首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake of [methyl-3H]thymidine label from Escherichia coli 15T- into the DNA of Dictyostelium discoideum has been measured in control and [60Co]-gamma-irradiated cells of the resistant strain NC-4 (D10, colony-forming survival = 300 krad) and two sensitive daughter strains, γs-18 (D10 = 75 krad) and γs-13 (D10 = 4 krad). Nuclear (n) and mitochondrial (m) DNA were resolved by isopycnic CsCl gradients. The uptake of label into n-DNA during the immediate postirradiation period was selectively inhibited by irradiation, compared with uptake into m-DNA. For all three strains, the gamma ray dose to reduce the uptake into n-DNA to 37% of the control during the first hour after irradiation was 3 krad, whereas for uptake into m-DNA it was 75 krad. After the initial dose- and strain-dependent lag, uptake into n-DNA resumed. γs-18 showed longer lags in n-DNA synthesis and cell division than did NC-4. γs-13 resumed n-DNA synthesis and cell division after slightly shorter lags than for NC-4. The early postlag uptake into n-DNA in this strain was almost at the control rate and was accompanied by division until the cell number had nearly doubled. The rate of label uptake then declined, division stopped, and gradual cell lysis ensued. The postdelay response of γs-13 was almost independent of dose in the range of 10-100 krad. The response of γs-18 in these and earlier experiments is consistent with the view-point that it is sensitive because of a decreased rate of repair of DNA damage. However, the basis for the sensitivity of γs-13 seems to be more complex. This strain undergoes a premature but short-lived burst of n-DNA synthesis and division for what appears to be about one round of replication. Replication then ceases, even at very low doses, leading to greatly reduced probability of survival.  相似文献   

2.
The effects of growth phase and DNA repair capacity on the production and rejoining of ethyl methanesulfonate (EMS)-induced single-strand breaks were studied in 4 strains of E. coli. DNAs from logarithmic and stationary phase cells of the DNA polymerase I deficient mutant, P3478 polA, a recombination deficient mutant, DZ417recA, and from the respective parental strains, W3110pol+ and AB253rec+ were examined by sedimentation in alkaline sucrose gradients.In both parental strains, stationary phase cells exhibited enhanced strand rejoining. In the mutants, alkylated DNA was repaired to some extent in both growth phases, but it contained a greater proportion of small DNA fragments compared to the parental strains. Some DNA breakdown occured in all four strains but this was most extensive in stationary phase cells of the repair-deficient mutants.These results indicate that the four strains can rejoin EMS-induced DNA strand breaks with varying efficiency depending on the physiological state and the genetic capacity for repair.  相似文献   

3.
Single-strand breaks are introduced into bacteriophage T2 and Bacillus subtilis DNA in dilute solution with gamma rays and the DNA sedimented on alkaline sucrose gradients. Assuming (1) the number of single-strand breaks is linear with dose, and (2) the distance sedimented in alkaline sucrose gradients D is proportional to Mα (M is the single-strand DNA mass), the value of a is determined to be 0.40.  相似文献   

4.
We have isolated protoplasts of cultured wild carrot (Daucus carota L.) cells, lysed them directly on top of alkaline sucrose gradients, and measured single-stranded DNA of molecular weight 1·108 by velocity sedimentation. DNA sedimentation studies on γ-irradiated protoplasts indicate that the energy absorbed in DNA per strand break is 85 eV in air and 260 eV in nitrogen. Isolated wild carrot protoplasts can repair 50% of the DNA strand breaks within 5 min after a dose of 20 krad, and by 1 h none can be detected.  相似文献   

