首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteasome subunit alpha type-2 (PSMA2) is a critical component of the 20S proteasome, which is the core particle of the 26S proteasome complex and is involved in cellular protein quality control by recognizing and recycling defective proteins. PSMA2 expression dysregulation has been detected in different human diseases and viral infections. No study yet has reported PSMA2 knockdown (KD) effects on the cellular proteome. Methods: We used SOMAScan, an aptamer-based multiplexed technique, to measure >1300 human proteins to determine the impact of PSMA2 KD on A549 human lung epithelial cells. Results: PSMA2 KD resulted in significant dysregulation of 52 cellular proteins involved in different bio-functions, including cellular movement and development, cell death and survival, and cancer. The immune system and signal transduction were the most affected cellular functions. PSMA2 KD caused dysregulation of several signaling pathways involved in immune response, cytokine signaling, organismal growth and development, cellular stress and injury (including autophagy and unfolded protein response), and cancer responses. Conclusions: In summary, this study helps us better understand the importance of PSMA2 in different cellular functions, signaling pathways, and human diseases.  相似文献   

2.
目的:为了更好地利用Biacore 3000研究锌指与核酸的相互作用,将特异性识别HIV-15′端一段保守序列的三锌指蛋白固定在CM-5芯片上。方法:将特异性识别HIV-15′端一段保守序列5′-CTGTGTTTG-3′的三锌指基因克隆到表达载体pET-22b( )中,转化大肠杆菌BL21(DE3)菌株,经IPTG诱导表达重组三锌指蛋白,超声碎菌进行SDS-PAGE分析;包涵体形式的表达产物用盐酸胍溶解后,经一步凝胶柱复性并纯化;随后摸索适宜固定的pH值并通过化学方法进行固定。结果:表达的重组蛋白主要以包涵体形式存在于超声沉淀中,纯化及柱复性后的蛋白纯度为98.8%,并在CM-5芯片上成功固定。结论:本研究为利用Biacore实时定量研究锌指蛋白与其识别DNA的相互作用进行了尝试。  相似文献   

3.
The 26S proteasome is a large multi-subunit protein complex that exerts specific degradation of proteins in the cell. The 26S proteasome consists of the 20S proteolytic particle and the 19S regulator. In order to be targeted for proteasomal degradation most of the proteins must undergo the post-translational modification of poly-ubiquitination. However, a number of proteins can also be degraded by the proteasome via a ubiquitin-independent pathway. Such degradation is exercised largely through the binding of substrate proteins to the PSMA3 (alpha 7) subunit of the 20S complex. However, a systematic analysis of proteins interacting with PSMA3 has not yet been carried out. In this report, we describe the identification of proteins associated with PSMA3 both in the cytoplasm and nucleus. A combination of two-dimensional gel electrophoresis (2D-GE) and tandem mass-spectrometry revealed a large number of PSMA3-bound proteins that are involved in various aspects of mRNA metabolism, including splicing. In vitro biochemical studies confirmed the interactions between PSMA3 and splicing factors. Moreover, we show that 20S proteasome is involved in the regulation of splicing in vitro of SMN2 (survival motor neuron 2) gene, whose product controls apoptosis of neurons.  相似文献   

4.
The proteasome is the main intracellular proteolytic machine involved in the regulation of numerous cellular processes, including gene expression. In addition to their proteolytic activity, proteasomes also exhibit ATPase/helicase (the 19S particle) and RNAse (the 20S particle) activities, which are regulated by post-translational modifications. In this report we uncovered that several 20S particle subunits: α1 (PSMA6), α2 (PSMA2), α4 (PSMA7), α5 (PSMA5), α6 (PSMA1) and α7 (PSMA3) possess RNAse activity against the p53 mRNA in vitro. Furthermore, we found that the RNAse activity of PSMA1 and PSMA3 was regulated upon hemin-induced differentiation of K562 proerythroleukemia cells. The decrease in RNAse activity of PSMA1 and PSMA3 was paralleled by changes in their status of phosphorylation and ubiquitylation. Collectively, our data support the notion that proteasomal RNAse activity may be functionally important and provide insights into the potential mechanism of p53 repression in erythroleukemia cells by RNAse activity of the 20S α-type subunits.  相似文献   

