首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The plethodontid genus Batrachoseps , the slender salamanders, is the most diverse clade of salamanders in western North America, but it has posed taxonomic difficulties because it contains many morphologically cryptic species. A segment of the mitochondrial DNA gene cytochrome b was studied for 278 individuals densely sampled from throughout the range of all 18 described species and several undescribed species. Phylogenetic analyses of the mtDNA data identify six major clades, one corresponding to the subgenus Plethopsis and five within a monophyletic subgenus Batrachoseps. All major clades and most species within these clades display strong phylogeographic structuring. Comparisons of mtDNA and allozyme data show that several allozymically cohesive groups are not monophyletic with respect to mtDNA. We suggest that this phenomenon results from fragmentation of populations, divergence in allopatry, and then recontact and gradual merging of units caused predominantly by male-mediated gene flow. The mtDNA offers evidence that populations were once more isolated than they are now, while the patterns of allozyme variation reflect recent and current interactions among populations. The complex patterns of morphological, allozymic and mtDNA variation associated with the constantly changing geological landscape give insight into the nature of processes responsible for species formation in Batrachoseps .  © 2002 The Linnean Society of London. Biological Journal of the Linnean Society , 2002, 76 , 361–391.  相似文献   

2.
The taxonomy and systematics of the New Caledonian endemic caddisfly genus Gracilipsodes Sykora, 1967 (Trichoptera: Leptoceridae: Grumichellini) are reviewed. Seven new species represented by males are described and illustrated: Gracilipsodes aoupiniensis sp. nov. , Gracilipsodes aureus sp. nov. , Gracilipsodes aurorus sp. nov. , Gracilipsodes grandis sp. nov. , Gracilipsodes koghiensis sp. nov. , Gracilipsodes lanceolatus sp. nov. , and Gracilipsodes robustus sp. nov. Molecular phylogenetic analyses are applied to discern the relationships among the species of the genus and their closest relatives, based on sequence characters from the nuclear gene translation elongation factor-1α (EF-1α) and the three mitochondrial genes cytochrome oxidase I (COI), COII, and ribosomal large subunit (16S). The data are analyzed using parsimony and Bayesian inference, revealing a monophyletic Gracilipsodes with the eastern Australian monotypic genus Triplexa as its closest relative. Gracilipsodes is in turn divided into two major lineages.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 153 , 425–452.  相似文献   

3.
Phylogenetic analysis of the genus Euscorpius (Scorpiones: Euscorpiidae) across the Mediterranean region (86 specimens, 77 localities, four DNA markers: 16S rDNA, COI, COII, and ITS1), focusing on Greek fauna, revealed high variation, deep clade divergences, many cryptic lineages, paraphyly at subgenus level, and sympatry of several new and formerly known lineages. Numerous specimens from mainland and insular Greece, undoubtedly the least studied region of the genus' distribution, have been included. The reconstructed phylogeny covers representative taxa and populations across the entire genus of Euscorpius. The deepest clades detected within Euscorpius correspond (partially) to its current subgeneric division, outlining subgenera Tetratrichobothrius and Alpiscorpius. The rest of the genus falls into several clades, including subgenus Polytrichobothrius and a paraphyletic subgenus Euscorpius s.s. Several cryptic lineages are recovered, especially on the islands. The inadequacy of the morphological characters used in the taxonomy of the genus to delineate species is discussed. Finally, the time frame of differentiation of Euscorpius in the study region is estimated and the distributional patterns of the lineages are contrasted with those of other highly diversified invertebrate genera occurring in the study region. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 728–748.  相似文献   

4.
The chromosomes of four species of Australian tiger beetle are documented. The male meioformulae of three species of Cicindela (tribe Cicindelini) were determined as follow: Cicindela cardinalba Sumlin 1987, n = 10 + X1 X2 X3Y; C. sp. ( saetigera group) and Cicindela gillesensis Hudson 1994, n = 11 + X1 X2 X3Y. The male meioformula of Megacephala whelani Sumlin 1992 (tribe Megacephalini) is n = 12 + XY. Fluorescence in situ hybridization (FISH) was used to localize the 18S-28S ribosomal gene clusters on male mitotic and meiotic chromosomes and nuclei using a polymerase chain reaction-amplified ribosomal probe. Fluorescence in mitosis and meiotic first prophase stages in the three Cicindela species showed that rDNA genes are in two of the four chromosomes that form the sex vesicle. In M. whelani hybridization in mitosis and first metaphase stages indicate that rDNA genes are in three, medium- to small-sized, autosomal pairs. Silver staining of male meiotic nuclei reveals the presence of active nucleolar organizing regions (NORs) in the sex vesicle of the three species of Cicindela . The cytogenetic and evolutionary implications of these findings are discussed.  相似文献   

