首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
In the vertebrate central nervous system (CNS), mutual antagonism between posteriorly expressed Gbx2 and anteriorly expressed Otx2 positions the midbrain/hindbrain boundary (MHB), but does not induce MHB organizer genes such as En, Pax2/5/8 and Wnt1. In the CNS of the cephalochordate amphioxus, Otx is also expressed anteriorly, but En, Pax2/5/8 and Wnt1 are not expressed near the caudal limit of Otx, raising questions about the existence of an MHB organizer in amphioxus. To investigate the evolutionary origins of the MHB, we cloned the single amphioxus Gbx gene. Fluorescence in situ hybridization showed that, as in vertebrates, amphioxus Gbx and the Hox cluster are on the same chromosome. From analysis of linked genes, we argue that during evolution a single ancestral Gbx gene duplicated fourfold in vertebrates, with subsequent loss of two duplicates. Amphioxus Gbx is expressed in all germ layers in the posterior 75% of the embryo, and in the CNS, the Gbx and Otx domains abut at the boundary between the cerebral vesicle (forebrain/midbrain) and the hindbrain. Thus, the genetic machinery to position the MHB was present in the protochordate ancestors of the vertebrates, but is insufficient for induction of organizer genes. Comparison with hemichordates suggests that anterior Otx and posterior Gbx domains were probably overlapping in the ancestral deuterostome and came to abut at the MHB early in the chordate lineage before MHB organizer properties evolved.  相似文献   

4.
The vertebrate brain is regionalized during development into forebrain, midbrain and hindbrain. Fibroblast growth factor 8 (FGF8) is expressed in the midbrain/hindbrain boundary (MHB) and functions as an organizer molecule. Previous studies demonstrated that the brain of basal chordates or ascidians is also regionalized at least into fore/midbrain and hindbrain. To better understand the ascidian brain regionalization, the expression of the Ciona Fgf8/17/18 gene was compared with the expression of Otx, En and Pax2/5/8 genes. The expression pattern of these genes resembled that of the genes in the vertebrate forebrain, midbrain, MHB and hindbrain, each of those domains being characterized by sole or combined expression of Otx, Pax2/5/8, En and Fgf8/17/18. In addition, the putative forebrain and midbrain expressed Ci-FgfL and Ci-Fgf9/16/20, respectively. Therefore, the regionalization of the ascidian larval central nervous system was also marked by the expression of Fgf genes.  相似文献   

5.
The vertebrate brain is regionalized during development into forebrain, midbrain and hindbrain. Fibroblast growth factor 8 (FGF8) is expressed in the midbrain/hindbrain boundary (MHB) and functions as an organizer molecule. Previous studies demonstrated that the brain of basal chordates or ascidians is also regionalized at least into fore/midbrain and hindbrain. To better understand the ascidian brain regionalization, the expression of the Ciona Fgf8/17/18 gene was compared with the expression of Otx, En and Pax2/5/8 genes. The expression pattern of these genes resembled that of the genes in the vertebrate forebrain, midbrain, MHB and hindbrain, each of those domains being characterized by sole or combined expression of Otx, Pax2/5/8, En and Fgf8/17/18. In addition, the putative forebrain and midbrain expressed Ci-FgfL and Ci-Fgf9/16/20, respectively. Therefore, the regionalization of the ascidian larval central nervous system was also marked by the expression of Fgf genes.  相似文献   

6.

Background

Gene duplication provides opportunities for lineage diversification and evolution of developmental novelties. Duplicated genes generally either disappear by accumulation of mutations (nonfunctionalization), or are preserved either by the origin of positively selected functions in one or both duplicates (neofunctionalization), or by the partitioning of original gene subfunctions between the duplicates (subfunctionalization). The Pax2/5/8 family of important developmental regulators has undergone parallel expansion among chordate groups. After the divergence of urochordate and vertebrate lineages, two rounds of independent gene duplications resulted in the Pax2, Pax5, and Pax8 genes of most vertebrates (the sister group of the urochordates), and an additional duplication provided the pax2a and pax2b duplicates in teleost fish. Separate from the vertebrate genome expansions, a duplication also created two Pax2/5/8 genes in the common ancestor of ascidian and larvacean urochordates.

