首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of vitamin A deficiency onN-linked oligosaccharides of membrane glycoproteins was studied in rat liver in order to evaluate the suggested role of retinol in proteinN-glycosylation. First, oligosaccharides of newly synthesized glycoproteins from rough endoplasmic reticulum of vitamin A deficient liver were compared with that of pair-fed controls. Oligosaccharides were metabolically labelled withd-[2-3H]mannose, released from the glycoproteins with endoglycosidase H, purified by reversed phase HPLC and ion exchange chromatography, and were reduced with sodium borohydride. HPLC fractionation of the oligosaccharide alditols showed that the glycoproteins carried mainly four oligosaccharide species, Glc1Man9GlcNAc2, Man9GlcNAc2, Man8GlcNAc2 and Man7GlcNAc2, in identical relative amounts in the vitamin A deficient and the control tissue. In particular, no increase in the proportion of short chain oligosaccharides was noted in vitamin A deficient liver. Second, the number ofN-linked oligosaccharides was estimated in dipeptidylpeptidase IV (DPP IV), a major glycoprotein constituent of the hepatic plasma membrane, comparing the newly synthesized glycoprotein from rough endoplasmic reticulum and the mature form of DPP IV from the plasma membrane. No evidence was obtained that retinol deficiency caused incomplete glycosylation of this membrane glycoprotein. From these data, the suggested role of retinol as a cofactor involved in the synthesis ofN-linked oligosaccharides of glycoproteins must be questioned.Abbreviations DolP Dolichyl phosphate - DolPP dolichyl pyrophosphoryl - RetPMan retinyl phosphate mannose - DPP IV dipeptidyl peptidase IV (EC 3.4.14.5) - endo H endo--N-acetylglucosaminidase H (EC 3.2.1.96) - endo F endo--N-acetylglucosaminidase F (EC 3.2.1.96) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

2.
Asparagine-linked oligosaccharides present on hen egg-yolk immunoglobulin, termed IgY, were liberated from the protein by hydrazinolysis. AfterN-acetylation, the oligosaccharides were labelled with a UV-absorbing compound,p-aminobenzoic acid ethyl ester (ABEE). The ABEE-derivatized oligosaccharides were fractionated by anion exchange, normal phase and reversed phase HPLC, and their structures were determined by a combination of sugar composition analysis, methylation analysis, negative ion FAB-MS, 500 MHz1H-NMR and sequential exoglycosidase digestions. IgY contained monoglucosylated oligomannose type oligosaccharides with structures of Glc1-3Man7–9-GlcNAc-GlcNAc, oligomannose type oligosaccharides with the size range of Man5–9GlcNAc-GlcNAc, and biantennary complex type oligosaccharides with core region structure of Man1-6(±GlcNAc1-4)(Man1-3)Man1-4GlcNAc1-4(±Fuc1-6)GlcNAc. The glucosylated oligosaccharides, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, have not previously been reported in mature glycoproteins from any source.Abbreviations IgG, IgM, IgD, IgE, and IgA immunoglobulin G, M, D, E, and A, respectively - IgY egg-yolk antibody - ABEE p-aminobenzoic acid ethyl ester - HPLC high performance liquid chromatography - FAB-MS fast atom bombardment mass spectrometry - Hex hexose - HexNAc N-acetylhexosamine - hCG human chorionic gonadotropsin  相似文献   

3.
A major puzzle is: are all glycoproteins routed through the ER calnexin pathway irrespective of whether this is required for their correct folding? Calnexin recognizes the terminal Glcα1-3Manα linkage, formed by trimming of the Glcα1-2Glcα1-3Glcα1-3Manα (Glc3Man) unit in Glc3Man9GlcNAc2. Different conformations of this unit have been reported. We have addressed this problem by studying the conformation of a series of N-glycans; i.e. Glc3ManOMe, Glc3Man4,5,7GlcNAc2 and Glc1Man9GlcNAc2 using 2D NMR NOESY, ROESY, T-ROESY and residual dipolar coupling experiments in a range of solvents, along with solution molecular dynamics simulations of Glc3ManOMe. Our results show a single conformation for the Glcα1-2Glcα and Glcα1-3Glcα linkages, and a major (65%) and a minor (30%) conformer for the Glcα1-3Manα linkage. Modeling of the binding of Glc1Man9GlcNAc2 to calnexin suggests that it is the minor conformer that is recognized by calnexin. This may be one of the mechanisms for controlling the rate of recruitment of proteins into the calnexin/calreticulin chaperone system and enabling proteins that do not require such assistance for folding to bypass the system. This is the first time evidence has been presented on glycoprotein folding that suggests the process may be optimized to balance the chaperone-assisted and chaperone-independent pathways.  相似文献   