5.
利用RT PCR技术 ,从前列腺癌组织总RNA中扩增人前列腺特异膜抗原 (PSMA)基因编码区序列 ,克隆至pcDNA3.1载体 ,以此为模板再次PCR扩增出PSMA膜外区cDNA(edPSMA) ,序列测定表明克隆获得的PSMA及edPSMA与基因库所登录的序列相一致。构建原核表达质粒pMAL c2x edPSMA ,经IPTG诱导表达的MBP edPSMA融合蛋白分子量约 12 0kD ,Westernblot证实表达产物可特异地与PSMA单克隆抗体 4G5结合。用直链淀粉琼脂糖凝胶 (Amyloseresin)亲和层析纯化蛋白质可得到电泳均一的融合蛋白 ,免疫BALB C小鼠制备多抗 ,获得效价为 1∶12 80 0的多克隆抗体 ,该抗体可用于前列腺癌组织标本PSMA表达的检测  相似文献   

6.
7.
Biogenesis of mammalian 20 S proteasomes occurs via precursor complexes containing alpha and unprocessed beta subunits. A human homologue of the yeast proteasome maturation factor Ump1 was identified in 2D gels of 16 S precursor preparations and designated as POMP (proteasome maturation protein). We show that POMP is detected only in precursor fractions and not in fractions containing mature 20 S proteasome. Northern blot experiments revealed that expression of POMP is induced after treatment with interferon gamma. To analyse the role of the beta 5 propeptide for proper maturation and incorporation of the beta 5 subunit into the complex, human T2 cells, which highly express derivatives of the beta 5i subunit (LMP7), were studied. In contrast to yeast, the presence of the beta 5 propeptide is not essential for incorporation of LMP7 into the proteasome complex. Mutated LMP7 subunits either carrying the prosequence of beta 2i (LMP2) or containing a mutation in the active threonine site are incorporated like wild-type LMP7, while a LMP7 derivative lacking the prosequence completely is incorporated to a lesser extent. Although the absence of the prosequence does not affect incorporation of LMP7, its deletion leads to delayed proteasome maturation and thereby to an accumulation of precursor complexes. As a result of the precursor accumulation, an increased amount of the POMP protein can be detected in these cells.  相似文献   

8.
Haloferax volcanii, a halophilic archaeon, synthesizes three different proteins (alpha1, alpha2, and beta) which are classified in the 20S proteasome superfamily. The alpha1 and beta proteins alone form active 20S proteasomes; the role of alpha2, however, is not clear. To address this, alpha2 was synthesized with an epitope tag and purified by affinity chromatography from recombinant H. volcanii. The alpha2 protein copurified with alpha1 and beta in a complex with an overall structure and peptide-hydrolyzing activity comparable to those of the previously described alpha1-beta proteasome. Supplementing buffers with 10 mM CaCl(2) stabilized the halophilic proteasomes in the absence of salt and enabled them to be separated by native gel electrophoresis. This facilitated the discovery that wild-type H. volcanii synthesizes more than one type of 20S proteasome. Two 20S proteasomes, the alpha1-beta and alpha1-alpha2-beta proteasomes, were identified during stationary phase. Cross-linking of these enzymes, coupled with available structural information, suggested that the alpha1-beta proteasome was a symmetrical cylinder with alpha1 rings on each end. In contrast, the alpha1-alpha2-beta proteasome appeared to be asymmetrical with homo-oligomeric alpha1 and alpha2 rings positioned on separate ends. Inter-alpha-subunit contacts were only detected when the ratio of alpha1 to alpha2 was perturbed in the cell using recombinant technology. These results support a model that the ratio of alpha proteins may modulate the composition and subunit topology of 20S proteasomes in the cell.  相似文献   