Results

To better understand mechanisms underlying the evolution of duplicated genes, we investigated, in the larvacean urochordate Oikopleura dioica, the embryonic gene expression patterns of Pax2/5/8 paralogs. We compared the larvacean and ascidian expression patterns to infer modular subfunctions present in the single pre-duplication Pax2/5/8 gene of stem urochordates, and we compared vertebrate and urochordate expression to infer the suite of Pax2/5/8 gene subfunctions in the common ancestor of olfactores (vertebrates + urochordates). Expression pattern differences of larvacean and ascidian Pax2/5/8 orthologs in the endostyle, pharynx and hindgut suggest that some ancestral gene functions have been partitioned differently to the duplicates in the two urochordate lineages. Novel expression in the larvacean heart may have resulted from the neofunctionalization of a Pax2/5/8 gene in the urochordates. Expression of larvacean Pax2/5/8 in the endostyle, in sites of epithelial remodeling, and in sensory tissues evokes like functions of Pax2, Pax5 and Pax8 in vertebrate embryos, and may indicate ancient origins for these functions in the chordate common ancestor.

Conclusion

Comparative analysis of expression patterns of chordate Pax2/5/8 duplicates, rooted on the single-copy Pax2/5/8 gene of amphioxus, whose lineage diverged basally among chordates, provides new insights into the evolution and development of the heart, thyroid, pharynx, stomodeum and placodes in chordates; supports the controversial conclusion that the atrial siphon of ascidians and the otic placode in vertebrates are homologous; and backs the notion that Pax2/5/8 functioned in ancestral chordates to engineer epithelial fusions and perforations, including gill slit openings.  相似文献   

7.
The MHB (midbrain-hindbrain boundary) is a key organizing center in the vertebrate brain characterized by highly conserved patterns of gene expression. The evidence for an MHB homolog in protochordates is equivocal, the "neck" region immediately caudal to the sensory vesicle in ascidian larvae being the best accepted candidate. It is argued here that similarities in expression patterns between the MHB and the ascidian neck region are more likely due to the latter being the principal source of neurons in the adult brain, and hence where all the genes involved in patterning the latter will necessarily be expressed. The contrast with amphioxus is exemplified by pax2/5/8, expressed in the neck region in ascidian larvae, but more caudally, along much of the nerve cord in amphioxus. The zone of expression in each case corresponds with that part of the nerve cord ultimately responsible for innervating the adult body, which suggests the spatially restricted MHB-like expression pattern in ascidians is secondarily reduced from a condition more like that in amphioxus. Patterns resembling those of the vertebrate MHB are nevertheless found elsewhere among metazoans. This suggests that, irrespective of its modern function, the MHB marks the site of an organizing center of considerable antiquity. Any explanation for how such a center became incorporated into the chordate brain must take account of the dorsoventral inversion chordates have experienced relative to other metazoans. Especially relevant here is a concept developed by Claus Nielsen, in which the brain is derived from a neural center located behind the ancestral mouth. While this is somewhat counterintuitive, it accords well with emerging molecular data.  相似文献   

8.
9.
Evolutionary conservation of gene structures of the Pax1/9 gene family   总被引:1,自引:0,他引:1  
Based on amino acid sequence comparisons, Pax1 and Pax9 genes are considered to form a subgroup of vertebrate Pax genes. We show here that the gene structures of mouse Pax1, human PAX9 genes are similar to that of a single Pax1/9 related gene in Branchiostoma lanceolatum, AmphiPax1. This supports the hypothesis that Pax1 and Pax9 genes were derived from a single ancestral gene. A refined protein alignment of AmphiPax1, mouse Pax1 and human PAX9 proteins based on the determined exon boundaries indicates that sequence divergence at the C-termini may be related to the unique functions of the Pax1 and Pax9 genes in vertebrates. AmphiPax1 is expressed in adult amphioxus in the pharyngeal endoderm.  相似文献   