5.
Some responses of the cellular slime mold Dictyostelium discoideum to ultraviolet light (UV) irradiation were investigated by analyzing two aspects of deoxyribonucleic acid (DNA) excision repair in the vegetative cells: (i) the fate of thymine-containing dimers and (ii) the production and rejoining of single-strand breaks. Experiments were done with the parental, radiation-resistant NC-4 strain and with the radiation-sensitive gammas-13 strain. The majority (greater than 85%) of the thymine-containing dimers produced in both strains by an energy fluence of 100/Jm2 were removed from the acid-insoluble DNA fraction within the first 3 to 4 h of reincubation in the dark. Moreover, as measured by alkaline sucrose gradients, single-strand breaks appeared in the DNA of both NC-4 and gammas-13 irradiated cells very rapidly and at low temperatures. This was presumed to be a result of the incision (nicking) step of excision repair as performed by UV-specific endonuclease(s). In NC-4 the time required for dimer excision correlated with the sealing of breaks as well as with the UV-induced division delays. In gammas-13 the single-strand breaks were closed at a slower rate than in NC-4. However, this was not accompanied by more extensive division delays.  相似文献   

6.
The influence of thymine starvation on the single-strand molecular weight of deoxyribonucleic acid (DNA) from Escherichia coli was determined by sedimentation through gradients of alkaline sucrose. Growth of cells for as long as 150 min in thymineless medium did not significantly reduce the molecular weight below the control value of 2.4 +/- 0.3 x 10(8) daltons. Incubation of cells in thymineless medium after exposure to 500 ergs/mm(2) of ultraviolet light or 20 krad of (137)Cs gamma rays did not appear to block the rejoining of single-strand breaks associated with irradiation. Thus, DNA repair enzymes, presumably including DNA ligase, are not significantly inhibited by thymine starvation.  相似文献   

7.
Summary Strains of Escherichia coli K-12 and B/r made by transduction of the exrA allele from a Bs-2 derivative have been compared with Exr(W) strains derived from Bs-1 and Bs-2 by mutation (E.M. Witkin, 1967). Both transduced exrA and Exr(W) strains were almost unmutable by gamma radiation, but the former class were as sensitive to gamma radiation as recA strains and, like them, were unable to repair single-strand DNA breaks as detected by the McGrath-Williams technique. In contrast the Exr(W)strains were as resistant to gammaradiation as Exr(W)+ strains derived from them and were equally efficient in repairing single-strand breaks. The existence of Exr(W)strains suggests that the mutagenicity of single-strand breaks may depend entirely on the way in which they are repaired. The properties of the (Exr(W)strains cannot be ascribed solely to the transducable exrA allele.A large effect of diffuse daylight in lowering the molecular weight of DNA on alkaline sucrose gradients is described which, unless prevented, may lead to erroneous results in such experiments.  相似文献   

8.
Condensed and dispersed chromatin fractions were isolated from human placental nuclei. The DNA of each fraction was purified and characterised by isopycnic centrifugation, thermal fractionation on hydroxylapatite (HAP) and sequence complexity studies. The DNAs had identical buoyant densities in neutral CsCl (1.698 g/cm3) and similar melting profiles on HAP. Analytical ultracentrifugation in Ag+-Cs2SO4, however, showed that satellite DNAs were present in the condensed fraction DNA (DNAC) but were not visible in the dispersed fraction DNA (DNAD). In addition, DNAC was found to be enriched in highly reiterated sequences (20% reassociated by C0t 10?3) which can be correlated with the presence of satellite DNAs, whereas DNAD contained only 3% of these fast reassociating sequences. In contrast DNAD contained 30% intermediate sequences (reassociating between C0t 10?3 and C0t 100) which represent only 10% of DNAC. The reassociated highly repeated sequences of DNAC showed the presence of two components in both CsCl density gradients and HAP thermal elution studies. This suggests that either there are sequence relationships resulting in partial mismatching between the different highly repeated DNA sequences in this fraction, or that highly repeated sequences are associated with less repetitious DNA. The results are discussed in terms of possible differences in genetic activity between the chromatin fractions.  相似文献   

9.
Gamma-ray-induced DNA single-strand scissions and the ability to repair the scissions in spermatogonia from young mice and in spermatozoa from adult mice were studied quantitatively by an alkaline sucrose density-gradient centrifugation method. The average size of DNAs in non-irradiated spermatogonia was 2.6–3.0 × 108 daltons, similar to those of a spermatid-rich population, and the size of DNA in non-irradiated spermatozoa was 1.2 × 108 daltons.In spermatogonia, the radiosensitivity of DNA was 0.42 single-strand breaks/ 1012 daltons of DNA/rad in oxic conditions and only 0.24 under anoxic conditions. In spermatozoa the break efficiency of DNA was 0.22 single-strand breaks/1012 daltons of DNA/rad under oxic conditions and altered little under anoxic irradiation. The DNA scissions were efficiently repaired in spermatogonia within 10 min, whereas the breaks in spermatozoa were not rejoined at all even after two days of post-irradiation time.The radiosensitivities of DNA, repair capability and non- and/or slow-reparable DNA scissions were compared in spermatogonium-rich, spermatid-rich and spermatozoan-rich populations.  相似文献   

