首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Catecholamine-storing chromaffin cells, isolated from bovine adrenal medullae by collagenase digestion, were stimulated with carbachol at 37 degrees C; aliquots for controls were kept at 37 degrees C: Starting from this temperature, cells were ultrarapidly frozen with the use of a sandwich-propane-jet procedure and freeze-fractured. The replicas were analysed quantitatively for exocytotic activity: After stimulation the cell membrane displayed a significant increase of exo-endocytotic openings varying in size from 20 to 300 nm. The number of openings increased in parallel to the catecholamine output. At no stage could a clearing of membrane-intercalated particles (MIPs) be observed. Openings of all size classes were etchable. Results from the PF-face were comparable with those of the EF-face. We conclude that (i) exocytosis in isolated chromaffin cells starts as a focal event; the smallest possible stages are about 10 nm in size, (ii) fusion proceeds without previous rearrangement of MIPs, and (iii) the opening starts without formation of a diaphragm.  相似文献   

2.
Patch clamp studies of single intact secretory granules.   总被引:1,自引:0,他引:1       下载免费PDF全文
The membrane of secretory granules is involved in the molecular events that cause exocytotic fusion. Several of the proteins that have been purified from the membrane of secretory granules form ion channels when they are reconstituted in lipid bilayers and, therefore, have been thought to form part of the molecular structure of the exocytotic fusion pore. We have used the patch clamp technique to study ion conductances in single isolated secretory granules from beige mouse mast cells. We found that the membrane of the intact granule had a conductance of < 50 pS. No abrupt changes in current corresponding to the opening and closing of ion channels were observed, even under conditions where exocytotic fusion occurred. However, mechanical tension or a large voltage pulse caused the breakdown of the granule membrane resulting in the abrupt opening of a pore with an ion conductance of about 1 nS that fluctuated rapidly and could expand to an immeasurably large conductance or close completely. Surprisingly, the behavior of these pores resembled the pattern of conductance changes of exocytotic fusion pores observed in degranulating beige mast cells. This similarity supports the view that the earliest fusion pore is formed upon the breakdown of a bilayer such as that formed during hemifusion.  相似文献   

3.
We measured capacitance changes in cell attached patches of human neutrophils using a high frequency lock-in method. With this technique the noise level is reduced to 0.025 fF such that capacitance steps of 0.1 fF are clearly detected corresponding to exo- and endocytosis of single 60 nm vesicles. It is thus possible to detect almost all known exocytotic and endocytotic processes including exocytosis of small neurotransmitter containing vesicles in most cell types as well as endocytosis of coated and uncoated pits. In neutrophils we demonstrate a stepwise capacitance decrease generated by 60-165 nm vesicles as expected for endocytosis of coated and non-coated pits. Following ionomycin stimulation a stepwise capacitance increase is observed consisting of 0.1-5 fF steps corresponding to the different granule types of human neutrophils from secretory vesicles to azurophil granules. The opening of individual fusion pores is resolved during exocytosis of 200 nm vesicles. The initial conductance has a mean value of 150 pS and can be as low as 35 pS which is similar to the conductance of many ion channels suggesting that the initial fusion pore is formed by a protein complex.  相似文献   

4.
Actin has been suggested as an essential component in the membrane fusion stage of exocytosis. In some model systems disruption of the actin filament network associated with exocytotic membranes results in a decrease in secretion. Here we analyze the fast Ca2+-triggered membrane fusion steps of regulated exocytosis using a stage-specific preparation of native secretory vesicles (SV) to directly test whether actin plays an essential role in this mechanism. Although present on secretory vesicles, selective pharmacological inhibition of actin did not affect the Ca2+-sensitivity, extent, or kinetics of membrane fusion, nor did the addition of exogenous actin or an anti-actin antibody. There was also no discernable affect on inter-vesicle contact (docking). Overall, the results do not support a direct role for actin in the fast, Ca2+-triggered steps of regulated membrane fusion. It would appear that actin acts elsewhere within the exocytotic cycle.  相似文献   

