首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of Na+,K(+)-ATPase inhibitor: marinobufagenin, on contractile and electric characteristics of isolated rat diaphragm were studied for the first time. Marinobufagenin induced dose-dependent (EC50 = 0.3 +/- 0.1 nM) increase in the contraction force (positive inotropic effect). At 1-2 nM, it slowed down the fatigue induced by continuous direct stimulation (2/s) of the muscle. Marinobufagenin at the same concentrations did not affect resting membrane potential or parameters of action potentials of muscle fibers, while at 10 and 20 nM it induced hyperpolarization by approximately 2 mV. Marinobufagenin blocked dose-dependently (IC50 = 2.9 +/- 2.0 nM) hyperpolarizing effect of acetylcholine (100 nM) mediated by increase in electrogenic contribution of alpha2 isoform of the Na+,K(+)-ATPase. This result suggests a capability of marinobufagenin to inhibit this isoform of the Na+,K(+)-ATPase. Possible mechanisms of marinobufagenin effects in skeletal muscle are discussed.  相似文献   

2.
3.
Site-directed mutagenesis was used to identify residues responsible for the greater than 1,000-fold difference in ouabain sensitivity between the rat Na,K-ATPase alpha 1 and alpha 2 isoforms. A series of mutagenized cDNAs was constructed that replaced residues of the rat alpha 2 subunit with the corresponding residues from the rat alpha 1 subunit. These cDNAs were cloned into a mammalian episomal expression vector (EBOpLPP) and expressed in ouabain-sensitive primate cells. Either of two single substitutions introduced into the rat alpha 2 subunit cDNA (Leu-111----Arg or Asn-122----Asp) conferred partial resistance (approximately 10 microM ouabain) upon transformed cells. This resistance was intermediate between the levels conferred by the rat alpha 1 cDNA (approximately 500 microM ouabain) and the rat alpha 2 cDNA (approximately 0.2 microM ouabain). A double substitution of the rat alpha 2 cDNA (Leu-111----Arg and Asn-122----Asp) conferred a resistance level equivalent to that obtained with rat alpha 1. These results demonstrate that the residues responsible for isoform-specific differences in ouabain sensitivity are located at the end of the H1-H2 extracellular domain. The combination of site-directed mutagenesis and episomal expression provides a useful system for the selection and analysis of mutants.  相似文献   

4.
Inhibition of Na,K-ATPase activity by cardiac glycosides is believed to be the major mechanism by which this class of drugs increases heart contractility. However, direct evidence demonstrating this is lacking. Furthermore it is unknown which specific alpha isoform of Na,K-ATPase is responsible for the effect of cardiac glycosides. Several studies also suggest that cardiac glycosides, such as ouabain, function by mechanisms other than inhibition of the Na,K-ATPase. To determine whether Na,K-ATPase, specifically the alpha2 Na,K-ATPase isozyme, mediates ouabain-induced cardiac inotropy, we developed animals expressing a ouabain-insensitive alpha2 isoform of the Na,K-ATPase using Cre-Lox technology and analyzed cardiac contractility after administration of ouabain. The homozygous knock-in animals were born in normal Mendelian ratio and developed normally to adulthood. Analysis of their cardiovascular function demonstrated normal heart function. Cardiac contractility analysis in isolated hearts and in intact animals demonstrated that ouabain-induced cardiac inotropy occurred in hearts from wild type but not from the targeted animals. These results clearly demonstrate that the Na,K-ATPase and specifically the alpha2 Na,K-ATPase isozyme mediates ouabain-induced cardiac contractility in mice.  相似文献   

5.
6.
The Na,K-ATPase generates electrochemical gradients across the plasma membrane that are responsible for numerous cellular and physiological processes. The active Na,K-ATPase is minimally composed of an alpha and a beta subunit and families of isoforms for both subunits exist. Recent studies have identified a physiological role for the rat Na,K-ATPase alpha4 isoform in sperm motility. However, very little is known about the human Na,K-ATPase alpha4 isoform other than its genomic sequence and structure and its mRNA expression pattern. Here, the human alpha4 isoform of the Na,K-ATPase is cloned, expressed, and characterized. Full length cDNAs encoding the putative human alpha4 isoform of the Na,K-ATPase were identified from a number of ESTs and a protein product corresponding to this isoform was shown to be expressed from these cDNAs. The human Na,K-ATPase alpha4 isoform protein was found to be expressed in mature sperm in human testes sections and it is localized specifically to the principle piece of human sperm. In addition, the presence of the Na,K-ATPase alpha4 isoform is absent in immature testes however its expression appears coincident with sexual maturity. And finally, the human Na,K-ATPase alpha4 isoform was shown to be as sensitive to cardiac glycoside inhibition as the human Na,K-ATPase alpha1 isoform. Considering the important role of the rat Na,K-ATPase alpha4 isoform in rat sperm motility, the demonstration that the human alpha4 isoform is a sperm-specific protein localized to the flagellum suggests a role for the human Na,K-ATPase alpha4 isoform in human sperm physiology.  相似文献   

