首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
We report here on the characterization of heat shock factor 1 (HSF1), encoded by one of two HSF genes identified in the genome of Chlamydomonas reinhardtii. Chlamydomonas HSF1 shares features characteristic of class A HSFs of higher plants. HSF1 is weakly expressed under non-stress conditions and rapidly induced by heat shock. Heat shock also resulted in hyperphosphorylation of HSF1, and the extent of phosphorylation correlated with the degree of induction of heat shock genes, suggesting a role for phosphorylation in HSF1 activation. HSF1, like HSFs in yeasts, forms high-molecular-weight complexes, presumably trimers, under non-stress, stress and recovery conditions. Immunoprecipitation of HSF1 under these conditions led to the identification of cytosolic HSP70A as a protein constitutively interacting with HSF1. Strains in which HSF1 was strongly under-expressed by RNAi were highly sensitive to heat stress. 14C-labelling of nuclear-encoded proteins under heat stress revealed that synthesis of members of the HSP100, HSP90, HSP70, HSP60 and small HSP families in the HSF1-RNAi strains was dramatically reduced or completely abolished. This correlated with a complete loss of HSP gene induction at the RNA level. These data suggest that HSF1 is a key regulator of the stress response in Chlamydomonas.  相似文献   

7.
This comprehensive overview of the xyloglucan endotransglucosylase/hydrolase (XTH) family of genes and proteins in bryophytes, based on research using genomic resources that are newly available for the moss Physcomitrella patens, provides new insights into plant evolution. In angiosperms, the XTH genes are found in large multi‐gene families, probably reflecting the diverse roles of individual XTHs in various cell types. As there are fewer cell types in P. patens than in angiosperms such as Arabidopsis and rice, it is tempting to deduce that there are fewer XTH family genes in bryophytes. However, the present study unexpectedly identified as many as 32 genes that potentially encode XTH family proteins in the genome of P. patens, constituting a fairly large multi‐gene family that is comparable in size with those of Arabidopsis and rice. In situ localization of xyloglucan endotransglucosylase activity in this moss indicates that some P. patens XTH proteins exhibit biochemical functions similar to those found in angiosperms, and that their expression profiles are tissue‐dependent. However, comparison of structural features of families of XTH genes between P. patens and angiosperms demonstrated the existence of several bryophyte‐specific XTH genes with distinct structural and functional features that are not found in angiosperms. These bryophyte‐specific XTH genes might have evolved to meet morphological and functional needs specific to the bryophyte. These findings raise interesting questions about the biological implications of the XTH family of proteins in non‐seed plants.  相似文献   

8.
Polyploidy events have played an important role in the evolution of angiosperm genomes. Here, we demonstrate how genomic histories can increase phylogenetic resolution in a gene family, specifically the expansin superfamily of cell wall proteins. There are 36 expansins in Arabidopsis and 58 in rice. Traditional sequence-based phylogenetic trees yield poor resolution below the family level. To improve upon these analyses, we searched for gene colinearity (microsynteny) between Arabidopsis and rice genomic segments containing expansin genes. Multiple rounds of genome duplication and extensive gene loss have obscured synteny. However, by simultaneously aligning groups of up to 10 potentially orthologous segments from the two species, we traced the history of 49 out of 63 expansin-containing segments back to the ancestor of monocots and eudicots. Our results indicate that this ancestor had 15-17 expansin genes, each ancestral to an extant clade. Some clades have strikingly different growth patterns in the rice and Arabidopsis lineages, with more than half of all rice expansins arising from two ancestral genes. Segmental duplications, most of them part of polyploidy events, account for 12 out of 21 new expansin genes in Arabidopsis and 16 out of 44 in rice. Tandem duplications explain most of the rest. We were also able to estimate a minimum of 28 gene deaths in the Arabidopsis lineage and nine in rice. This analysis greatly clarifies expansin evolution since the last common ancestor of monocots and eudicots and the method should be broadly applicable to many other gene families.  相似文献   

9.
10.
11.
Yang Z  Zhou Y  Wang X  Gu S  Yu J  Liang G  Yan C  Xu C 《Genomics》2008,92(4):246-253
Tubby-like proteins, which are characterized by a highly conserved tubby domain, play an important role in the maintenance and function of neuronal cells during postdifferentiation and development in mammals. In additional to the tubby domain, most tubby-like proteins in plants also possess an F-box domain. Plants also appear to harbor a large number of TLP genes. To gain insight into how TLP genes evolved in plants, we conducted a comparative phylogenetic and molecular evolutionary analysis of the tubby-like protein gene family in Arabidopsis, rice, and poplar. Genomewide screening identified 11 TLP genes in Arabidopsis, 14 in rice, and 11 in poplar. Phylogenetic trees, domain organizations, and intron/exon structures classified this family into three subfamilies and indicated that species-specific expansion contributed to the evolution of this family in plants. We determined that in rice and poplar, the tubby-like protein family had expanded mainly through segmental duplication events. Tissue-specific expression analysis indicated that functional diversification of the duplicated TLP genes was a major feature of long-term evolution. Our results also demonstrated that the tubby and F-box domains had co-evolved during the evolution of proteins containing both domains.  相似文献   