5.
Secretory granules labeled with Vamp-green fluorescent protein (GFP) showed distinct signatures upon exocytosis when viewed by total internal reflection fluorescence microscopy. In approximately 90% of fusion events, we observed a large increase in fluorescence intensity coupled with a transition from a small punctate appearance to a larger, spreading cloud with free diffusion of the Vamp-GFP into the plasma membrane. Quantitation suggests that these events reflect the progression of an initially fused and spherical granule flattening into the plane of the plasma membrane as the Vamp-GFP simultaneously diffuses through the fusion junction. Approximately 10% of the events showed a transition from puncta to ring-like structures coupled with little or no spreading. The ring-like images correspond quantitatively to granules fusing and retaining concavity (recess of approximately 200 nm). A majority of fusion events involved granules that were present in the evanescent field for at least 12 s. However, approximately 20% of the events involved granules that were present in the evanescent field for no more than 0.3 s, indicating that the interaction of the granule with the plasma membrane that leads to exocytosis can occur within that time. In addition, approximately 10% of the exocytotic sites were much more likely to occur within a granule diameter of a previous event than can be accounted for by chance, suggestive of sequential (piggy-back) exocytosis that has been observed in other cells. Overall granule behavior before and during fusion is strikingly similar to exocytosis previously described in the constitutive secretory pathway.  相似文献   

6.
The process of secretory granule-plasma membrane fusion can be studied in sea urchin eggs. Micromolar calcium concentrations are all that is required to bring about exocytosisin vitro. I discuss recent experiments with sea urchin eggs that concentrate on the biophysical aspects of granule-membrane fusion. The backbone of biological membranes is the lipid bilayer. Sea urchin egg membrane lipids have negatively charged head groups that give rise to an electrical potential at the bilayer-water interface. We have found that this surface potential can affect the calcium required for exocytosis. Effects on the surface potential may also explain why drugs like trifluoperazine and tetracaine inhibit exocytosis: they absorb to the bilayer and reduce the surface potential. The membrane lipids may also be crucial to the formation of the exocytotic pore through which the secretory granule contents are released. We have measured calcium-induced production of the lipid, diacylglycerol. This lipid can induce a phase transition that will promote fusion of apposed lipid bilayers. The process of exocytosis involves the secretory granule core as well as the lipids of the membrane. The osmotic properties of the granule contents lead to swelling of the granule during exocytosis. Swelling promotes the dispersal of the contents as they are extruded through the exocytotic pore. The movements of water and ions during exocytosis may also stabilize the transient fusion intermediate and consolidate the exocytotic pore as fusion occurs.  相似文献   

7.
The exocytotic process in the anterior pituitary secretory cells was studied using quick-freeze deep-etch electron microscopy, fluorescein-isothiocyanate-phalloidin staining, heavy meromyosin decoration, and immuno-electron microscopy. The subcortical actin filaments are distributed unevenly in the peripheral cytoplasm. Few secretory granules are seen beneath the plasma membrane in the region where the peripheral cytoplasm is occupied by numerous subcortical actin filaments. On the contrary, in the region free of the subcortical actin filaments, many secretory granules lie in contact with the plasma membrane. Thus, the subcortical actin filaments may control the approach of the secretory granules to the plasma membrane in these cells. The granule and plasma membranes that lie in close proximity are linked by intervening strands. Unfused portions of both membranes remain linked by these strands during membrane fusion and opening. These strands may be involved in membrane contact, fusion and opening during exocytosis. Annexin II (calpactin I) has been demonstrated immunocytochemically to be localized at the contact sites between the granule and plasma membranes, and is therefore a possible component of the intervening strands. Membrane fusion starts within focal regions of both membranes less than 50 nm in diameter. The plasma membrane shows inward depressions toward the underlying granules immediately before fusion. The disappearance of intramembranous particles from the exocytotic site of the membrane has not been observed.  相似文献   