10.
In non-vertebrate chordates, central nervous system (CNS) development has been studied in only two taxa, the Cephalochordata and a single Class (Ascidiacea) of the morphologically diverse Urochordata. To understand development and molecular regionalization of the brain in a different deeply diverging chordate clade, we isolated and determined the expression patterns of orthologs of vertebrate CNS markers (otxa, otxb, otxc, pax6, pax2/5/8a, pax2/5/8b, engrailed, and hox1) in Oikopleura dioica (Subphylum Urochordata, Class Larvacea). The three Oikopleura otx genes are expressed similarly to vertebrate Otx paralogs, demonstrating that trans-homologs converged on similar evolutionary outcomes by independent neo- or subfunctionalization processes during the evolution of the two taxa. This work revealed that the Oikopleura CNS possesses homologs of the vertebrate forebrain, hindbrain, and spinal cord, but not the midbrain. Comparing larvacean gene expression patterns to published results in ascidians disclosed important developmental differences and similarities that suggest mechanisms of development likely present in their last common ancestor. In contrast to ascidians, the lack of a radical reorganization of the CNS as larvaceans become adults allows us to relate embryonic gene expression patterns to three subdivisions of the adult anterior brain. Our study of the Oikopleura brain provides new insights into chordate CNS evolution: first, the absence of midbrain is a urochordate synapomorphy and not a peculiarity of ascidians, perhaps resulting from their drastic CNS metamorphosis; second, there is no convincing evidence for a homolog of a midbrain-hindbrain boundary (MHB) organizer in urochordates; and third, the expression pattern of "MHB-genes" in the urochordate hindbrain suggests that they function in the development of specific neurons rather than in an MHB organizer.  相似文献   

11.
The ancestral chordate neural tube had a tripartite structure, comprising anterior, midbrain-hindbrain boundary (MHB) and posterior regions. The most anterior region encompasses both forebrain and midbrain in vertebrates. It is not clear when or how the distinction between these two functionally and developmentally distinct regions arose in evolution. Recently, we reported a mouse PRD-class homeobox gene, Dmbx1, expressed in the presumptive midbrain at early developmental stages, and the hindbrain at later stages, with exclusion from the MHB. This gene provides a route to investigate the evolution of midbrain development. We report the cloning, genomic structure, phylogeny and embryonic expression of Dmbx genes from amphioxus and from Ciona, representing the two most closely related lineages to the vertebrates. Our analyses show that Dmbx genes form a distinct, ancient, homeobox gene family, with highly conserved sequence and genomic organisation, albeit more divergent in Ciona. In amphioxus, no Dmbx expression is observed in the neural tube, supporting previous arguments that the MHB equivalent region has been secondarily modified in evolution. In Ciona, the CiDmbx gene is detected in neural cells caudal to Pax2/5/8-positive cells (MHB homologue), in the Hox-positive region, but, interestingly, not in any cells rostral to them. These results suggest that a midbrain homologue is missing in Ciona, and argue that midbrain development is a novelty that evolved specifically on the vertebrate lineage. We discuss the evolution of midbrain development in relation to the ancestry of the tripartite neural ground plan and the origin of the MHB organiser.  相似文献   

12.
Additional copies of genes resulting from two whole genome duplications at the base of the vertebrates have been suggested as enabling the evolution of vertebrate-specific structures such as neural crest, a midbrain/hindbrain organizer and neurogenic placodes. These structures, however, did not evolve entirely de novo, but arose from tissues already present in an ancestral chordate. This review discusses the evolutionary history of co-option of old genes for new roles in vertebrate development as well as the relative contributions of changes in cis-regulation and in protein structure. Particular examples are the FoxD, FGF8/17/18 and Pax2/5/8 genes. Comparisons with invertebrate chordates (amphioxus and tunicates) paint a complex picture with co-option of genes into new structures occurring both after and before the whole genome duplications. In addition, while cis-regulatory changes are likely of primary importance in evolution of vertebrate-specific structures, changes in protein structure including alternative splicing are non-trivial.  相似文献   

