首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our investigations concerning the importance of cell surface macromolecules during embryonic development led us to the discovery in 1961 that heterologous anti-rat kidney serum produced teratogenesis, growth retardation and embryonic death when injected into the pregnant rat during early organogenesis. It was established that IgG was the teratogenic agent, primarily directed against the visceral yolk sac (VYS) but not the embryo. Heterologous anti-rat VYS serum was prepared which was teratogenic localized in the VYS and served as a model for producing VYS dysfunction and embryonic malnutrition. The role of the yolk sac placenta in histiotrophic nutrition is now recognized to be critical for normal embryonic development during early organogenesis in the rodent. VYS antiserum affects embryonic development primarily by inhibiting endocytosis of proteins by the VYS endoderm, resulting in a reduction in the amino acids supplied to the embryo. Our laboratory has recently developed teratogenic monoclonal yolk sac antibodies (MCA) which can be utilized; to study VYS plasma membrane synthesis and recycling, to compare yolk sac function among different species, and to identify components of the plasma membrane involved in pinocytosis. MCA prepared against certain VYS antigens provide an opportunity to study embryonic nutrition with minimal interference with the nutritional state of the mother. Recent developments in the study of the human yolk sac along with our laboratory's ability to isolate a spectrum of yolk sac antigens, prepare monoclonal antibodies, and perform functional studies, should provide information that will increase our understanding of yolk sac function and dysfunction in the human and determine the relative importance of various amino acids to normal development during mammalian organogenesis.  相似文献   

2.
It was hypothesized that heterologous anti-rat visceral yolk sac serum (AVYS) exerts its teratogenic effect by reducing the endocytosis of serum proteins by the visceral yolk sac (VYS), thus reducing the supply of amino acids to the embryo and VYS. To evaluate this hypothesis, we studied the effect of teratogenic AVYS on the endocytic function of the VYS and the ultrastructure of the VYS and parietal yolk sac (PYS). Rat conceptuses were exposed to a teratogenic dose of AVYS on the 10th day of gestation in vivo or in vitro. Control and AVYS-exposed specimens were collected 24-192 hr later and prepared for scanning and transmission electron microscopy (SEM and TEM, respectively) utilizing standard procedures. The Endocytic Index was calculated for the VYS utilizing standard procedures. Approximately 97% of the in vivo exposed and 94% of the in vitro exposed embryos were morphologically abnormal. Ultrastructural observations showed that exposure to AVYS in vivo or in vitro caused severe damage to the VYS endodermal epithelial cells with loss of cellular borders, reduction in the number and length of microvilli, and increased cellular inclusions; and some damage to PYS endodermal cells with increased blebbling and decreased cell number. Recovery was evident at 72 hr and complete by 96 hr. The Endocytic Index was significantly reduced in the VYS 24 and 48 hr after injecting AVYS into the pregnant rat but was not significantly different at 96 and 192 hr. Our results show that the AVYS antiserum damaged visceral endodermal epithelium experienced ultrastructural recovery with parallel functional recovery. These studies suggest that transient yolk sac placental ultrastructural damage and dysfunction was probably sufficient to cause irreversible damage to the developing embryo during early organogenesis. We conclude that the proximate effect of the AVYS was on the plasma membrane of the visceral endoderm and that decreased pinocytosis is a consequence of this effect.  相似文献   

3.
Thirty clones producing monoclonal antibodies (MCAs) to rat visceral yolk sac (VYS) antigens have been prepared. These MCAs localized by immunofluorescence in the VYS endoderm in vitro and were tested for developmental toxicity by intraperitioneal injection of ascites fluid into pregnant rats on day 9 of gestation. Five of the hybridomas produced MCAs that induced embryonic death, malformation, and growth retardation; the other MCAs had no developmental toxicity. Five MCAs, three teratogenic and two nonteratogenic, were tested for their ability to inhibit pinocytosis in the isolated day 17-VYS. Only the teratogenic MCAs were inhibitory, providing further evidence for the hypothesis that teratogenic antibodies interfere with the nutritional supply to the embryo.  相似文献   