8.
We have studied exocytosis of single small granules from human neutrophils by capacitance recordings in the cell-attached configuration. We found that 2.2% of the exocytotic events were flickers. The flickers always ended with a downward step. This indicates closing of the fusion pore. During flickering, the fusion pore conductance remained below 1 nS, and no net membrane transfer was detectable. After fusion pore expansion beyond 1 nS the pore expanded irreversibly, leading to rapid full incorporation of the granule/vesicle into the plasma membrane. Following exocytosis of single granules, a capacitance decrease directly related to the preceding increase was observed in 7% of the exocytotic events. This decrease followed immediately after irreversible pore expansion, and is presumably triggered by full incorporation of the vesicle into the patch membrane. The capacitance decrease could be interpreted as endocytosis triggered by exocytosis. However, the gradual decrease could also reflect a decrease in the "free" patch area following incorporation of an exocytosed vesicle. We conclude that non-stepwise capacitance changes must be interpreted with caution, since a number of factors go into determining cell or patch admittance.  相似文献   

9.
Sequential-replenishment mechanism of exocytosis in pancreatic acini   总被引:1,自引:0,他引:1  
Here we report exocytosis of zymogen granules, as examined by multiphoton excitation imaging in intact pancreatic acini. Cholecystokinin induces Ca 2+ oscillations that trigger exocytosis when the cytosolic Ca 2+ concentration exceeds 1 microM. Zymogen granules fused with the plasma membrane maintain their Omega-shaped profile for an average of 220 s and serve as targets for sequential fusion of granules that are located within deeper layers of the cell. This secondary exocytosis occurs as rapidly as the primary exocytosis and accounts for most exocytotic events. Granule-granule fusion does not seem to precede primary exocytosis, indicating that secondary fusion events may require a plasma-membrane factor. This sequential-replenishment mechanism of exocytosis allows the cell to take advantage of a large supply of fusion-ready granules without needing to transport them to the plasma membrane.  相似文献   

10.
In exocytosis, secretory granules contact plasma membrane at sites where microdomains can be observed, which are sometimes marked by intramembranous particle arrays. Such arrays are particularly obvious when membrane fusion is frozen at a subterminal stage, e.g., in neuromuscular junctions and ciliate exocytotic sites. In Paramecium, a genetic approach has shown that the "rosettes" of intramembranous particles are essential for stimulated exocytosis of secretory granules, the trichocysts. The identification of two genes encoding the N-ethylmaleimide-sensitive factor (NSF), a chaperone ATPase involved in organelle docking, prompted us to analyze its potential role in trichocyst exocytosis using a gene-silencing strategy. Here we show that NSF deprivation strongly interferes with rosette assembly but does not disturb the functioning of exocytotic sites already formed. We conclude that rosette organization involves ubiquitous partners of the fusion machinery and discuss where NSF could intervene in this mechanism.  相似文献   

11.
How fusion pore formation during exocytosis affects the subsequent release of vesicle contents remains incompletely understood. It is unclear if the amount released per vesicle is dependent upon the nature of the developing fusion pore and whether full fusion and transient kiss and run exocytosis are regulated by similar mechanisms. We hypothesise that if consistent relationships exist between these aspects of exocytosis then they will remain constant across any age. Using amperometry in mouse chromaffin cells we measured catecholamine efflux during single exocytotic events at P0, 1 month and 6 months. At all ages we observed full fusion (amperometric spike only), full fusion preceded by fusion pore flickering (pre-spike foot (PSF) signal followed by a spike) and pure "kiss and run" exocytosis (represented by stand alone foot (SAF) signals). We observe age-associated increases in the size of all 3 modes of fusion but these increases occur at different ages. The release probability of PSF signals or full spikes alone doesn't alter across any age in comparison with an age-dependent increase in the incidence of "kiss and run" type events. However, the most striking changes we observe are age-associated changes in the relationship between vesicle size and the membrane bending energy required for exocytosis. Our data illustrates that vesicle size does not regulate release probability, as has been suggested, that membrane elasticity or flexural rigidity change with age and that the mechanisms controlling full fusion may differ from those controlling "kiss and run" fusion.  相似文献   