7.
In experiments on isolated rat diaphragm muscle, acetylcholine (100 nmol/l) hyperpolarized muscle fibres due to activation of the alpha 2 isoform of Na,K-ATPase. This hyperpolarization was blocked in a dose-dependent manner by ouabain (K0.5 = 8 +/- 4 nmol/l) as well as by a solution of porcine kidney extract (10 kDa cut-off filtration), with the K0.5 approximately equal to a 1:20,000-fold dilution. The inhibitory activity of the developed slowly over a period of 3 hours and, in contrast to ouabain, was still present after 1 hour of washing. Ouabain, but not the extract, inhibits Rb+ uptake in human erythrocytes that only express the alpha = 1 isoform of Na, K-ATPase. Our data suggest that in rat skeletal muscle the alpha 1 isoform of Na,K-ATPase is primarily responsible for ionic homeostasis, while the alpha 2 isoform provides a "regulatable" function and may be controlled by cholinergic stimulation and/or endogenous digitalis-like factors (EDLFs). Porcine kidney extract contains a factor (M. W. < 10 kDa) that selectively inhibits the rat alpha 2 isoform and differs from ouabain. Our experimental protocol can be used as a highly sensitive physiological assay for factors that selectively inhibit the alpha 2 isoform of Na,K-ATPase.  相似文献   

8.
The Na,K-ATPase generates electrochemical gradients that are used to drive the coupled transport of many ions and nutrients across the plasma membrane. The functional enzyme is comprised of an alpha and beta subunit and families of isoforms for both subunits exist. Recent studies in this laboratory have identified a biological role for the Na,K-ATPase alpha4 isoform in sperm motility. Here we further investigate the role of the Na,K-ATPase carrying the alpha4 isoform, showing again that ouabain eliminates sperm motility, and in addition, that nigericin, a H+/K+ ionophore, and monensin, a H+/Na+ ionophore, reinitiate motility. These data, along with the observation that the K+ ionophore valinomycin has no effect on the motility of ouabain-inhibited sperm, suggest that ouabain may change intracellular H+ levels in a manner that is incompatible with sperm motility. We have also localized NHE1 and NHE5, known regulators of intracellular H+ content, to the same region of the sperm as the Na,K-ATPase alpha4 isoform. These data highlight the important role of the Na,K-ATPase alpha4 isoform in regulating intracellular H(+) levels, and provide evidence suggesting the involvement of the Na+/H+ exchanger, which is critical for maintaining normal sperm motility.  相似文献   

9.
Ouabain sensitivity of the alpha 3 isozyme of rat Na,K-ATPase   总被引:5,自引:0,他引:5  
The Na,K-ATPase of rat brainstem axolemma membranes contains two isozymes of its catalytic subunit, alpha 2 and alpha 3. To isolate the alpha 3 isozyme functionally, purified axolemma Na,K-ATPase was treated with trypsin. Immunoblot analysis of trypsin-treated Na,K-ATPase using isozyme-specific antibodies showed that alpha 3 was significantly more resistant to digestion than alpha 2. The trypsin-resistant alpha 3 isozyme fraction, devoid of alpha 2, contained 50-60% of the ATPase activity, and was inhibited by ouabain half-maximally at 0.13 microM. This indicates that the alpha 3 Na,K-ATPase isozyme has a high sensitivity to cardiac glycosides.  相似文献   