4.
Experimental manipulation of the rodent visceral yolk sac   总被引:3,自引:0,他引:3  
The visceral yolk sac (VYS) is an especially important placental organ in the rodent because it is the primary source of exchange between the embryo and mother during early organogenesis before the chorioallantoic placenta circulation is established. The VYS is involved with nutritional, endocrine, metabolic, immunologic, secretory, excretory, and hematopoietic functions. The VYS also plays a role in steroid metabolism and interacts with a variety of blood-borne factors: parathyroid hormone, glucocorticoids, insulin, and vitamin D metabolites. The importance of the VYS during development is emphasized by the embryotoxicity resulting from exposure to agents which cause VYS dysfunction when administered to the pregnant animal during organogenesis. Several experimental procedures have provided useful information concerning a variety of VYS functions from early organogenesis to term: Culture of the Embryo, Fetal Incubation, Culture of the Fetus, Giant Yolk Sac, Short- and Long-Term Culture of the Yolk Sac, Modified Ussing's Chamber, Single or Double Diffusion Chamber, and the use of Heterologous Rodent Visceral Yolk Sac Antibodies. Since human yolk sac pathology has been associated with developmental toxicity and spontaneous abortion, it is important to discover whether there are some common functional roles among different mammalian species and to determine if other experimental animal models can be used to study the possible contribution of human yolk sac dysfunction to some human reproductive problems.  相似文献   

5.
Multiple antigens in the rat visceral yolk sac induce teratogenic antisera   总被引:2,自引:0,他引:2  
Preparative isoelectric focusing was used to fractionate the supernatant from a homogenate of day 19 rat visceral yolk sac. Three fractions, of pI ranges 3.5-5.0, 5.0-7.0, and 7.0-9.0, were isolated and used to immunize rabbits, by four or six weekly injections, each containing 5 mg protein. The resulting antisera were all teratogenic when injected into rats on day 9 of gestation, but widely differing potencies were observed. The most potent antiserum was that against yolk sac components focusing in the pI 7.0-9.0 range: An optimum teratogenic dose of 50 mg protein per kg body weight was observed, and a dose of 100 mg/kg was shown to cause 100% embryonic resorption. Antiserum against the fraction focusing in the pI 3.5-5.0 range was the least teratogenic: A significant incidence of embryonic malformation and death was seen only at doses of 600 mg/kg and above. The two fractions that yielded the more teratogenic antisera were refocused over narrower pH ranges, yielding four subfractions in the pI 5.0-7.0 range and eight subfractions in the pI 7.0-9.0 range. Antisera against each of these 12 fractions were raised in rabbits; most of these antisera were shown to be teratogenic, although of differing potencies. It is concluded that the yolk sac contains many antigens that can elicit antibodies with teratogenic and yolk sac-localizing properties.  相似文献   

6.
R Marlow  S J Freeman 《Life sciences》1987,40(17):1717-1723
Pinocytosis as measured by the uptake of 125I labelled PVP by the isolated cultured day 12 rat yolk sac was observed to be linear over a 4 h incubation period and to proceed at a rate of approximately 2.5 microliters/mg protein/h. Cadmium, anti-visceral yolk sac antibody (AVYS) and trypan blue all inhibited pinocytosis in a concentration-dependent fashion when added to the culture medium, although at low concentrations trypan blue was slightly stimulatory. The effect of zinc on the inhibition of pinocytosis by these three teratogens was studied. It was observed that zinc ameliorated the inhibitory effects of cadmium and AVYS, but had no effect on inhibition by trypan blue. These results indicate that the previously demonstrated protective action of zinc against cadmium-induced yolk sac dysfunction is not specific to that agent but extends to inhibition of pinocytosis by AVYS, and further suggest that, because of its refractoriness to zinc, trypan blue-induced inhibition of pinocytosis by yolk sac occurs by a mechanism different from that effected by cadmium and AVYS.  相似文献   