4.
The recombinant catalytic α-subunit of N-glycan processing glucosidase II from Schizosaccharomyces pombe (SpGIIα) was produced in Escherichia coli. The recombinant SpGIIα exhibited quite low stability, with a reduction in activity to <40% after 2-days preservation at 4 °C, but the presence of 10% (v/v) glycerol prevented this loss of activity. SpGIIα, a member of the glycoside hydrolase family 31 (GH31), displayed the typical substrate specificity of GH31 α-glucosidases. The enzyme hydrolyzed not only α-(1→3)- but also α-(1→2)-, α-(1→4)-, and α-(1→6)-glucosidic linkages, and p-nitrophenyl α-glucoside. SpGIIα displayed most catalytic properties of glucosidase II. Hydrolytic activity of the terminal α-glucosidic residue of Glc2Man3-Dansyl was faster than that of Glc1Man3-Dansyl. This catalytic α-subunit also removed terminal glucose residues from native N-glycans (Glc2Man9GlcNAc2 and Glc1Man9GlcNAc2) although the activity was low.  相似文献   

5.
N-Glycosylation of eukaryotic membrane proteins is a co-translational event that occurs in the lumen of the endoplasmic reticulum (ER). This process is catalyzed by a membrane-associated oligosaccharyl transferase (OST) complex that transfers a preformed oligosaccharide (Glc3Man9GlcNAc2-) to an asparagine (Asn) side-chain acceptor located within the sequon (-Asn-X-Ser/Thr-). Scanning N-glycosylation mutagenesis experiments, where novel acceptor sites are introduced at unique sites within membrane proteins, have shown that the acceptor sites must be located a minimum distance (12–14 amino acids) away from the luminal membrane surface of the ER in order to be efficiently N-glycosylated. Scanning N-glycosylation mutagenesis can therefore be used to determine membrane protein topology and it can also serve as a molecular ruler to define the ends of transmembrane (TM) segments. Furthermore, since N-glycosylation is a co-translational event, N-glycosylation mutagenesis can be used to identify folding intermediates in membrane proteins that may expose segments to the ER lumen transiently during biosynthesis.  相似文献   

6.
The presence of a glycan of the same molecular size as the lipid linked precursor oligosaccharide (Glc3Man9GlcNAc2) of the N-linked protein glycosylation pathway in mammalian cells has been detected in a glycolipid fraction of cultured Drosophila melanogaster cells. Oligosaccharide sequencing studies were consistent with the existence of a glucosylated high mannose containing structure, which may be the common precursor for N-linked protein glycosylation in insect cells.  相似文献   

7.
Structures of the Asn linked oligosaccharides of quail egg-yolk immunoglobulin (IgY) were determined in this study. Asn linked oligosaccharides were cleaved from IgY by hydrazinolysis and labelled withp-aminobenzoic acid ethyl ester (ABEE) afterN-acetylation. The ABEE labelled oligosaccharides were then fractionated by a combination of Concanavalin A-agarose column chromatography and anion exchange, normal phase and reversed phase HPLC before their structures were determined by sequential exoglycosidase digestion, methylation analysis, HPLC, and 500 MHz1H-NMR spectroscopy. Quail IgY contained only neutral oligosaccharides of the following categories: the glucosylated oligomannose type (0.6%, Glc1-3Glc1-3Man9GlcNAc2; 35.6%, Glc1-3Man7–9GlcNAc2). oligomannose type (15.0%, with the structure Man5–9GlcNAc2) and biantennary complex type with core structures of-Man1-3(-Man1-6)Man1-4GlcNAc1-4GlcNAc (9.9%),-Man1-3(GlcNAc1-4)(-Man1-6)Man1-4GlcNAc1-4GlcNAc (25.1%) and-Man1-3(GlcNAc1-4)(-Man1-6)Man1-4GlcNAc1-4(Fuc1-6)GlcNAc (11.4%). Although never found in mammalian proteins, glucosylated oligosaccharides (Glc1Man7–9GlcNAc2) have been located previously in hen IgY.Abbreviations IgG, IgM, IgA, IgY immunoglobulin G, M, A and Y, respectively - ABEE p-aminobenzoic acid ethyl ester  相似文献   