5.
Phylogenetic relationships among members of the Aphid genus Brachycaudus (Homoptera: Aphididae) were inferred from partial sequences of mitochondrial cytochrome B oxidase (CytB), two partial fragments of mitochondrial cytochrome C oxidase subunit I (COI) and the internal transcribed spacer II (ITS2) of ribosomal DNA. Twenty-nine species, with several specimens per species, were included, representing all the historically recognized species-groups and subgenera used in the genus except the monospecific subgenus Mordvilkomemor. Results indicate that the genus Brachycaudus is a well-supported monophyletic group. While our results validate the monophyly of subgenera Thuleaphis , Appelia and Brachycaudus s. str. , they reveal two discrepancies in the classical taxonomy. First, the monotypic subgenus Nevskyaphis does not appear valid. Second, the traditionally defined Acaudus subgenus is not monophyletic. On the other hand, our phylogenetic trees corroborate Andreev's recent definition of Acaudus and Brachycaudina. However, they clearly show that the subgenera Prunaphis , Nevskyaphis and Scrophulaphis as defined by this author do not form monophyletic groups. Our results also highlight a highly supported clade that has not been discussed by previous authors; this clade could form a new subgenus, the subgenus Nevskyaphis . Finally, our study shows that molecular data and morphology meet the same limits in delimiting species groups and species themselves. Species groups in which taxonomic treatment is difficult are polytomous. Furthermore, except for one node clustering Brachycaudus s. str . and Appelia, intersubgeneric relationships remain poorly resolved even when several genes are added to the phylogenetic analysis. These results, together with previous studies in other aphid groups suggest that diversification might have been a rapid process in aphids.  相似文献   

6.
Sequences of the chloroplast trnT-trnF region were analyzed for species of the genus Potamogeton distributed in China to reconstruct phylogenetic relationships. The phylogenetic analyses showed that the genus Potamogeton could be divided into two clades. Eighteen species formed a monophyletic clade while the remaining four formed a second, distinguishable one, supporting the conventional treatment that the genus Potamogeton contains the submerged linear-leaved group and the submerged broad-leaved group. The first clade, which represented the subgenus Potamogeton, could be further divided into two subclades. The second clade, which represented the subgenus Coleogeton, displayed a close phylogenetic relationship with the subgenus Potamogeton and occupied a unique position within the genus Potamogeton. This finding suggested that the treatment of the subgenus Coleogeton, which was once regarded as the genus Stuckenia Börner, may need to be reconsidered. Furthermore, identification of maternal donors of some hybrids was successfully applied based on sequence of maternally inherited chloroplast genome. The female parents of three putative hybrids, P. × malainoides, P. × anguillanus, and P. × orientalis, were proved to be accordant with previous morphological conclusions.  相似文献   

7.
The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy’s zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya).  相似文献   

8.
Ainscough, B.J., Breinholt, J.W., Robison, H.W. & Crandall, K.A. (2013). Molecular phylogenetics of the burrowing crayfish genus Fallicambarus (Decapoda: Cambaridae). —Zoologica Scripta, 42, 306–316. The crayfish genus Fallicambarus contains 19 species of primary burrowing freshwater crayfish divided into two distinct subgenera. We test current hypotheses of the phylogenetic relationships among species within the genus as well as the monophyly of the genus. Our study samples all 19 species for five gene regions (both nuclear and mitochondrial) to estimate a robust phylogenetic hypothesis for the genus. We show that the genus is not a monophyletic group. The subgenus Creaserinus does fall out as a monophyletic group, but distinct from the subgenus Fallicambarus. The subgenus Fallicambarus appears to be monophyletic with the exception of the species Procambarus (Tenuicambarus) tenuis, which falls in the midst of this subgenus suggesting that it might be better classified as a Fallicambarus species. We also show that the species Fallicambarus fodiens is a species complex with distinct evolutionary lineages that are regionalized to different geographic areas.  相似文献   