13.
14.
The engrailed genes play roles in the maintenance of segment polarity in a variety of animals and in the establishment and maintenance of the mid-brain/hind-brain boundary (MHB) in vertebrates. We isolated an ascidian engrailed gene and analyzed its expression pattern during early development. Expression begins at the neurula stage and is restricted to two cells within the neuroectoderm. At the tail-bud stage engrailed-expressing cells are in the "neck" region of the neural tube, which has been proposed to be the ascidian equivalent of the MHB. These same cells also express PAX2/5/8. We speculate that a structure equivalent to the MHB existed before the split of the three chordate sub-phyla.  相似文献   

15.
In the invertebrate chordate amphioxus, as in vertebrates, retinoic acid (RA) specifies position along the anterior/posterior axis with elevated RA signaling in the middle third of the endoderm setting the posterior limit of the pharynx. Here we show that AmphiHox1 is also expressed in the middle third of the developing amphioxus endoderm and is activated by RA signaling. Knockdown of AmphiHox1 function with an antisense morpholino oligonucleotide shows that AmphiHox1 mediates the role of RA signaling in setting the posterior limit of the pharynx by repressing expression of pharyngeal markers in the posterior foregut/midgut endoderm. The spatiotemporal expression of these endodermal genes in embryos treated with RA or the RA antagonist BMS009 indicates that Pax1/9, Pitx and Notch are probably more upstream than Otx and Nodal in the hierarchy of genes repressed by RA signaling. This work highlights the potential of amphioxus, a genomically simple, vertebrate-like invertebrate chordate, as a paradigm for understanding gene hierarchies similar to the more complex ones of vertebrates.  相似文献   

16.
Chordate origins of the vertebrate central nervous system.   总被引:6,自引:0,他引:6  
Fine structural, computerized three-dimensional (3D) mapping of cell connectivity in the amphioxus nervous system and comparative molecular genetic studies of amphioxus and tunicates have provided recent insights into the phylogenetic origin of the vertebrate nervous system. The results suggest that several of the genetic mechanisms for establishing and patterning the vertebrate nervous system already operated in the ancestral chordate and that the nerve cord of the proximate invertebrate ancestor of the vertebrates included a diencephalon, midbrain, hindbrain, and spinal cord. In contrast, the telencephalon, a midbrain-hindbrain boundary region with organizer properties, and the definitive neural crest appear to be vertebrate innovations.  相似文献   

17.
18.
The fate specification of the developing vertebrate inner ear could be determined by complex regulatory genetic pathways involving the Pax2/5/8 genes. Pax2 expression has been reported in the otic placode and vesicle of all vertebrates that have been studied. Loss-of-function experiments suggest that the Pax2 gene plays a key role in the development of the cochlear duct and acoustic ganglion. Despite all these data, the role of Pax2 gene in the specification of the otic epithelium is still only poorly defined. In the present work, we report a detailed study of the spatial and temporal Pax2 expression patterns during the development of the chick inner ear. In the period analysed, Pax2 is expressed only in some presumptive sensory patches, but not all, even though all sensory patches show the scattered Pax2 expression pattern later on. We also show that Pax2 is also expressed in several non-sensory structures.  相似文献   

19.
The Drosophila retinal determination gene network occurs in animals generally as a Pax-Six-Eyes absent-Dachshund network (PSEDN). For amphioxus, we describe the complete network of nine PSEDN genes, four of which-AmphiSix1/2, AmphiSix4/5, AmphSix3/6, and AmphiEya-are characterized here for the first time. For amphioxus, in vitro interactions among the genes and proteins of the network resemble those of other animals, except for the absence of Dach-Eya binding. Amphioxus PSEDN genes are expressed in highly stage- and tissue-specific patterns (sometimes conspicuously correlated with the local intensity of cell proliferation) in the gastrular organizer, notochord, somites, anterior central nervous system, peripheral nervous system, pharyngeal endoderm, and the likely homolog of the vertebrate adenohypophysis. In this last tissue, the anterior region expresses all three amphioxus Six genes and is a zone of active cell proliferation, while the posterior region expresses only AmphiPax6 and is non-proliferative. In summary, the topologies of animal PSEDNs, although considerably more variable than originally proposed, are conserved enough to be recognizable among species and among developing tissues; this conservation may reflect indispensable involvement of PSEDNs during the critically important early phases of embryology (e.g. in the control of mitosis, apoptosis, and cell/tissue motility).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号