12.
We have investigated the temporal relationship between depolarization, elevation of [Ca2+]i and exocytosis in single vertebrate neuroendocrine nerve terminals. The change of [Ca2+]i and vasopressin release were measured with a time resolution of less than 1 s in response to K(+)-induced depolarization. Exocytosis was also monitored in the whole-terminal patch-clamp configuration by time resolved capacitance measurements while [Ca2+]i was simultaneously followed by fura-2 fluorescence measurements. In intact as well as patch-clamped nerve terminals sustained depolarization leads to a sustained rise of [Ca2+]i. The rate of vasopressin release from intact nerve terminals rises in parallel with [Ca2+]i but then declines rapidly towards basal (t1/2 approximately 15 s) despite the maintained high [Ca2+]i indicating that only a limited number of exocytotic vesicles can be released. We demonstrate that in nerve terminals exocytosis can be followed during step depolarization by capacitance measurements. The capacitance increase starts instantaneously whereas [Ca2+]i rises with a half time of several hundred milliseconds. An instantaneous steep capacitance increase is followed by a slow increase with a slope of 25-50 fF/s indicating the sequential fusion of predocked and cytoplasmic vesicles. During depolarization the capacitance slope declines to zero with a similar time course as the vasopressin release indicating a decrease in exocytotic activity. Depolarization per se in the absence of a sufficient rise of [Ca2+]i does not induce exocytosis but elevation of [Ca2+]i in the absence of depolarization is as effective as in its presence. The experiments suggest that a rapid rise of [Ca2+]i in a narrow region beneath the plasma membrane induces a burst of exocytotic activity preceding the elevation of bulk [Ca2+]i in the whole nerve terminal.  相似文献   

13.
Total internal reflection fluorescence microscopy (TIRFM) images the plasma membrane–cytosol interface and has allowed insights into the behavior of individual secretory granules before and during exocytosis. Much less is known about the dynamics of the other partner in exocytosis, the plasma membrane. In this study, we report the implementation of a TIRFM-based polarization technique to detect rapid submicrometer changes in plasma membrane topology as a result of exocytosis. A theoretical analysis of the technique is presented together with image simulations of predicted topologies of the postfusion granule membrane–plasma membrane complex. Experiments on diI-stained bovine adrenal chromaffin cells using polarized TIRFM demonstrate rapid and varied submicrometer changes in plasma membrane topology at sites of exocytosis that occur immediately upon fusion. We provide direct evidence for a persistent curvature in the exocytotic region that is altered by inhibition of dynamin guanosine triphosphatase activity and is temporally distinct from endocytosis measured by VMAT2-pHluorin.  相似文献   

14.
A correlated electrophysiological and light microscopic evaluation of trichocyst exocytosis was carried out the Paramecium cells which possess extensive cortical Ca stores with footlike links to the plasmalemma. We used not only intra- but also extracellular recordings to account for polar arrangement of ion channels (while trichocysts can be released from all over the cell surface). With three widely different secretagogues, aminoethyldextran (AED), veratridine and caffeine, similar anterior Nain and posterior Kout currents (both known to be Ca(2+)-dependent) were observed. Direct de- or hyperpolarization induced by current injection failed to trigger exocytosis. For both, exocytotic membrane fusion and secretagogue-induced membrane currents, sensitivity to or availability of Ca2+ appears to be different. Current responses to AED were blocked by W7 or trifluoperazine, while exocytosis remained unaffected. Reducing [Ca2+]o to < or = 0.16 microM (i.e., resting [Ca2+]i) suppressed electrical membrane responses triggered with AED, while we had previously documented normal exocytotic membrane fusion. From this we conclude that the primary effect of AED (as of caffeine) is the mobilization of Ca2+ from the subplasmalemmal pools which not only activates exocytosis (abolished by iontophoretic EGTA injection) but secondarily also spatially segregated plasmalemmal Ca(2+)-dependent ion channels (indicative of subplasmalemmal [Ca2+]i increase, but irrelevant for Ca2+ mobilization). The 45Ca2+ influx previously observed during AED triggering may serve to refill depleted stores. Apart from the insensitivity of our system to depolarization, the mode of direct Ca2+ mobilization from stores by mechanical coupling to the cell membrane (without previous Ca(2+)-influx from outside) closely resembles the model currently discussed for skeletal muscle triads.  相似文献   