8.
Glucosidase II (GII) plays a key role in glycoprotein biogenesis in the endoplasmic reticulum (ER). It is responsible for the sequential removal of the two innermost glucose residues from the glycan (Glc3Man9GlcNAc2) transferred to Asn residues in proteins. GII participates in the calnexin/calreticulin cycle; it removes the single glucose unit added to folding intermediates and misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. GII is a heterodimer whose α subunit (GIIα) bears the glycosyl hydrolase active site, whereas its β subunit (GIIβ) role is controversial and has been reported to be involved in GIIα ER retention and folding. Here, we report that in the absence of GIIβ, the catalytic subunit GIIα of the fission yeast Schizosaccharomyces pombe (an organism displaying a glycoprotein folding quality control mechanism similar to that occurring in mammalian cells) folds to an active conformation able to hydrolyze p-nitrophenyl α-d-glucopyranoside. However, the heterodimer is required to efficiently deglucosylate the physiological substrates Glc2Man9GlcNAc2 (G2M9) and Glc1Man9GlcNAc2 (G1M9). The interaction of the mannose 6-phosphate receptor homologous domain present in GIIβ and mannoses in the B and/or C arms of the glycans mediates glycan hydrolysis enhancement. We present evidence that also in mammalian cells GIIβ modulates G2M9 and G1M9 trimming.  相似文献   

9.
Mucuna pruriens seeds are used in some countries as a human prophylactic oral anti-snake remedy. Aqueous extracts of M. pruriens seeds possess in vivo activity against cobra and viper venoms, and protect mice against Echis carinatus venom. It was recently demonstrated that the seed immunogen generating the antibody that cross-reacts with the venom proteins is a multiform glycoprotein (gpMuc), and the immunogenic properties of gpMuc seemed to mainly reside in its glycan chains. In the present study, gpMuc was found to contain only N-glycans. Part of the N-glycans could be released with peptide-(N 4-(N-acetyl-β -glucosaminyl)asparagine amidase F (PNGase F-sensitive N-glycans); the PNGase F-resistant N-glycans were PNGase A-sensitive. The oligosaccharides released were analyzed by a combination of MALDI-TOF mass spectrometry, HPLC profiling of 2-aminobenzamide-labelled derivatives and 1H NMR spectroscopy. The PNGase F-sensitive N-glycans comprised a mixture of oligomannose-type structures ranging from Man5GlcNAc2 to Man9GlcNAc2, and two xylosylated structures, Xyl1Man3GlcNAc2 and Xyl1Man4GlcNAc2. The PNGase A-sensitive N-glycans, containing (α 1-3)-linked fucose, were identified as Fuc1Xyl1Man2GlcNAc2 and Fuc1Xyl1Man3GlcNAc2. In view of the determined N-glycan ensemble, the immunoreactivity of gpMuc was ascribed to the presence of core (β 1-2)-linked xylose- and core α (1-3)-linked fucose-modified N-glycan chains.  相似文献   

10.

Background

During mammalian protein N-glycosylation, 20% of all dolichol-linked oligosaccharides (LLO) appear as free oligosaccharides (fOS) bearing the di-N-acetylchitobiose (fOSGN2), or a single N-acetylglucosamine (fOSGN), moiety at their reducing termini. After sequential trimming by cytosolic endo β-N-acetylglucosaminidase (ENGase) and Man2c1 mannosidase, cytosolic fOS are transported into lysosomes. Why mammalian cells generate such large quantities of fOS remains unexplored, but fOSGN2 could be liberated from LLO by oligosaccharyltransferase, or from glycoproteins by NGLY1-encoded Peptide-N-Glycanase (PNGase). Also, in addition to converting fOSGN2 to fOSGN, the ENGASE-encoded cytosolic ENGase of poorly defined function could potentially deglycosylate glycoproteins. Here, the roles of Ngly1p and Engase1p during fOS metabolism were investigated in HepG2 cells.