10.
Yeast cells deficient in DNA ligase were also deficient in their capacity to rejoin single-strand scissions in prelabeled nuclear DNA. After high-dose-rate gamma irradiation (10 and 25 krads), cdc9-9 mutant cells failed to rejoin single-strand scissions at the restrictive temperature of 37 degrees C. In contrast, parental (CDC9) cells (incubated with mutant cells both during and after irradiation) exhibited rapid medium-independent DNA rejoining after 10 min of post-irradiation incubation and slower rates of rejoining after longer incubation. Parental cells were also more resistant than mutant cells to killing by gamma irradiation. Approximately 2.5 +/- 0.07 and 5.7 +/- 0.6 single-strand breaks per 10(8) daltons were detected in DNAs from either CDC9 or cdc9-9 cells converted to spheroplasts immediately after 10 and 25 krads of irradiation, respectively. At the permissive temperature of 23 degrees C, the cdc9-9 cells contained 2 to 3 times the number of DNA single-strand breaks as parental cells after 10 min to 4 h of incubation after 10 krads of irradiation, and two- to eightfold more breaks after 10 min to 2.5 h of incubation after 25 krads of irradiation. Rejoining of single-strand scissions was faster in medium. After only 10 min in buffered growth medium and after 10 krads of irradiation, the number of DNA single-strand breaks was reduced to 0.32 +/- 0.3 (at 23 degrees C) or 0.21 +/- 0.05 (at 37 degrees C) per 10(8) daltons in parental cells, but remained at 2.1 +/- 0.06 (at 23 degrees C) or 2.3 +/- 0.07 (at 37 degrees C) per 10(8) daltons in mutant cells. After 10 or 25 krads of irradiation plus 1 h of incubation in medium at 37 degrees C, only DNA from CDC9 cells was rejoined to the size of DNA from unirradiated cells, whereas at 23 degrees C, DNAs in both strains were completely rejoined.  相似文献   

11.
A method was devised for extracting, from cells of Escherichia coli K12, DNA molecules which sedimented on neutral sucrose gradients as would be expected for free DNA molecules approaching the genome in size. Gamma ray irradiation of oxygenated cells produced 0.20 DNA double-strand breaks per kilorad per 109 daltons. Incubation after irradiation of cells grown in K medium, with four to five genomes per cell, showed repair of the double-strand breaks. No repair of double-strand breaks was found in cells grown in aspartate medium, with only 1.3 genomes per cell, although DNA single-strand breaks were still efficiently repaired. Cells which were recA? or recA?recB? also did not repair double-strand breaks. These results suggest that repair of DNA double-strand breaks may occur by a recombinational event involving another DNA double helix with the same base sequence.  相似文献   

12.
The formation of 7-methylguanine in rat liver mitochondrial DNA following the administration of the powerful carcinogen, dimethylnitrosamine, and the weak carcinogen, methyl methanesulphonate was measured and compared to the alkylation of nuclear DNA by these agents. At all doses tested mitochondrial DNA was alkylated more extensively than nuclear DNA by dimethylnitrosamine but both types of cellular DNA were alkylated to about the same extent by methyl methanesulphonate. The physical structure of rat liver mitochondrial DNA isolated from animals treated with these agents was investigated by electrophoresis in agarose gels and by isopycnic centrifugation in CsCl gradients. These procedures carried out in the presence of ethidium bromide, an intercalating dye, separate closed circular forms of mitochondrial DNA from open circular molecules (containing a single-strand break) and linear molecules. Administration of dimethylnitrosamine produced a considerable decrease in the amount of mitochondrial DNA which could be isolated in the closed circular form and at higher doses of dimethylnitrosamine no closed circular mitochondrial DNA could be found. Methyl methanesulphonate was less effective at reducing the amount of closed circular mitochondrial DNA. One explantation of these results is that dimethylnitrosamine leads to strand breaks in mitochondrial DNA and the possible use of this system to investigate carcinogen-induced breaks in DNA is discussed.  相似文献   