7.
Pinocytic capture of 125I-labelled polyvinylpyrrolidone and of formaldehyde-denatured 125I-labelled bovine serum albumin by 17.5-day rat visceral yolk sacs incubated in vitro was rapidly and strongly inhibited by low concentrations (0.01 and 0.05%, v/v) of ethanol. The induced inhibition of pinocytosis was readily reversible, but a marked lag was observed before ethanol-exposed tissue regained its full proteolytic capacity towards the exogenous protein. These observations suggest that the acute administration of ethanol to a pregnant rat may give rise to concentrations of ethanol in the maternal blood and/or uterine fluid that induce dysfunction of the yolk sac. In late gestation such inhibition of yolk-sac function may interfere with the transfer of passive immunity across the yolk sac. If similar dysfunction is induced earlier in gestation, in the period before the chorioallantoic placenta is functional, this could cause a transient period of inhibition of histiotrophic nutrition that may be important to the pathogenic mechanism of action of ethanol as a teratogen.  相似文献   

8.
Diabetes mellitus in pregnancy is associated with an increased incidence of various congenital anomalies that occur during organogenesis. Because a well functioning yolk sac is crucial to embryonic growth and development during this period, we performed an ultrastructural study of the effects of excess glucose (total glucose 750 mg/dl, osmolality 305 mOsm/kg) on pregnancy day 10 (Witschi stage 13) rat conceptuses cultured for 48 hr in heat-inactivated male rat serum with and without added d- or l-glucose. Embryos exposed to excess d-glucose demonstrated decreased conceptus size (P less than 0.001), and gross malformations in a dose-related fashion. The visceral yolk sac capillaries and vitelline vessels of conceptuses in excess d-glucose were sparse, patchy, and nonuniformly located. Ultrastructurally, the visceral yolk sac endodermal cells had reduced numbers of rough endoplasmic reticulum, ribosomes, and mitochondria. These obvious defects in yolk sac structure suggest that hyperglycemia during organogenesis has a primary deleterious effect on yolk sac function with resultant embryopathy.  相似文献   

9.
Inhibition of pinocytosis in rat yolk sac by trypan blue.   总被引:2,自引:0,他引:2  
Day 17.5 yolk sacs from rats injected with partially denatured 125I-labeled bovine serum albumin (I-BSA) were cultured in vitro by a raft technique. The rates of release of [125I]iodotyrosine were similar in control yolk sacs and in yolk sacs from rats preinjected with trypan blue. Day 17.5 rat yolk sacs were also cultured in medium containing I-BSA. Following pinocytic uptake the substrate was degraded intracellularly and [135I]iodotyrosine released into the medium. Trypan blue, when present in the medium in concentrations above 100 mug/ml, inhibited pinocytosis of I-BSA and so decreased the rate of [125I]iodotyrosine production. Trypan blue similarly decreased the rate of pinocytic uptake of 125I-labeled polyvinylpyrrolidone. Pinocytic uptake of macromolecules was not decreased in yolk sacs from rats pretreated with trypan blue. The relevance of these results to the mechanism of teratogenic action of trypan blue is discussed. It is proposed that if trypan blue in teratogenic doses similarly inhibits pinocytosis by the yolk sac during the organogenetic period teratogenesis might result from a transient interruption in the flow of metabolites through the yolk sac to the embryo.  相似文献   

10.
H Franke 《Acta anatomica》1979,103(2):200-211
The effect of an interruption of the yolk sac circulation on the rat visceral yolk sac and the development of the fetoplacental unit was examined in the last third of pregnancy. The yolk sac ischaemia was induced by ligating the blood vessels of the yolk sac stalk which connect the vitelline circulation with that of the fetus. A 3-hour ligature caused an extensive swelling of most cell organelles in the epithelial cells and in the capillary endothelia of the yolk sac. Other structural changes were indicative of a cessation of pinocytosis. A 6-hour ligature resulted in a common increase of cell swelling and in a beginning disintegration of the endothelial cells lining the vitelline capillaries. A 15-hour ligature caused severe ultrastructural cell lesions and macroscopical alterations suggestive of a progressive necrolar finding of a nearly complete loss of the amniotic fluid and the death of the fetus, although the maternal blood flow appeared to be still intact in the placenta.  相似文献   