9.
Taxonomic status of the zoanthid genera Palythoa and Protopalythoa has been in question for almost a century. Separation of the two genera has been based on traditional morphological methods (colony and polyp form, nematocyst size and form, and number of septa), with Palythoa polyps embedded in a well developed coenenchyme and Protopalythoa polyps standing free and clear of the coenenchyme. Here we sequenced two mitochondrial regions, the cytochrome oxidase I (COI) gene and 16S ribosomal DNA (16S rDNA) genes, from Palythoa and Protopalythoa samples from various parts of the world and performed phylogenetic analyses of the sequence data. The phylogenetic trees for both COI and 16S rDNA from Palythoa and Protopalythoa show four monophyletic groups (designated Palythoa tuberculosa, Palythoa heliodiscus, Palythoa mutuki 1, and Palythoa mutuki 2), with levels of sequence divergence (COI and 16S rDNA divergence approximately 0.0 approximately 1.1%) similar to or lower than that previously found among congeneric species within the closely related genus Zoanthus. Surprisingly, sequence differences among Palythoa tuberculosa, Palythoa mutuki 1, and Palythoa mutuki 2 were negligible (0.0 approximately 0.2% for both COI and 16S rDNA), potentially indicating relationships below the species level. Our sequences align well with the few Palythoa and Protopalythoa sequences reported to date. These findings strongly indicate that our samples represent a minimum of two and possibly up to four species (the Palythoa tuberculosa - P. mutuki 1 - P. mutuki 2 group, and P. heliodiscus) within the genus Palythoa, and that the genus Protopalythoa is erroneous nomenclature.  相似文献   

10.
Up to few years ago, the phylogenies of tardigrade taxa have been investigated using morphological data, but relationships within and between many taxa are still unresolved. Our aim has been to verify those relationships adding molecular analysis to morphological analysis, using nearly complete 18S ribosomal DNA gene sequences (five new) of 19 species, as well as cytochrome oxidase subunit 1 (COI) mitochondrial DNA gene sequences (15 new) from 20 species, from a total of seven families. The 18S rDNA tree was calculated by minimum evolution, maximum parsimony (MP) and maximum likelihood (ML) analyses. DNA sequences coding for COI were translated to amino acid sequences and a tree was also calculated by neighbour-joining, MP and ML analyses. For both trees (18S rDNA and COI) posterior probabilities were calculated by MrBayes. Prominent findings are as follows: the molecular data on Echiniscidae (Heterotardigrada) are in line with the phylogenetic relationships identifiable by morphological analysis. Among Eutardigrada, orders Apochela and Parachela are confirmed as sister groups. Ramazzottius (Hypsibiidae) results more related to Macrobiotidae than to the genera here considered of Hypsibiidae. Macrobiotidae and Macrobiotus result not monophyletic and confirm morphological data on the presence of at least two large groups within Macrobiotus. Using 18S rDNA and COI mtDNA genes, a new phylogenetic line has been identified within Macrobiotus , corresponding to the ' richtersi-areolatus group'. Moreover, cryptic species have been identified within the Macrobiotus ' richtersi group' and within Richtersius . Some evolutionary lines of tardigrades are confirmed, but others suggest taxonomic revision. In particular, the new genus Paramacrobiotus gen. n. has been identified, corresponding to the phylogenetic line represented by the ' richtersi-areolatus group'.  相似文献   

11.
We present phylogenetic analyses of the lizard genus Diplodactylus subgenus Strophurus using 1646 aligned positions of mitochondrial DNA sequences containing 893 parsimony-informative characters for samples of 12 species of Strophurus and 19 additional Australian gecko species. Sequences from three protein-coding genes (ND1, ND2 and COI) and eight intervening transfer RNA genes were examined using parsimony, maximum-likelihood and Bayesian analyses. Species of Strophurus appeared to form a monophyletic group with the possible exception of S. taenicauda . Strophurus has evolved two distinct defence/display characteristics: caudal glands, which expel an unpalatable substance, and striking mouth colours. Caudal glands appeared to have arisen once in a common ancestor of Strophurus , with dermal augmentation of caudal glands characterizing a subclade within the subgenus. Evolution of yellow and dark-blue mouth colours in Strophurus occurred in the context of diurnal activity and may be interpreted as an augmentation of defensive behavioural displays. Molecular divergence suggests that arboreality evolved in a common ancestor of Oedura and Strophurus approximately 29 Mya and that the caudal glands of Strophurus arose approximately 25 Mya.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 123–138.  相似文献   