10.
11.
Previous studies showed that the alpha 1, alpha 2, and alpha 3 isoforms of the catalytic subunit of the Na,K-ATPase differ in their apparent affinities for the ligands ATP, Na(+), and K(+). For the rat isoforms transfected into HeLa cells, K'(ATP) for ATP binding at its low affinity site is lower for alpha 2 and alpha 3 compared with alpha 1; relative to alpha 1 and alpha 2, alpha 3 has a higher K'(Na) and lower K'(K) (Jewell, E. A., and Lingrel, J. B (1991) J. Biol. Chem. 266, 16925--16930; Munzer, J. S., Daly, S. E., Jewell-Motz, E. A., Lingrel, J. B, and Blostein, R. (1994) J. Biol. Chem. 269, 16668--16676). The experiments described in the present study provide insight into the mechanistic basis for these differences. The results show that alpha 2 differs from alpha1 primarily by a shift in the E(1) E(2) equilibrium in favor of E(1) form(s) as evidenced by (i) a approximately 20-fold increase in IC(50) for vanadate, (ii) decreased catalytic turnover, and (iii) notable stability of Na,K-ATPase activity at acidic pH. In contrast, despite its lower K'(ATP) compared with alpha 1, the E(1) E(2) poise of alpha 3 is not shifted toward E(1). Distinct intrinsic interactions with Na(+) ions are underscored by the marked selectivity for Na(+) over Li(+) of alpha 3 compared with either alpha1 or alpha 2 and higher K'(Na) for cytoplasmic Na(+), which persists over a 100-fold range in proton concentration, independent of the presence of K(+). The kinetic analysis also suggests alpha 3-specific differences in relative rates of partial reactions, which impact this isoform's distinct apparent affinities for both Na(+) and K(+).  相似文献   

12.
Na,K-ATPase is an ion transporter that impacts neural and glial physiology by direct electrogenic activity and the modulation of ion gradients. Its three isoforms in brain have cell-type and development-specific expression patterns. Interestingly, our studies demonstrate that in late gestation, the alpha2 isoform is widely expressed in neurons, unlike in the adult brain, in which alpha2 has been shown to be expressed primarily in astrocytes. This unexpected distribution of alpha2 isoform expression in neurons is interesting in light of our examination of mice lacking the alpha2 isoform which fail to survive after birth. These animals showed no movement; however, defects in gross brain development, muscle contractility, neuromuscular transmission, and lung development were ruled out. Akinesia suggests a primary neuronal defect and electrophysiological recordings in the pre-B?tzinger complex, the brainstem breathing center, showed reduction of respiratory rhythm activity, with less regular and smaller population bursts. These data demonstrate that the Na,K-ATPase alpha2 isoform could be important in the modulation of neuronal activity in the neonate.  相似文献   

13.
14.
Sperm motility is dependent on a unique isoform of the Na,K-ATPase   总被引:3,自引:0,他引:3  
The Na,K-ATPase, a member of the P-type ATPases, is composed of two subunits, alpha and beta, and is responsible for translocating Na(+) out of the cell and K(+) into the cell using the energy of hydrolysis of one molecule of ATP. The electrochemical gradient it generates is necessary for many cellular functions, including establishment of the plasma membrane potential and transport of sugars and ions in and out of the cell. Families of isoforms for both the alpha and beta subunits have been identified, and specific functional roles for individual isoforms are just beginning to emerge. The alpha4 isoform is the most recently identified Na, K-ATPase alpha isoform, and its expression has been found only in testis. Here we show that expression of the alpha4 isoform in testis is localized to spermatozoa and that inhibition of this isoform alone eliminates sperm motility. These data describe for the first time a biological function for the alpha4 isoform of the Na,K-ATPase, revealing a critical role for this isoform in sperm motility.  相似文献   

15.
In addition to the three isoforms of the catalytic subunit of the Na, K-ATPase originally identified (alpha1, alpha2, and alpha3), a fourth alpha polypeptide (alpha4) has recently been found in mammalian cells. This novel alpha-subunit of the Na,K-ATPase is selectively expressed in male gonadal tissues. In the testes, alpha4 is functionally active and comprises approximately half of the Na, K-ATPase activity of the organ. At present, the pattern of expression of the alpha4 polypeptide within the cells of the male gonad is unknown. By in situ hybridization, immunocytochemistry, and the ouabain inhibition profile of Na,K-ATPase activity, we show that the alpha4-subunit is expressed in the germ cells of rat testes. The highest amounts of the isoform are found in spermatozoa, where it constitutes two thirds of the Na,K-ATPase activity of the gametes. The other Na pump present in the cells is the ubiquitously expressed alpha1 polypeptide. The characteristic localization of alpha4 in the gonad is further supported by the drastic reduction of the polypeptide in mice that are infertile as a consequence of arrest in maturation of the germ cells. In addition, GC-1spg cells, a murine cell line derived from testis spermatogonia, also contain the Na, K-ATPase alpha4 polypeptide. However, the level of expression of the isoform in these cells is much lower than in the spermatozoa, a fact that may depend on the limited ability of the GC-1spg cells to differentiate in vitro. The particular expression of the Na,K-ATPase alpha4 isoform we encounter and the specific enzymatic properties of the polypeptide suggests its importance for ionic homeostasis of the germ cells of the testes.  相似文献   