Methods/Principal Findings

During metabolic radiolabeling and chase incubations, RNAi-mediated Engase1p down regulation delays fOSGN2-to-fOSGN conversion, and it is shown that Engase1p and Man2c1p are necessary for efficient clearance of cytosolic fOS into lysosomes. Saccharomyces cerevisiae does not possess ENGase activity and expression of human Engase1p in the png1Δ deletion mutant, in which fOS are reduced by over 98%, partially restored fOS generation. In metabolically radiolabeled HepG2 cells evidence was obtained for a small but significant Engase1p-mediated generation of fOS in 1 h chase but not 30 min pulse incubations. Ngly1p down regulation revealed an Ngly1p-independent fOSGN2 pool comprising mainly Man8GlcNAc2, corresponding to ∼70% of total fOS, and an Ngly1p-dependent fOSGN2 pool enriched in Glc1Man9GlcNAc2 and Man9GlcNAc2 that corresponds to ∼30% of total fOS.

Conclusions/Significance

As the generation of the bulk of fOS is unaffected by co-down regulation of Ngly1p and Engase1p, alternative quantitatively important mechanisms must underlie the liberation of these fOS from either LLO or glycoproteins during protein N-glycosylation. The fully mannosylated structures that occur in the Ngly1p-dependent fOSGN2 pool indicate an ERAD process that does not require N-glycan trimming.  相似文献   

11.
The glycosylation pathways of several eukaryotic protein expression hosts are being engineered to enable the production of therapeutic glycoproteins with humanized application-customized glycan structures. In several expression hosts, this has been quite successful, but one caveat is that the new N-glycan structures inadvertently might be substrates for one or more of the multitude of endogenous glycosyltransferases in such heterologous background. This then results in the formation of novel, undesired glycan structures, which often remain insufficiently characterized. When expressing mouse interleukin-22 in a Pichia pastoris (syn. Komagataella phaffii) GlycoSwitchM5 strain, which had been optimized to produce Man5GlcNAc2N-glycans, glycan profiling revealed two major species: Man5GlcNAc2 and an unexpected, partially α-mannosidase-resistant structure. A detailed structural analysis using exoglycosidase sequencing, mass spectrometry, linkage analysis, and nuclear magnetic resonance revealed that this novel glycan was Man5GlcNAc2 modified with a Glcα-1,2-Manβ-1,2-Manβ-1,3-Glcα-1,3-R tetrasaccharide. Expression of a Golgi-targeted GlcNAc transferase-I strongly inhibited the formation of this novel modification, resulting in more homogeneous modification with the targeted GlcNAcMan5GlcNAc2 structure. Our findings reinforce accumulating evidence that robustly customizing the N-glycosylation pathway in P. pastoris to produce particular human-type structures is still an incompletely solved synthetic biology challenge, which will require further innovation to enable safe glycoprotein pharmaceutical production.  相似文献   

12.
Recently, asparagine-linked oligosaccharides (N-glycans) have been found to play a pivotal role in glycoprotein quality control in the endoplasmic reticulum (ER). In order to screen proteins interacting with N-glycans, we developed affinity chromatography by conjugating synthetic N-glycans on sepharose beads. Using the affinity beads with the dodecasaccharide Glc1Man9GlcNAc2, one structure of the N-glycans, a 75-kDa protein, was isolated from the membranous fraction including the ER in Aspergillus oryzae. By LC-MS/MS analysis using the A. oryzae genome database, the protein was identified as one (AO090009000313) sharing similarities with calnexin. Further affinity chromatographic experiments suggested that the protein specifically bound to Glc1Man9GlcNAc2, similarly to mammalian calnexins. We designated the gene AoclxA and expressed it as a fusion gene with egfp, revealing the ER localization of the AoClxA protein. Our results suggest that our affinity chromatography with synthetic N-glycans might help in biological analysis of glycoprotein quality control in the ER.  相似文献   