12.
In the present study, we investigated the intrageneric and intergeneric phylogenetic relationships of the heterotrophic marine dinoflagellate genus Protoperidinium. Using single‐cell polymerase chain reaction methods, we determined small subunit ribosomal RNA gene sequences for 10 Protoperidinium species belonging to four sections and two subgenera. Phylogenetic trees were constructed using maximum parsimony, neighbor joining and maximum likelihood methods. We found intraspecific variability of small subunit rDNA sequences in Protoperidinium conicum (Gran) Balech, Protoperidinium crassipes (Kofoid) Balech and Protoperidinium denticulatum (Gran et Braarud) Balech, but not in other species. The small subunit rDNA phylogeny revealed that the genus is monophyletic, but its phylogenetic position within the Dinophyceae could not be determined because of ambiguous basal topologies. Within the genus Protoperidinium, species of the subgenus Archaeperidinium with two anterior intercalary plates (2a) were shown to be monophyletic, but species of the subgenus Protoperidinium with three anterior intercalary plates (3a) were resolved as paraphyletic. The sections Avellana, Divergentia and Protoperidinium were shown to be monophyletic, while the section Conica was paraphyletic. Based on the trees obtained in the present study, most of the traditionally defined sections are supported by molecular phylogeny. It was also indicated that the section Avellana evolved from one of the Conica‐type dinoflagellates.  相似文献   

13.
The karyomorphology of 11 species of the genus Incarvillea Juss. is reported. The chromosome numbers of all species studied are 2 n  = 22. The interphase nuclei and prophase chromosomes were found to be of the simple chromocentre type and the interstitial type, respectively. The asymmetry of the karyotype of I. arguta (two populations) in subgenus Amphicome is type 2A. The karyotypes of Incarvillea s inensis var. sinensis , I.  s inensis var. przewalskii, and I. olgae in subgenus Incarvillea are of asymmetry type 3A. The remaining nine species and one variety in subgenus Pteroscleris are also of asymmetry 3A. Data on three species and one variety studied are first reports. This study indicates that karyotype variation at the diploid level appears to be the predominant feature of chromosome evolution in the genus Incarvillea . According to this study of karyomorphology, morphological characteristics and geographical distribution, it seems that the three subgenera should be regarded as three independent genera. The geography of the genus is discussed.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 113–121.  相似文献   

14.
The Nymphaeales (water-lilies and relatives) represent one of the earliest branching lineages of angiosperms and comprise about 70 aquatic species. Here, we present a comprehensive study of phylogenetic relationships within the Nymphaeales from a dataset containing 24 representatives of the order, including all currently recognized genera and all subgenera of the genus Nymphaea , plus 5 outgroup taxa. Nine different regions of the chloroplast genome − comprising spacers, group II introns, a group I intron, and a protein coding gene − were analysed. This resulted in a character matrix of 6597 positions and an additional 369 characters obtained from coded length mutations. Maximum parsimony and Bayesian analyses of the complete dataset yielded congruent, fully resolved and well-supported trees. Our data confirm the monophyly of the Cabombaceae but do not provide convincing support for the monophyly of Nymphaeaceae with respect to Nuphar . Moreover, the genus Nymphaea is inferred to be paraphyletic with respect to Ondinea , Victoria and Euryale . In fact, the Australian endemic Ondinea forms a highly supported clade with members of the Australian Nymphaea subgenus Anecphya . In addition, Victoria and Euryale are inferred to be closely related to a clade comprising all night-blooming water-lilies ( Nymphaea subgenera Hydrocallis and Lotos ). An experimental approach showed taxon sampling to be of influence on the nodes reconstructed in core Nymphaeaceae. The results underscore that more diverse genera, if not clearly known to be monophyletic, should be represented by all major lineages.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 154 , 141–163.  相似文献   