9.
 The proteasome is a large multicatalytic proteinase that plays a role in the generation of peptides for presentation by major histocompatibility complex class I molecules. The 20S proteolytic core of mammalian proteasomes is assembled from a group of 17 protein subunits that generate a distinctive pattern of spots upon two-dimensional gel electrophoresis. The genes for most of these subunits have been cloned from humans and rats. We isolated cDNA clones for the mouse orthologues of ten of the subunits [PSMA1 (C2), PSMA2 (C3), PSMA3 (C8), PSMA4 (C9), PSMA5 (ZETA), PSMA6 (IOTA), PSMA7 (C6-I), PSMB2 (C7-I), PSMB3 (C10-II), and PSMB5 (X)] to complete the cloning of all of the mouse subunits. Using antisera raised against these subunits or their orthologues, we verified the identity of these proteins by two-dimensional NEPHGE-PAGE. Received: 8 March 1999 / Accepted: 8 April 1999  相似文献   

10.
The kringle 5 domain of plasminogen exhibits potent inhibitory effect on endothelial cell proliferation. It can also cause cell cycle arrest and apoptosis of endothelial cell specifically, and shows promise in anti-angiogenic therapy. It has been prepared via both proteolysis of native plasminogen and recombinant DNA methodologies. When previously expressed in Escherichia coli, recombinant kringle 5 mainly deposited as inactive, insoluble inclusion bodies and the refolding yield was low. In the present study, human kringle 5 was fusion-expressed with GST (gluthathione-S-transferase) under the control of T7 promoter in E. coli. The IPTG-induced GST-kringle 5 was about 20% of the total cellular proteins and, among the expressed GST-kringle 5 proteins, 80% was present in the supernatant. The GST-kringle 5 fusion protein exhibited some anti-proliferation activity towards bovine capillary endothelial cells. After GST-kringle 5 purification, subsequent enterokinase release of intact kringle 5 from the fusion protein and further purification by gluthathione-Sepharose 4B affinity chromatography, the recombinant kringle 5, with a yield of 10.5 mg/L culture, displayed apparent inhibition of endothelial cell proliferation in a dose-dependent manner with ED50 about 20 nM.  相似文献   

11.
Assembly of mammalian 20 S proteasomes from individual subunits is beginning to be investigated. Proteasomes are made of four heptameric rings in the configuration alpha7beta7beta7alpha7. By using anti-proteasome and anti-subunit-specific antibodies, we characterized the processing and assembly of the beta subunit C5. The C5 precursor (25 kDa) remains as a free non-assembled polypeptide in the cell. The conversion of the C5 precursor to mature C5 (23 kDa) occurs concomitantly with its incorporation into 15 S proteasome intermediate and 20 S mature proteasome complexes. This processing is dependent on proteasome activity and takes place in the cytosol. These results are not fully compatible with the hypothesis that postulates that assembly of proteasomes takes place via a "half-proteasome" intermediate that contains one full alpha-ring and one full beta-ring of unprocessed beta subunit precursors.  相似文献   

12.
The 26S proteasome is essential for the proteolysis of proteins that have been covalently modified by the attachment of polyubiquitinated chains. Although the 20S core particle performs the degradation, the 19S regulatory cap complex is responsible for recognition of polyubiquitinated substrates. We have focused on how the S5a component of the 19S complex interacts with different ubiquitin-like (ubl) modules, to advance our understanding of how polyubiquitinated proteins are targeted to the proteasome. To achieve this, we have determined the solution structure of the ubl domain of hPLIC-2 and obtained a structural model of hHR23a by using NMR spectroscopy and homology modeling. We have also compared the S5a binding properties of ubiquitin, SUMO-1, and the ubl domains of hPLIC-2 and hHR23a and have identified the residues on their respective S5a contact surfaces. We provide evidence that the S5a-binding surface on the ubl domain of hPLIC-2 is required for its interaction with the proteasome. This study provides structural insights into protein recognition by the proteasome, and illustrates how the protein surface of a commonly utilized fold has highly evolved for various biological roles.  相似文献   