13.
Human chorionic gonadotropin (hCG) is a heterodimeric, placental glycoprotein hormone involved in the maintenance of the corpus luteum during the first trimester of pregnancy. Biologically active hCG has been successfully expressed in the yeast Pichia pastoris (phCG). In the context of structural studies and therapeutic applications of phCG, detailed information about its glycosylation pattern is a prerequisite. To this end N-glycans were released with peptide-N 4-(N-acetyl-β-glucosaminyl)asparagine amidase F and fractionated via anion-exchange chromatography (Resource Q) yielding both neutral (80%) and charged, phosphate-containing (20%) high-mannose-type structures. Subfractionations were carried out via normal phase (Lichrosorb-NH2) and high-pH anion-exchange (CarboPac PA-1) chromatography. Structural analyses of the released N-glycans were carried out by using HPLC profiling of fluorescent 2-aminobenzamide derivatives, MALDI-TOF mass spectrometry, and 500-MHz 1H-NMR spectroscopy. Detailed neutral oligosaccharide structures, in the range of Man8GlcNAc2 to Man11GlcNAc2 including molecular isomers, could be established, and structures up to Man15GlcNAc2 were indicated. Phosphate-containing oligosaccharides ranged from Man9 PGlcNAc2 to Man13 PGlcNAc2. Mannosyl O-glycans were not detected. Profiling studies carried out on different production batches showed that the oligosaccharide structures are similar, but their relative amounts varied with the culturing media.  相似文献   

14.
Structures of oligosaccharides fromAspergillus niger -d-galactosidase [EC 3.2.1.22] were studied. Purified -d-galactosidase was treated withN-glycosidase F, and six kinds of oligosaccharides were isolated by gel chromatography and anion-exchange chromatography. The structures of the oligosaccharides were determined by1H-NMR and compositional analysis to be Man5GlcNAc2, Man6GlcNAc2, Man9GlcNAc2, GlcMan9GlcNAc2, GalMan4GlcNAc2 and GalMan5GlcNAc2. From mild acid hydrolysis, methylation analysis and ROESY spectral analysis, it was ascertained that the galactosyl residue in two oligosaccharides was in the furanose form and was bound to mannose at the nonreducing end with an 1–2 linkage (GalfMan4GlcNAc2 and GalfMan5GlcNAc2).  相似文献   

15.
Gp273, a glycoprotein of the egg extracellular coats of the mollusc bivalve Unio elongatulus, is the ligand molecule for sperm-egg interaction during fertilization. In this study we have analyzed the N-glycans from gp273. N-glycans were enzymatically released by PNGase F digestion and their structures were elucidated by normal phase HPLC profiling of the 2-aminobenzamide-labeled N-glycans, MALDI-TOF mass spectrometry and 1H NMR spectroscopy. The combined data revealed that the N-glycans of gp273 consist of Glc1Man9GlcNAc2 and Man9GlcNAc2. In Unio, the presence of noncomplex-type N-glycans parallels the inefficacy of these glycans in the ligand function. Their role in the protection of the polypeptide chain from proteolytic attack is suggested by the electrophoretic patterns obtained after enzymatic digestion of the native and the N-deglycosylated protein. These results are discussed in the light of the evolution of the recognition and adhesion properties of oligosaccharide chains in the fertilization process.  相似文献   

16.
A simple method for the preparative resolution of three Man3GlcNAc2 isomers called Ia, Ib and II has been designed. It consists mainly of the use of concanavalin A-Sepharose which allowed the total purification of Man3GlcNAc2-Ia, and then of anion-exchange resin in borate buffer-gradient to separate the Ib and II isomers. The purity of each oligosaccharide was checked by two HPLC methods. The use of these oligosaccharides for different analytical and biosynthetic purposes is discussed, and the unexpected resistance of one of the Man3GlcNAc2 alditols to the action of endo--N-acetylglucosaminidase H is noted.  相似文献   