11.
J B Lloyd 《Teratology》1990,41(4):383-393
The rat visceral yolk sac is active in pinocytosis. Macromolecules accumulated by the tissue are, in general, routed to the lysosomes, where they either accumulate (if non-digestible by the lysosomal enzymes) or are degraded to their monomeric components. The yolk sac cells engage in adsorptive pinocytosis, which leads to the preferential uptake of macromolecules bearing certain surface features, such as a hydrophobic or a cationic domain. Substrates that enter the yolk sac by adsorptive pinocytosis can in some cases act as bivalent ligands, carrying in a second substance by "piggy-back" pinocytosis. Pinocytosis and intralysosomal digestion of plasma proteins by the organogenesis-stage rat embryo play an important nutritional role, supplying a high proportion of the embryo's amino acid requirement. Teratogenic effects can be induced by substances that inhibit either pinocytosis or intralysosomal proteolysis at this sensitive stage of gestation.  相似文献   

12.
U Claussen  H W Breuer 《Teratology》1975,12(3):297-301
A technique was developed for injecting agents into the yolk sac of rabbits to study their teratogenic effects. On the 9th day of gestation the rabbits were laparotomized during ether-oxygen narcosis. The test substance was injected into the yolk sacs in one horn of the uterus, and as control the corresponding solvent was injected into the other horn. On the 28th day of gestation the rabbits were killed, resorptions counted, and fetuses examined for malformations. Three series of studies were made: physiological saline; polyvinylpyrrolidone; and doxycycline dissolved in polyvinylpyrrolidone (DIP). The rate of resorptions and malformations significantly increased after injection of Vibravenos. As polyvinylpyrrolidone was not teratogenic it is concluded that the teratogenic effects of DIP were probably caused by doxycycline.  相似文献   

13.
A comparative analysis of the teratogenic effects of L-asparaginase on 10.5- and 11.5-day rat embryos after 24 and 48 hours of exposure in vitro, respectively, were performed. Several medium concentrations of L-asparaginase (0.05, 0.25, and 1.5 IU/ml) were tested in both embryo series. Resulting embryos were submitted to morphological studies in a search for a specific route of pathogenesis. Morphological alterations of the visceral yolk sac were also studied to investigate its contribution to L-asparaginase teratogenicity in rats. Main embryonic malformations (open truncal neural tube, open encephalic vesicles, anophthalmia, lack of inversion, abnormal frontolateral protrusions, great vascular dilations at the cephalic level) and developmental retardation were already generated after the first 24 hours of culture (embryos of 10.5 days) and presented a dose-response relationship. Vascular dilations and neurulation disturbances seemed to be related to an early mesenchyme deficiency. Reduced number of mesenchymal cells was more evident in embryos of 10.5 days than those of 11.5 days, suggesting the existence of a later compensatory mechanism of cellular proliferation in the older embryo. Visceral yolk-sac endodermal cells at both embryonic stages were greatly deformed and enlarged by an increase of the high electron-dense vacuolar system. Therefore, both a blockage of the processes of lysosomal digestion and derived trophic deficiencies probably existed. A double teratogenic mechanism for L-asparaginase is postulated: a direct action mainly in younger embryos (before invagination of the embryo into the yolk sac) and a yolk sac-mediated one.  相似文献   