13.
Summary The formation and repair of double-strand breaks induced in DNA by MMS was studied in haploid wild type and MMS-sensitive rad6 mutant strains of Saccharomyces cerevisiae with the use of the neutral and alkaline sucrose sedimentation technique. A similar decrease in average molecular weight of double-stranded DNA from 5–6x108 to 1–0.7x108 daltons was observed following treatment with 0.5% MMS in wild type and mutant strains. Incubation of cells after MMS treatment in a fresh drug-free growing medium resulted in repair of double-strand breaks in the wild type strain, but only in the exponential phase of growth. No repair of double-strand breaks was found when cells of the wild type strain were synchronized in G-1 phase by treatment with factor, although DNA single-strand breaks were still efficiently repaired. Mutant rad6 which has a very low ability to repair MMS-induced single-strand breaks, did not repair double-strand breaks regardless of the phase of growth.These results suggest that (1) repair of double-strand breaks requires the ability for single-strand breaks repair, (2) rejoining of double-strand breaks requires the availability of two homologous DNA molecules, this strongly supports the recombinational model of DNA repair.  相似文献   

14.
The DNA-repair capabilities of baby hamster kidney (BHK) cells were investigated by comparing the reactivation of irradiated herpes simplex virus type I (HSV1) in BHK cells with its reactivation in mouse fibroblasts and in normal and repairdeficient human diploid fibroblasts. BHK cells were found to have an intermediate ability to reactive UV-irradiated HSV1 (the viral Do was 14 J/m2) relative to normal human fibroblasts (viral Do = 19 J/m2) and xeroderma pigmentosum (XP) group A cells (viral Do = 4.5 J/m2). With mouse L929 cells as the host, the response of the UV-irradiated virus was biphasic with Dos of 4.6 and 30 J/m2 for the low- and high-dose components respectively. In contrast to the response following UV radiation, γ-irradiated HSV1 was similarly reactivated by BHK and normal human cells (the Dos for the irradiated virus in BHK and CRl 1106 were 55 and 51 krad, respectively, whereas xeroderma pigmentosum cells were slightly less efficient in the repair of γ-irradiated virus (Do = 45 krad). UV irradiation of BHK host cells 0–48 h prior to infection enhanced the reactivation of UV-irradiated HSV.  相似文献   

15.
The ribosomal cistrons of the water mold Achlya bisexualis   总被引:2,自引:0,他引:2  
Total DNA was extracted from vegatative mycelia of the water mold Achlya bisexualis. Fractionation of the DNA in CsCl gradients resulted in two components: a major component with a buoyant density of 1.697 g cm?3 and a minor component with a density of 1.685 g cm?3. The minor component has been identified as mitochondrial DNA based on extractions from isolated mitochondria and Triton X-100 washed nuclei. Detergent washing of the nuclei yielded DNA in which the mitochondrial DNA component was absent, while the isolated mitochondrial preparations contained DNA enriched in the 1.685 g cm?3 component. Hybridization studies of A. bisexualis DNA to rRNA show that the ribosomal cistrons have a buoyant density coincident with that obtained with the nuclear DNA. In addition, preliminary evidence indicates that the mitochondrial DNA does not hybridize to the cytoplasmic RNA under the conditions used for this study. Ribosomal RNA hybridized to about 0.65% of the total DNA.  相似文献   