17.
-Mannosidase activities towards high-mannose oligosaccharides were examined with a detergent-solubilized microsomal preparation from a filamentous fungus, Aspergillus oryzae. In the enzymatic reaction, the pyridylaminated substrate Man9GlcNAc2-PA was trimmed to Man8GlcNAc2-PA which lacked one -1,2-mannose residue at the nonreducing terminus of the middle branch (Man8B isomer), and this mannooligosaccharide remained predominant through the overall reaction. Trimming was optimal at pH 7.0 in PIPES buffer in the presence of calcium ion and kifunensine was inhibitory with IC50 below 0.1[emsp4 ]M. These results suggest that the activity is the same type as was previously observed with human and yeast endoplasmic reticulum (ER) -mannosidases. Considering these results together with previous data on a fungal -1,2-mannosidase that trimmed Man9GlcNAc2 to Man5GlcNAc2 (Ichishima, E., et al. (1999) bit>Biochem J, 339: 589–597), the filamentous fungi appear to have two types of -1,2-mannosidases, each of which acts differently on N-linked mannooligosaccharides.  相似文献   

18.
The structures of N-linked sugar chains of the storage glycoproteins in mature pea seeds have been estimated. Nine pyridylaminated (PA-) N-linked sugar chains were derived and purified from the hydrazinolysate of the storage glycoproteins by reversed-phase HPLC and size-fractionation HPLC. The structures of the PA-sugar chains purified were first identified by two-dimensional PA-sugar chain mapping, considering the data of sugar composition analysis or sequential exoglycosidase digestions. The deduced structures were further analyzed by IS-MS/MS analysis. Every relevant fragment ion derived from all PA-sugar chains could be assigned on the basis of deduced structures. The estimated nine structures fell into two categories; the first was a typical oligomannose type (Man8-3GlcNAc2; 77.7%) which can be hydrolyzed by endo-β-N-acetylglucosaminidase PS [Y. Kimura et al., Biosci. Biotech. Biochem., 60, 228–232 (1996)], the second was a xylose-containing type (Man4-3Xyl1GlcNAc2, Man3Fuc1Xyl1GlcNAc2; 22.3%). Among these structures, Man8GlcNAc2 (19.7%), Man6GlcNAc2 (24.7%), and Man3Fuc1Xyl1GlcNAc2 (18.8%) were the dominant structures.  相似文献   