13.
The eukaryotic 20S proteasome is the multifunctional catalytic core of the 26S proteasome, which plays a central role in intracellular protein degradation. Association of the 20S core with a regulatory subcomplex, termed PA700 (also known as the 19S cap), forms the 26S proteasome, which degrades ubiquitinated and nonubiquitinated proteins through an ATP-dependent process. Although proteolytic assistance by this regulatory particle is a general feature of proteasome-dependent turnover, the 20S proteasome itself can degrade some proteins directly, bypassing ubiquitination and PA700, as an alternative mechanism in vitro. The mechanism underlying this pathway is based on the ability of the 20S proteasome to recognize partially unfolded proteins. Here we show that the 20S proteasome recognizes the heat-denatured forms of model proteins such as citrate synthase, malate dehydrogenase. and glyceraldehydes-3-phosphate dehydrogenase, and prevents their aggregation in vitro. This process was not followed by the refolding of these denatured substrates into their native states, whereas PA700 or the 26S proteasome generally promotes their reactivation. These results indicate that the 20S proteasome might play a role in maintaining denatured and misfolded substrates in a soluble state, thereby facilitating their refolding or degradation.  相似文献   

14.
The assembly of individual proteasome subunits into catalytically active mammalian 20S proteasomes is not well understood. Using subunit-specific antibodies, we characterized both precursor and mature proteasome complexes. Antibodies to PSMA4 (C9) immunoprecipitated complexes composed of alpha, precursor beta and processed beta subunits. However, antibodies to PSMA3 (C8) and PSMB9 (LMP2) immunoprecipitated complexes made up of alpha and precursor beta but no processed beta subunits. These complexes possess short half-lives, are enzymatically inactive and their molecular weight is approximately 300 kDa. Radioactivity chases from these complexes into mature, long-lived approximately 700 kDa proteasomes. Therefore, these structures represent precursor proteasomes and are probably made up of two rings: one containing alpha subunits and the other, precursor beta subunits. The assembly of precursor proteasomes occurs in at least two stages, with precursor beta subunits PSMB2 (C7-I), PSMB3 (C10-II), PSMB7 (Z), PSMB9 (LMP2) and PSMB10 (LMP10) being incorporated before others [PSMB1 (C5), PSMB6 (delta), and PSMB8 (LMP7)]. Proteasome maturation (processing of the beta subunits and juxtaposition of the two beta rings) is accompanied by conformational changes in the (outer) alpha rings, and may be inefficient. Finally, interferon-gamma had no significant effect on the half-lives or total amounts of precursor or mature proteasomes.  相似文献   

15.
The proteasome is involved in the progression of the meiotic cell cycle in fish oocytes. We reported that the alpha4 subunit of the 26S proteasome, which is a component of the outer rings of the 20S proteasome, is phosphorylated in immature oocytes and dephosphorylated in mature oocytes. To investigate the role of the phosphorylation, we purified the protein kinase from immature oocytes using a recombinant alpha4 subunit as substrate. A protein band which well corresponded to the kinase activity was identified as casein kinase Ialpha (CKIalpha). Two-dimensional (2D) PAGE analysis showed that part of the alpha4 subunit was phosphorylated by CKIalpha in vitro. This spot was detected in purified immature 26S proteasome but not in mature 26S proteasome, demonstrate that the alpha4 subunit is phosphorylated by CKIalpha meiotic cell cycle dependently.  相似文献   