16.
This study uses genetically altered mice to examine the contribution of the Na+-K+-ATPase 2 catalytic subunit to resting potential, excitability, and contractility of the perinatal diaphragm. The 2 protein is reduced by 38% in 2-heterozygous and absent in 2-knockout mice, and 1-isoform is upregulated 1.9-fold in 2-knockout. Resting potentials are depolarized by 0.8–4.0 mV in heterozygous and knockout mice. Action potential threshold, overshoot, and duration are normal. Spontaneous firing, a developmental function, is impaired in knockout diaphragm, but this does not compromise its ability to fire evoked action potential trains, the dominant mode of activation near birth. Maximum tetanic force, rate of activation, force-frequency and force-voltage relationships, and onset and magnitude of fatigue are not changed. The major phenotypic consequence of reduced 2 content is that relaxation from contraction is 1.7-fold faster. This finding reveals a distinct cellular role of the 2-isoform at a step after membrane excitation, which cannot be restored simply by increasing 1 content. Na+/Ca2+ exchanger expression decreases in parallel with 2-isoform, suggesting that Ca2+ extrusion is affected by the altered 2 genotype. There are no major compensatory changes in expression of sarcoplasmic reticulum Ca2+-ATPase, phospholamban, or plasma membrane Ca2+-ATPase. These results demonstrate that the Na+-K+-ATPase 1-isoform alone is able to maintain equilibrium K+ and Na+ gradients and to substitute for 2-isoform in most cellular functions related to excitability and force. They further indicate that the 2-isoform contributes significantly less at rest than expected from its proportional content but can modulate contractility during muscle contraction. Na+-K+-ATPase 2 catalytic subunit; heterozygous mice; knockout mice; resting potential  相似文献   

17.
It is well accepted that inhibition of the Na,K-ATPase in the heart, through effects on the Na/Ca exchanger, raises the intracellular Ca2+ concentration and strengthens cardiac contraction. However, the contribution that individual isoforms make to this calcium regulatory role is unknown. Assessing the phenotypes of mouse hearts with genetically reduced levels of Na,K-ATPase alpha 1 or alpha 2 isoforms clearly demonstrates different functional roles for these isoforms in vivo. Heterozygous alpha 2 hearts are hypercontractile as a result of increased calcium transients during the contractile cycle. In contrast, heterozygous alpha 1 hearts are hypocontractile. The different functional roles of these two isoforms are further demonstrated since inhibition of the alpha 2 isoform with ouabain increases the contractility of heterozygous alpha 1 hearts. These results definitively illustrate a specific role for the alpha 2 Na,K-ATPase isoform in Ca2+ signaling during cardiac contraction.  相似文献   

18.
We showed earlier that the kinetic behavior of the alpha2 isoform of the Na,K-ATPase differs from the ubiquitous alpha1 isoform primarily by a shift in the steady-state E(1)/E(2) equilibrium of alpha2 in favor of E(1) form(s). The aim of the present study was to identify regions of the alpha chain that confer the alpha1/alpha2 distinct behavior using a mutagenesis and chimera approach. Criteria to assess shifts in conformational equilibrium included (i) K(+) sensitivity of Na-ATPase measured at micromolar ATP, under which condition E(2)(K(+)) --> E(1) + K(+) becomes rate-limiting, (ii) changes in K'(ATP) for low affinity ATP binding, (iii) vanadate sensitivity of Na,K-ATPase activity, and (iv) the rate of the partial reaction E(1)P --> E(2)P. We first confirmed that interactions between the cytoplasmic domains of alpha2 that modulate conformational shifts are fundamentally similar to those of alpha1, suggesting that the predilection of alpha2 for E(1) state(s) is due to differences in primary structure of the two isoforms. Kinetic behavior of the alpha1/alpha2 chimeras indicates that the difference in E(1)/E(2) poise of the two isoforms cannot be accounted for by their notably distinct N termini, but rather by the front segment extending from the cytoplasmic N terminus to the C-terminal end of the extracellular loop between transmembranes 3 and 4, with a lesser contribution of the alpha1/alpha2 divergent portion within the M4-M5 loop near the ATP binding domain. In addition, we show that the E(1) shift of alpha2 results primarily from differences in the conformational transition of the dephosphoenzyme, (E(2)(K(+)) --> E(1) + K(+)), rather than phosphoenzyme (E(1)P --> E(2)P).  相似文献   