12.
13.
14.
Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana   总被引:10,自引:0,他引:10  
Winge P  Brembu T  Kristensen R  Bones AM 《Genetics》2000,156(4):1959-1971
Rho GTPases regulate a number of important cellular functions in eukaryotes, such as organization of the cytoskeleton, stress-induced signal transduction, cell death, cell growth, and differentiation. We have conducted an extensive screening, characterization, and analysis of genes belonging to the Ras superfamily of GTPases in land plants (embryophyta) and found that the Rho family is composed mainly of proteins with homology to RAC-like proteins in terrestrial plants. Here we present the genomic and cDNA sequences of the RAC gene family from the plant Arabidopsis thaliana. On the basis of amino acid alignments and genomic structure comparison of the corresponding genes, the 11 encoded AtRAC proteins can be divided into two distinct groups of which one group apparently has evolved only in vascular plants. Our phylogenetic analysis suggests that the plant RAC genes underwent a rapid evolution and diversification prior to the emergence of the embryophyta, creating a group that is distinct from rac/cdc42 genes in other eukaryotes. In embryophyta, RAC genes have later undergone an expansion through numerous large gene duplications. Five of these RAC duplications in Arabidopsis thaliana are reported here. We also present an hypothesis suggesting that the characteristic RAC proteins in higher plants have evolved to compensate the loss of RAS proteins.  相似文献   

15.
16.
17.
Yu Y  Zhang H  Li W  Mu C  Zhang F  Wang L  Meng Z 《Gene》2012,498(2):212-222
The FK506-binding proteins (FKBPs) belong to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, and have been implicated in a wide spectrum of biological processes, including protein folding, hormone signaling, plant growth, and stress responses. Genome-wide structural and evolutionary analyses of the entire FKBP gene family have been conducted in Arabidopsis and rice. In the present study, a genome-wide analysis was performed to identify all maize FKBP genes. The availability of complete maize genome sequences allowed for the identification of 24 FKBP genes. Chromosomal locations in the maize genome were determined and the protein domain and motif organization of ZmFKBPs analyzed. The phylogenetic relationships between maize FKBPs were also assessed. The expression profiles of ZmFKBP genes were measured under different environmental conditions and revealed distinct ZmFKBP gene expression patterns under heat, cold, salt, and drought stress. These data not only contribute to a better understanding of the complex regulation of the maize FKBP gene family, but also provide evidence supporting the role of FKBPs in multiple signaling pathways involved in stress responses. This investigation may provide valuable information for further research on stress tolerance in plants and potential strategies for enhancing maize survival under stressful conditions.  相似文献   

18.
19.
Zhang X  Zong J  Liu J  Yin J  Zhang D 《植物学报(英文版)》2010,52(11):1016-1026
WUSCHEL-related homeobox(WOX)genes form a large gene family specifically expressed in plants.They are known to play important roles in regulating the development of plant tissues and organs by determining cell fate.Recent available whole genome sequences allow us to do more comprehensive phylogenetic analysis of the WOX genes in plants.In the present study,we identified 11 and 21 WOXs from sorghum(Sorghum bicolor)and maize(Zea mays),respectively.The 72 WOX genes from rice(Oryza sativa),sorghum,maize,Arabidopsis(Arabidopsis thaliana)and poplar(Populus trichocarpa)were grouped into three well supported clades with nine subgroups according to the amino acid sequences of their homodomains.Their phylogenetic relationship was also supported by the observation of the motifs outside the homodomain.We observed the variation of duplication events among the nine sub-groups between monocots and eudicots,for instance,more gene duplication events of WOXs within subgroup A for monocots,while,less for dicots in this subgroup.Furthermore,we observed the conserved intron/exon structural patterns of WOX genes in rice,sorghum and Arabidopsis.In addition,WUS(Wuschel)-box and EAR(the ERF-associated amphiphilic repression)-like motif were observed to be conserved among several WOX subgroups in these five plants.Comparative analysis of expression patterns of WOX genes in rice and Arabidopsis suggest that the WOX genes play conserved and various roles in plants.This work provides insights into the evolution of the WOX gene family and is useful for future research.  相似文献   

20.
Molecular evolutionary studies correlate genomic and phylogenetic information with the emergence of new traits of organisms. These traits are, however, the consequence of dynamic gene networks composed of functional modules, which might not be captured by genomic analyses. Here, we established a method that combines large‐scale genomic and phylogenetic data with gene co‐expression networks to extensively study the evolutionary make‐up of modules in the moss Physcomitrella patens, and in the angiosperms Arabidopsis thaliana and Oryza sativa (rice). We first show that younger genes are less annotated than older genes. By mapping genomic data onto the co‐expression networks, we found that genes from the same evolutionary period tend to be connected, whereas old and young genes tend to be disconnected. Consequently, the analysis revealed modules that emerged at a specific time in plant evolution. To uncover the evolutionary relationships of the modules that are conserved across the plant kingdom, we added phylogenetic information that revealed duplication and speciation events on the module level. This combined analysis revealed an independent duplication of cell wall modules in bryophytes and angiosperms, suggesting a parallel evolution of cell wall pathways in land plants. We provide an online tool allowing plant researchers to perform these analyses at http://www.gene2function.de .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号