16.
We have developed a novel LPS probe using a highly purified and homogenous preparation of [(3)H] Escherichia coli LPS from the deep rough mutant, which contains a covalently linked, photoactivable 4-p-(azidosalicylamido)-butylamine group. This cross-linker was used to identify the LPS-binding proteins in membranes of the murine-macrophage-like cell line RAW 264.7. The alpha-subunit (PSMA1 C2, 29.5 kDa) and the beta-subunit (PSMB4 N3, 24.36 kDa) of the 20S proteasome complex were identified as LPS-binding proteins. This is the first report demonstrating LPS binding to enzymes such as the proteasome subunits. Functionally, LPS enhanced the chymotrypsin-like activity of the proteasome to degrade synthetic peptides in vitro and, conversely, the proteasome inhibitor lactacystin completely blocked the LPS-induced proteasome's chymotrypsin activity as well as macrophage TNF-alpha secretion and the expression of multiple inflammatory mediator genes. Lactacystin also completely blocked the LPS-induced expression of Toll-like receptor 2 mRNA. In addition, lactacystin dysregulated mitogen-activated protein kinase phosphorylation in LPS-stimulated macrophages, but failed to inhibit IL-1 receptor-associated kinase-1 activity. Importantly, lactacystin also prevented LPS-induced shock in mice. These data strongly suggest that the proteasome complex regulates the LPS-induced signal transduction and that it may be an important therapeutic target in Gram-negative sepsis.  相似文献   

17.
18.
26S proteasome is a large multi-subunit protein complex involved in proteolytic degradation of proteins. In addition to its canonical proteolytic activity, the proteasome is also associated with recently characterized endoribonuclease (endo-RNAse) activity. However, neither functional significance, nor the mechanisms of its regulation are currently known. In this report, we show that 26S proteasome is able to hydrolyze various cellular RNAs, including AU-rich mRNA of c-myc and c-fos. The endonucleolytic degradation of these mRNAs is exerted by one of the 26S proteasome subunits, PSMA5 (α5). The RNAse activity of 26S proteasome is differentially affected by various extra-cellular signals. Moreover, this activity contributes to the process of degradation of c-myc mRNA during induced differentiation of K562 cells, and may be controlled by phosphorylation of the adjacent subunits, PSMA1 (α6) and PSMA3 (α7). Collectively, the data presented in this report suggest a causal link between cell signalling pathways, endo-RNAse activity of the 26S proteasome complex and metabolism of cellular RNAs.  相似文献   

19.
The gene encoding mouse single chain antibody (ScFv) against human interferon alpha2b (IFN-alpha2b) was cloned into the plasmid vector under the control of promoter from phage T7 and the recombinant protein was expressed in Escherichia coli as inclusion bodies. After the isolation of inclusion bodies the desired protein containing affinity tail "6His tag" was solubilized and purified under denaturing conditions by immobilized-metal affinity chromatography. The soluble and purified ScFv was obtained by "on column" refolding and the recovery of biological activity were demonstrated. The higher levels of ScFv production for intracellular expression system in comparison with ScFv obtained by secretion were shown. The advantages of described refolding method are simplicity and high efficacy, moreover, refolding using a chromatographic process represents the manufacturable approach because it is easily automated using commercially available materials and preparative chromatography systems and also can be combined with simultaneous purification.  相似文献   

20.
The human immunodeficiency virus-1 (HIV-1) Tat protein was previously reported to compete the association of PA28 regulator with the alpha rings of the 20S proteasome and to inhibit its peptidase activity. However, the distinct interaction sites within the proteasome complex remained to be determined. Here we show that HIV-1 Tat binds to alpha4 and alpha7, six beta subunits of the constitutive 20S proteasome and the interferon-gamma-inducible subunits beta2i and beta5i. A Tat-proteasome interaction can also be demonstrated in vivo and leads to inhibition of proteasomal activity. This indicates that Tat can modulate or interfere with cellular proteasome function by specific interaction with distinct proteasomal subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号