pyrene-ATPase solubilized by nonionic detergent C12E8 was rho = 0.10 and it increased with an increase in the viscosity of the medium yielding a linear Perrin plot. The rotational correlation time for the soluble ATPase was 532 ns, corresponding to the overall rotation of a detergent-pyrene-ATPase particle with radius of 87A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号