16.
Chromatin has been isolated from cultured Chinese-hamster lung fibroblasts as an expanded aqueous gel. The DNA in isolated chromatin has been examined by sedimentation on alkaline sucrose gradients. The average molecular weight of the DNA has been determined to be 50 million. gamma-irradiation of isolated chromatin degrades the DNA to lower molecular weight. The yield of single-strand breaks in the DNA is 0.02 single-strand breaks per krad-10(6) dalton, calculated from a dose-range of &--400 krad and covering a DNA molecular weight range of 2 X 10(7)-1.4 X 10(5). There is a considerable difference in the efficiency of the formation of single-strand breaks in DNA irradiated as isolated chromatin compared with chromatin irradiated in whole cells before isolation. For isolated chromatin, values of 6 dV per break have been calculated compared with about 80 eV per break for chromatin irradiated in whole cells, which suggest a large contribution from indirect action by aqueous radicals in isolated chromatin.  相似文献   

17.
Cells permeable to deoxyribonucleoside triphosphate were prepared from Micrococcus radiodurans, and DNA synthesis and rejoining of strand scissions induced by γ-rays were investigated. DNA synthesis was stimulated by ATP at an optimal concentration of 1 mM. This reaction requires four deoxyribonucleoside triphosphates and MgCl2. NAD inhibited the reaction, but no rejoining of primer DNA was observed. Even in the presence of NAD, DNA which was synthesized in the unirradiated permeable cells had a peak molecular weight of only 1.3 · 106.DNA synthesis was stimulated by irradiation of the permeable cells with γ-rays, but this stimulatory effect was eliminated by the addition of NAD. Both primer and synthesized DNA in the irradiated permeable cells were rejoined in vitro in the presence of NAD and deoxyribonucleoside triphosphates, while those in the unirradiated permeable cells were not rejoined.  相似文献   

18.
The state of the structural integrity of the DNA from mouse myocardial cells has been investigated by utilizing both CsCl density gradient sedimentation and digestion by S1 endonuclease from Aspergillusorzae. The DNA from myocardial cells of young mice sedimented in a narrow peak at the expected density of 1.701 g/cm3, while the DNA from the heart cells of senescent mice became broadly distributed in CsCl gradients, banding even more multimodally in alkaline sucrose gradients. This mode of sedimentation indicates that old mouse DNA becomes partially fragmented. When the native DNA of myocardial cells from 6, 20 and 30 month old mice was treated with single-strand specific S1 endonuclease, it was the DNA from the senescent mice that showed a progressive increase in sensitivity to digestion by the enzyme. The results indicate that the heart DNA of aging mice develops single-stranded gaps in addition to a breakdown into differently sized fragments.  相似文献   

19.
Embryonic stem cells (ESCs) are the progenitors of all adult cells; consequently, genomic abnormalities in them may be catastrophic for the developing organism. ESCs are characterized by high proliferation activity and do not stop in checkpoints upon DNA-damage executing only G2/M delay after DNA damage. ATM and ATR kinases are key sensors of double-strand DNA breaks and activate downstream signaling pathways involving checkpoints, DNA repair, and apoptosis. We examined activation of ATM/ATR signaling in human ESCs and revealed that irradiation induced ATM, ATR, and Chk2 phosphorylation, and γH2AX foci formation and their colocalization with 53BP1 and Rad51 proteins. Interestingly, human ESCs exhibit noninduced γH2AX foci colocalized with Rad51 and marking single-strand DNA breaks. Next, we revealed the significant contribution of ATM, Chk1, and Chk2 kinases to G2/M block after irradiation and ATM-dependent activation (phosphorylation) of p53 in human ESCs. However, p53 activation and subsequent induction of p21 Waf1 gene expression after DNA damage do not result in p21Waf1 protein accumulation due to its proteasomal degradation.  相似文献   

20.
Escherichia coli K-12 cells incubated in buffer can repair most of their X-ray-induced DNA single-strand breaks, but additional single-strand breaks are repaired when the cells are incubated in growth medium. While the radC102 mutant was proficient at repairing DNA single-strand breaks in buffer (polA-dependent repair), it was partially deficient in repairing the additional single-strand breaks (or alkali-labile lesions) that the wild-type strain can repair in growth medium (recA-dependent repair), and this repair deficiency correlated with the X-ray survival deficiency of the radC strain. In studies using neutral sucrose gradients, the radC strain consistently showed a small deficiency in rejoining X-ray-induced DNA double-strand breaks, and it was deficient in restoring the normal sedimentation characteristics of the repaired DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号