14.
A fraction from diabetic rat serum containing a low-molecular-weight (800-1000) somatomedin inhibitor (SI) alters growth and development in both neurulation and early limb bud staged mouse embryos in vitro. Previous studies suggested that an accumulation of serum proteins and morphological changes of the visceral yolk sac (VYS) were produced following exposure to the SI in early limb bud staged conceptuses. The morphological changes, characterized by the presence of large endosomes in the endodermal cells, suggested that the SI altered histiotrophic nutrition, whereby proteins are pinocytosed by the endodermal VYS cells and degraded to constituent amino acids. Therefore, the effects of the SI on pinocytosis and protein degradation by the VYS were evaluated using the whole embryo culture system. Results showed that the SI reduced fluid phase pinocytosis as determined by the uptake of [U-14C]sucrose, but that accumulation of [3H]leucine-labeled hemoglobin ([3H]Hb) by the VYS was greater following exposure to the SI than in controls. In contrast, the accumulation of 3H-labeled amino acids in the embryo (produced from the degradation of [3H]Hb by the VYS) was reduced by the SI. The extent of amino acid reduction in embryonic accumulation is dependent upon the concentration of SI in the culture medium and correlates with the incidence of malformations produced by the SI, i.e., high rates of malformations occur with large reductions in embryonic 3H-labeled amino acid accumulation. The apparent paradox of high [3H]Hb accumulation in the presence of decreased pinocytosis appears to be the result of altered processing of the [3H]Hb in the endodermal cells. The altered processing decreases the "elimination" of the proteins from the VYS and results in the decrease in 3H-labeled amino acid present in the embryo proper. Therefore, the SI appears to alter two processes of VYS histiotrophic function. (1) decreased pinocytosis and (2) altered protein processing, ultimately resulting in a decreased availability of substrates for the embryo. During the early stages of embryogenesis in the human, the trophoblast cells of the placenta are responsible for the transport of nutrients from the maternal to embryonic systems. Since these cells show high phagocytic and pinocytotic activities, the SI may also disrupt these processes in the chorioallantoic placenta and contribute to diabetes-induced embryopathies.  相似文献   

15.
Mouse embryos at the 10–12-somite stage of development were excised from the uterus either with or without the encapsulating visceral yolk sac and were incubated in vitro in 3 × 10?7M thymidine (methyl-T, 5 μCi/ml) for 30 min or in 4 × 10?3M hydroxyurea for 45 min with [3H]thymidine present for the last 30 min. Radioautograms of nuclei of neural epithelium enabled an estimate of the effectiveness of the barrier imposed by the visceral yolk sac membrane to the passage of thymidine and hydroxyurea.Labeling of nuclei in the neural epithelium showed that the visceral yolk sac caused a 44% decrease in frequency and a 51% decrease in intensity of label. Hydroxyurea inhibited labeling by 15% in frequency and 37% in intensity irrespective of the presence or absence of visceral yolk sac. These results show that hydroxyurea and the presence of visceral yolk sac independently interfered with labeling of the neural epithelium by thymidine and that visceral yolk sac caused a proportionally greater retardation of label than did hydroxyurea.Nuclei of the endodermal epithelium of the intervening yolk sac, following exposure to hydroxyurea, showed a labeling decrease of 44% in frequency and 77% in intensity. The inhibitory effect of hydroxyurea on yolk sac labeling, however, did not alter yolk sac permeability to hydroxyurea. The results indicate that the visceral yolk sac, by offering no detectable barrier to hydroxyurea, permits prompt teratogenic action of hydroxyurea directly upon the embryo and suggest that the visceral yolk sac is a likely candidate to account for reports that the 8.5-day mouse embryo in situ fails to label with radioisotopic thymidine.  相似文献   

16.
Ultrastructure of the pre-implantation shark yolk sac placenta   总被引:1,自引:0,他引:1  
During ontogeny, the yolk sac of viviparous sharks differentiates into a yolk sac placenta which functions in gas exchange and hematrophic nutrient transport. The pre-implantation yolk sac functions in respiration and yolk absorption. In a 10.0 cm embryo, the yolk sac consists of six layers, viz. (1) somatic ectoderm; (2) somatic mesoderm; (3) extraembryonic coelom; (4) capillaries; (5) endoderm; and (6) yolk syncytium. The epithelial ectoderm is a simple cuboidal epithelium possessing the normal complement of cytoplasmic organelles. The endoplasmic cisternae are dilated and vesicular. The epithelium rests upon a basal lamina below which is a collagenous stroma that contains dense bodies of varying diameter. They have a dense marginal zone, a less dense core, and a dense center. The squamous mesoderm has many pinocytotic caveolae. The capillary endothelium is adjacent to the mesoderm and is delimited by a basal lamina. The endoderm contains yolk degradation vesicles whose contents range from pale to dense. The yolk syncytium contains many morphologically diverse yolk granules in all phases of degradation. Concentric membrane lamellae form around yolk bodies as the main yolk granules begin to be degraded. During degradation, yolk platelets exhibit a vesicular configuration.  相似文献   