19.
The role of multiple isoforms for the alpha subunit of Na,K-ATPase is essentially unknown. To examine the functional properties of the three alpha subunit isoforms, we developed a system for the heterologous expression of Na,K-ATPase in which the enzymatic activity of each isoform can be independently analyzed. Ouabain-resistant forms of the rat alpha 2 and alpha 3 subunits were constructed by site-directed mutagenesis of amino acid residues at the extracellular borders of the first and second transmembrane domains (L111R and N122D for alpha 2 and Q108R and N119D for alpha 3). cDNAs encoding the rat alpha 1 subunit, which is naturally ouabain-resistant, and rat alpha 2 and alpha 3, which were mutated to ouabain resistance (designated rat alpha 2* and rat alpha 3*, respectively) were cloned into an expression vector and transfected into HeLa cells. Resistant clones were isolated and analyzed for ouabain-inhibitable ATPase activity in the presence of 1 microM ouabain, which inhibits the endogenous Na,K-ATPase present in HeLa cells (I50 approximately equal to 10 nM). The remaining activity corresponds to Na,K-ATPase molecules containing the transfected rat alpha 1, rat alpha 2*, or rat alpha 3* isoforms. Utilizing this system, we examined Na+, K+, and ATP dependence of enzyme activity. Na,K-ATPase molecules containing rat alpha 1 and rat alpha 2* exhibited a 2-3-fold higher apparent affinity for Na+ than those containing rat alpha 3* (apparent KNa+ (millimolar): rat alpha 1 = 1.15 +/- 0.13; rat alpha 2* = 1.05 +/- 0.11; rat alpha 3* = 3.08 +/- 0.06). Additionally, rat alpha 3* had a slightly higher apparent affinity for ATP (in the millimolar concentration range) compared with rat alpha 1 or rat alpha 2* (apparent K0.5 (millimolar): rat alpha 1 = 0.43 +/- 0.12; rat alpha 2* = 0.54 +/- 0.15; rat alpha 3* = 0.21 +/- 0.04) and all three isoforms has similar apparent affinities for K+ (apparent KK+: rat alpha 1 = 0.45 +/- 0.01; rat alpha 2* = 0.43 +/- 0.004; rat alpha 3* = 0.27 +/- 0.01). This study represents the first comparison of the functional properties of the three Na,K-ATPase alpha isoforms expressed in the same cell type.  相似文献   

20.
Dahl JP  Binda A  Canfield VA  Levenson R 《Biochemistry》2000,39(48):14877-14883
We have examined the relationship between Na,K-ATPase and FGF-2 secretion in transfected primate cells. FGF-2 lacks a classic hydrophobic export signal, and the mechanisms mediating its secretion are unknown. To monitor secretion, a FLAG epitope tag was inserted into the carboxyl terminus of the 18 kDa form of human FGF-2, and the construct was transfected into either human HEK 293 or monkey CV-1 cells. Exported FGF-2 was detected in the culture medium using the FLAG-specific monoclonal antibody M2. FGF-2 secretion from HEK 293 or CV-1 cells was linear over time and sensitive to inhibition by the cardiac glycoside ouabain, a specific inhibitor of the Na,K-ATPase. In contrast, the secretion of FGF-8 (an FGF family member that contains a hydrophobic secretory signal) was not inhibited by treatment of HEK 293 or CV-1 cells with ouabain. FGF-2 secretion was also assayed in CV-1 cells expressing the naturally ouabain-resistant rodent Na,K-ATPase alpha1 subunit. In cells expressing the rodent alpha1 subunit, FGF-2 secretion was unaffected by high levels of ouabain, indicating that the rodent alpha1 subunit was capable of rescuing ouabain-inhibitable FGF-2 export. Expression of ouabain-resistant mutants of the rodent alpha2 and alpha3 subunits, or the naturally ouabain-resistant rodent alpha4 subunit, also supported FGF-2 secretion in ouabain-treated cells. Taken together, our studies are consistent with the idea that the Na,K-ATPase plays a prominent role in regulating FGF-2 secretion, although none of the alpha subunit isoforms exhibited specificity with regard to FGF-2 export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号