19.
To further evaluate the role of Rft1 in the transbilayer movement of Man5GlcNAc2-P-P-dolichol (M5-DLO), a series of experiments was conducted with intact cells and sealed microsomal vesicles. First, an unexpectedly large accumulation (37-fold) of M5-DLO was observed in Rft1-depleted cells (YG1137) relative to Glc3Man9GlcNAc2-P-P-Dol in wild type (SS328) cells when glycolipid levels were compared by fluorophore-assisted carbohydrate electrophoresis analysis. When sealed microsomes from wild type cells and cells depleted of Rft1 were incubated with GDP-[3H]mannose or UDP-[3H]GlcNAc in the presence of unlabeled GDP-Man, no difference was observed in the rate of synthesis of [3H]Man9GlcNAc2-P-P-dolichol or Man9[3H]GlcNAc2-P-P-dolichol, respectively. In addition, no difference was seen in the level of M5-DLO flippase activity in sealed wild type and Rft1-depleted microsomal vesicles when the activity was assessed by the transport of GlcNAc2-P-P-Dol15, a water-soluble analogue. The entry of the analogue into the lumenal compartment was confirmed by demonstrating that [3H]chitobiosyl units were transferred to endogenous peptide acceptors via the yeast oligosaccharyltransferase when sealed vesicles were incubated with [3H]GlcNAc2-P-P-Dol15 in the presence of an exogenously supplied acceptor peptide. In addition, several enzymes involved in Dol-P and lipid intermediate biosynthesis were found to be up-regulated in Rft1-depleted cells. All of these results indicate that although Rft1 may play a critical role in vivo, depletion of this protein does not impair the transbilayer movement of M5-DLO in sealed microsomal fractions prepared from disrupted cells.The lipid-linked oligosaccharyl donor, Glc3Man9GlcNAc2-P-P-dolichol (mature DLO2), in protein N-glycosylation is formed in two stages in the endoplasmic reticulum (ER) (14). In the first stage the lipid intermediates Man-P-dolichol (Man-P-Dol), Glc-P-dolichol (Glc-P-Dol), and Man5GlcNAc2-P-P-dolichol (M5-DLO) are formed on the cytoplasmic leaflet of the ER with GDP-Man, UDP-Glc, and UDP-GlcNAc, serving as the glycosyl donors. The biosynthesis of the mature DLO is completed with the addition of four more mannosyl units and the formation of the triglucosyl cap in the second stage after the transbilayer movement of Man-P-Dol, Glc-P-Dol, and M5-DLO to the lumenal monolayer. Although many details about the genetics, enzymology, and regulation of these 14 glycosylation reactions are known, there is virtually nothing known about the ER proteins that are presumably required to allow the lipid-bound hydrophilic glycosyl groups to traverse the hydrophobic core of the ER bilayer.The PER5/RFT1 gene was originally identified by Walter and coworkers (5) as a gene that was up-regulated by the unfolded protein response and required for efficient protein N-glycosylation in yeast. In a related study (6), the rft1 mutation was shown to be inscrutably suppressed by p53, a soluble protein that has not been found in yeast.Helenius et al. (7) have reported evidence from metabolic labeling experiments indicating that the RFT1 gene in Saccharomyces cerevisiae encodes a protein that is involved in the flipping of M5-DLO in vivo. More recently, a point mutation in the human orthologue of the RFT1 gene has been shown to result in the accumulation of M5-DLO in fibroblasts from a patient containing an R67C amino acid substitution (8). Although these results implicate Rft1 in the transverse diffusion of M5-DLO, the topological orientation of the accumulated intermediate in the mutant cells and the precise function of the protein in the transbilayer movement of the glycolipid intermediate remain to be defined.Two reports (9, 10) have demonstrated that Rft1 is not required for the “flipping” of M5-DLO in a reconstituted proteoliposomal system, raising questions about the precise relationship between Rft1 and the M5-DLO flippase. A more recent corroborative study further characterizing the reconstituted flippase activity indicates that the in vitro assay exhibits an impressive specificity for M5-DLO (11).The current study was conducted to further explore the possible role of Rft1 in the transbilayer movement of M5-DLO in the ER. Our results establish the accumulation of chemical amounts of M5-DLO in the Rft1-depleted cells by FACE analysis, supporting the results obtained by metabolic labeling in the yeast (7) and human (8) mutant cells. However, a series of experiments conducted with sealed microsomal vesicles indicate that, although Rft1 may be required to overcome a biophysical constraint for the flipping of M5-DLO in vivo, its depletion does not hinder the flipping of M5-DLO in sealed microsomal preparations in vitro. The resemblance of these results to the loss of the requirement for the Lec35 gene (12) in the transverse diffusion and/or utilization of Man-P-Dol and Glc-P-Dol for lipid intermediate biosynthesis during disruption of intact cells is discussed.  相似文献   

20.
Studies reported in the preceding paper (Trowbridge and Hyman, 1979) have demonstrated that Thy-1? mutant lymphoma cells of the class E complementation group lack the normal high molecular weight lipid-linked oligosaccharide, but instead accumulate two smaller species termed I and II. This paper reports studies which elucidate the structures of lipid-linked oligosaccharides I and II. By subjecting oligosaccharides radiolabeled with 3H-mannose, 3H-glucose or 3H-glucosamine to methylation, acetolysis, periodate oxidation and exoglycosidase digestion, the structures were shown to be: where R = GlcNac B1,4(3) GlcNAc. A comparison of I and II with lipid-linked oligosaccharides from normal Chinese hamster ovary cells indicates that both I and II are normal biosynthetic intermediates. On the basis of these data we suggest that the defect in the class E mutant cells is the lack of an α1,3 mannosyltransferase involved in the conversion of the Man5GlcNAc2 lipid-linked oligosaccharide to the Man6GlcNAc2 intermediate. It is also impossible that the same enzyme is involved in conversion of the Glc3Man5GlcNAc2 lipid-linked oligosaccharide to Glc3Man6GlcNAc2. The latter reaction, however, has not yet been demonstrated in normal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号