15.
The acrosome reaction in many animals is a coupled reaction involving an exocytotic step and a dramatic change in cell shape. It has been proposed that these morphological changes are regulated by intracellular ions such as Ca2+ and H+. We report here simultaneous visualization, under a multiview microscope, of intracellular free Ca2+ concentration ([Ca2+]i), intracellular pH (pHi), and morphological changes in a single starfish sperm (Asterina pectinifera). [Ca2+]i and pHi were monitored with the fluorescent probes indo-1 and SNARF-1, respectively. The acrosome reaction was induced with ionomycin. After the introduction of ionomycin in the medium, [Ca2+]i increased gradually and reached a plateau in approximately 30 s. The fusion of the acrosomal vacuole took place abruptly before the plateau, during the rising phase. Although the speed of the [Ca2+]i increase varied among the many sperm tested, exocytosis in all cases occurred at the same [Ca2+]i of approximately 2 microM (estimated using the dissociation constant of indo-1 for Ca2+ of 1.1 microM). This result suggests that the exocytotic mechanism in starfish sperm responds to [Ca2+]i rapidly, with a reaction time of the order of one second or less. Unlike the change in [Ca2+]i, an abrupt increase in pHi was observed immediately after exocytosis, suggesting the presence of a proton mobilizing system that is triggered by exocytosis. The rapid increase in pHi coincided with the formation of the acrosomal rod and the beginning of vigorous movement of the flagellum, both of which have been proposed to be pHi dependent. The exocytotic event itself was visualized with the fluorescent membrane probe RH292. The membrane of the acrosomal vacuole, concealed from the external medium in an unreacted sperm, was seen to fuse with the plasma membrane.  相似文献   

16.
Freeze-fracture was used to study the membrane events taking place during neurosecretory granule discharge (exocytosis) and subsequent membrane internalization (endocytosis) in axons of neurohypophyses from control and water-deprived rats. En face views of the cytoplasmic leaflet (P face) of the split axolemma reveal circular depressions that represent the secretory granule membranes fused with the plasma membrane during exocytosis. These depressions often contain granule core material in the process of extrusion into the extracellular space. The membrane surrounding some of the exocytotic openings shows a decreased number of intramembrane particles (mean diameter, 8 nm) which are elsewhere more numerous and evenly distrubuted on the fracture face. Endocytotic sites appear as smaller plasma membrane invaginations, with associated intramembrane particles. Moreover, such invaginations often contain large particles (mean diameter, 12 nm) that appear as clusters on en face views of the membrane leaflet. Quantitative analysis indicates that the number of exocytotic images increases significantly in glands from water-deprived rats. Concomitantly, the number of endocytotic figures per unit area of membrane is raised as is the number of clusters of large particles. The observations demonstrate that, in the neurohypophysis, it is possible to distinguish exocytosis morphologically from endocytosis and that the two events can be assessed quantitatively.  相似文献   

17.
Secretory carrier membrane proteins (SCAMPs) are conserved four transmembrane-spanning proteins associated with recycling vesicular carriers. In mast cells, as in other cell types, SCAMPs 1 and 2 are present in secretory granule membranes and other intracellular membranes. We now demonstrate a population of these SCAMPs in plasma membranes. Although small, this population partially colocalizes with SNARE proteins SNAP-23 and syntaxin 4. A fraction of SCAMPs 1 and 2 also coimmunoprecipitates with SNAP-23. An oligopeptide, E peptide, within the cytoplasmic segment linking the second and third transmembrane spans, particularly of SCAMP2, potently inhibits exocytosis in streptolysin O-permeabilized mast cells. The E peptide is unique to SCAMPs and highly conserved among SCAMP isoforms, and minor changes in its sequence abrogate inhibition. It blocks fusion beyond the putative docking step where granules contact the cell surface and each other during compound exocytosis. Blockade is also beyond Ca(2+)/ATP-dependent relocation of SNAP-23, which regulates compound exocytosis, and beyond ATP-dependent priming of fusion. Kinetic ordering of exocytotic inhibitors has shown that E peptide acts later than other perturbants at a stage closely associated with membrane fusion. These findings identify a new reagent for analyzing the final stage of exocytosis and point to the likely action of SCAMP2 in this process.  相似文献   