17.
The endodermal layer of the human yolk sac was examined three-dimensionally with light microscopy on serial sections using scanning electron microscopy and transmission electron microscopy to find the origin of hemopoiesis in the yolk sac. Cell-labelling techniques were also employed using the monoclonal anti-transferrin receptor antibody. Orifices of the endodermal and intracellular tubules facing the yolk-sac cavity were demonstrated on the endodermal surface. Various-sized blood cells in various stages of differentiation and maturation were distributed in the yolk-sac cavity and tubules and were observed also at the orifices of the tubules. The morphological and the immunological findings suggest that blood cells with large nuclei in the endodermal layer are the most immature. The present results suggest that blood cells originate from the endodermal layer and are carried to the embryo through the yolk sac cavity and the vitelline duct. It is probable that the endodermal and intracellular systems of tubules have an important role in the transport of blood cells, including stem cells.  相似文献   

18.
The ontogeny of the calcium transport properties and hormonal modulation of the yolk sac membrane in amniote embryos is presently poorly understood. We investigated the role of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on plasma calcium values, yolk sac morphology and the ability of the yolk sac membrane to transport 45Ca from yolk to embryo. 1,25-(OH)2D3 treatment caused significant hypercalcaemia in 9-, 12- and 15-day embryos. Additionally, this hormone caused a hypertrophy of the endodermal cell layer that comprises the bulk of the yolk sac membrane. Both of these effects were the most dramatic in the 15-day embryo, the oldest age tested. 45Ca added to the yolk was transported into the blood rapidly across the yolk sac membrane. 1,25-(OH)2D3 significantly enhanced this transport in all age groups. [14C]Inulin was also taken across the yolk sac membrane, but at a slower rate than 45Ca; this transport was unaffected by 1,25-(OH)2D3. Thus, the yolk sac responds to 1,25-(OH)2D3 treatment both morphologically and functionally. The mechanism for transport appears to be a specific one, rather than a simple enhancement of non-specific endocytosis.  相似文献   

19.
20.
K P Chepnik  B M Waite 《Teratology》1975,11(3):247-255
Pregnant Long-Evans rats were subjected to a teratogenic regimen, i.e., were fed a synthetic diet lacking folic acid and containing 9-methylpteroylglutamic acid on the 11th to 14th days of gestation. Experimental and control pregnant rats injected with 10 muCi of [2-14C] ethanolamine on the 14th day were killed 1 or 2 days later. The total radioactivity and radioactivities of phosphatidylethanolamine (PE), phosphatidylcholine (PC), and lysophosphatidylethanolamine (LPE) were determined in chloroform extracts of homogenates and subcellular fractions prepared from hemochorionic and yolk sac placentas and maternal liver. The distribution of radioisotope into PC and PE of control and experimental yolk sac placentas was similar, and paralleled the distribution in maternal liver. However, the distribution of radioisotope into PC and PE of the hemochorionic placentas did not parallel that of the maternal liver, and radiolabeled PC accumulated faster in experimental placentas than in controls. We suggest that the ability of the hemochorionic placenta to synthesize PC from PE was impaired by the teratogenic regimen, and that the organ took up relatively more PC from the maternal plasma. We propose that this teratogen-induced shift from placental lecithin synthesis to selective lecithin uptake underlies the previous finding of an increased accumulation of radio-labeled PC in embryos from pregnant females subjected to this teratogenic regimen (Chepenik and Waite, '73).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号