18.
Neurons and neuroendocrine cells release transmitters and hormones by exocytosis, a highly regulated process in which secretory vesicles or granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Several stages have been recognized in exocytosis. After recruitment and docking at the plasma membrane, vesicles/granules enter a priming step, which is then followed by the fusion process. Cortical actin remodelling accompanies the exocytotic reaction, but the links between actin dynamics and trafficking events remain poorly understood. Here, we review the action of Rho and ADP-ribosylation factor (ARF) GTPases within the exocytotic pathway in adrenal chromaffin cells. Rho proteins are well known for their pivotal role in regulating the actin cytoskeleton. ARFs were originally identified as regulators of vesicle transport within cells. The possible interplay between these two families of GTPases and their downstream effectors provides novel insights into the mechanisms that govern exocytosis.  相似文献   

19.
Since it had been previously shown that in Paramecium cells exocytosis involves the dephosphorylation of a 65-kD phosphoprotein (PP), we tried to induce exocytotic membrane fusion by exogenous phosphatases (alkaline phosphatase or calcineurin [CaN]). The occurrence of calmodulin (CaM) at preformed exocytosis sites (Momayezi, M., H. Kersken, U. Gras, J. Vilmart-Seuwen, and H. Plattner, 1986, J. Histochem. Cytochem., 34:1621-1638) and the current finding of the presence of the 65-kD PP and of a CaN-like protein in cell surface fragments ("cortices") isolated from Paramecium cells led us to also test the effect of antibodies (Ab) against CaM or CaN on exocytosis performance. Microinjected anti-CaN Ab strongly inhibit exocytosis. (Negative results with microinjected anti-CaM Ab can easily be explained by the abundance of CaM.) Alternatively, microinjection of a Ca2+-CaM-CaN complex triggers exocytosis. The same occurs with alkaline phosphatase. All these effects can also be mimicked in vitro with isolated cortices. In vitro exocytosis triggered by adding Ca2+-CaM-CaN or alkaline phosphatase is paralleled by dephosphorylation of the 65-kD PP. Exocytosis can also be inhibited in cortices by anti-CaM Ab or anti-CaN Ab. In wild-type cells, compounds that inhibit phosphatase activity, but none that inhibit kinases or proteases, are able to inhibit exocytosis. Exocytosis cannot be induced by phosphatase injection in a membrane-fusion-deficient mutant strain (nd9-28 degrees C) characterized by a defective organization of exocytosis sites (Beisson, J., M. Lefort-Tran, M. Pouphile, M. Rossignol, and B. Satir, 1976, J. Cell Biol., 69:126-143). We conclude that exocytotic membrane fusion requires an adequate assembly of molecular components to allow for the dephosphorylation of a 65-kD PP and that this step is crucial for the induction of exocytotic membrane fusion in Paramecium cells. In vivo this probably involves a Ca2+-CaM-stimulated CaN-like PP phosphatase.  相似文献   

20.
Five secretory carrier membrane proteins (SCAMP-1, -2, -3, -4, and -5) have been characterized in mammalian cells. Previously, SCAMP-1 and -2 have been implicated to function in exocytosis. RNA inhibitor-mediated deficiency of one or both of these SCAMPs interferes with dense core vesicle (DCV) exocytosis in neuroendocrine PC12 cells as detected by amperometry. Knockdowns of these SCAMPs each decreased the number and frequency of depolarization-induced exocytotic events. SCAMP-2 but not SCAMP-1 depletion also delayed the onset of exocytosis. Both knockdowns, however, altered fusion pore dynamics, increasing rapid pore closure and decreasing pore dilation. In contrast, knockdowns of SCAMP-3 and -5 only interfered with the frequency of fusion pore opening and did not affect the dynamics of newly opened pores. None of the knockdowns noticeably affected upstream events, including the distribution of DCVs near the plasma membrane and calcium signaling kinetics, although norepinephrine uptake/storage was moderately decreased by deficiency of SCAMP-1 and -5. Thus, SCAMP-1 and -2 are most closely linked to the final events of exocytosis. Other SCAMPs collaborate in regulating fusion sites, but the roles of individual isoforms appear at least partially distinct. neuroendocrine secretion; membrane fusion; amperometry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号