15.
The phylogeny and biogeography of the Malayan freshwater crab genus Johora was studied using two mitochondrial genes, 16S rRNA (560 bp) and cytochrome oxidase subunit I (COI) (616 bp), and one nuclear gene, histone 3 (H3) (328 bp). Johora is shown to be monophyletic and composed of three clades that correspond with the topography of the Malay Peninsula. The three clades were estimated to be of similar age ( c . 11 million years ago (mya)). The Malayan island of Pulau Tioman (with five species) was determined to have been colonised independently by two separate clades (at c . 11 and 5 mya, respectively), one of which evolved semiterrestrial habits, possibly in response to competition by the second. A partitioned Bremer support (PBS) analysis reveals that most of the support for the phylogenetic tree comes from the COI gene fragment and that the nuclear protein-encoding genes H3 is useful for reconstructing the relationships of Johora .  相似文献   

16.
Phaseolus vulgaris has two 5S rDNA sites in chromosomes 6 and 10 and from two up to nine 45S rDNA sites depending on the accession. The presence of three 45S rDNA sites, in chromosomes 6, 9 and 10, is considered the ancestral state for the species. For P. lunatus, only one 5S and one 45S rDNA sites in distinct chromosomes were known. In order to investigate the homeologies among these rDNA-bearing chromosomes and the stability of the rDNA sites in P. lunatus, rDNA and P. vulgaris chromosome-specific probes were hybridized in situ to P. lunatus. The chromosomes bearing the 5S and the 45S rDNA of P. lunatus are homeologous to chromosomes 10 and 6 of P. vulgaris, respectively. In contrast to the common bean, no variation in the number of rDNA loci was detected, except for a duplication of the 5S rDNA in the same chromosome in a small group of cultivars. These results suggest that the 5S rDNA site in chromosome 10 and the 45S rDNA site in chromosome 6 represent the ancestral loci in the genus. The 5S rDNA site in chromosome 10 of P. vulgaris is located in the long arm, while in P. lunatus it is present in the short arm, suggesting the occurrence of a transposition or a pericentric inversion after separation of both lineages.  相似文献   

17.
Drosophilidae (Diptera) is a diverse, cosmopolitan family of flies. Here, we present a combined analysis phylogeny of Drosophilinae, one of the two subfamilies of Drosophilidae, based on data from six different data partitions, including both molecular and morphological characters. Although our data show support for the monophyly of the Hawaiian Drosophilidae, and the subgenus Sophophora, neither the genus Drosophila nor the subgenus Drosophila is monophyletic. Partitioned Bremer support (PBS) indicates that morphological data taken from Grimaldi's monograph (Grimaldi, 1990a), as well as sequences from the mitochondrial (mt) 16S rDNA and the nuclear Adh gene, lend much support to our tree's topology. This is particularly interesting in the case of Grimaldi's data, since his published hypothesis conflicts with ours in significant ways. Our combined analysis cladogram phylogeny reflects the catch-all designation that the name Drosophila has become, in that the cladogram does not support the monophyly of either the genus or subgenus Drosophila.  相似文献   

18.
大蚊属Tipula Linnaeus,1758是大蚊科中种类最多的属,目前其单系性尚未得到全面验证.此外,长角大蚊亚属Tipula (Sivatipula) Alexander,1964因其极长的触角以及独有的精子泵结构,明显不同于大蚊属其他亚属,使其亚属的分类地位存在争议.本研究基于COI序列对19个大蚊属物种及5个其他属物种进行了系统发育分析,并计算了物种间的遗传距离.研究结果表明:(1)邻接树(NJ)和最大似然树(ML)均显示长角大蚊亚属与大蚊属其他亚属未形成单系,大蚊属的单系性没有得到支持;(2)基于遗传距离和系统发育分析并结合形态信息,结果显示长角大蚊亚属独立于大蚊属内其他亚属,应将其提升为属级分类单元.  相似文献   

19.
Voles of the genus Microtus represent one of the most speciose mammalian genera in the Holarctic. We established a molecular phylogeny for Microtus to resolve contentious issues of systematic relationships and evolutionary history in this genus. A total of 81 specimens representing ten Microtus species endemic to Europe as well as eight Eurasian, six Asian and one Holarctic species were sequenced for the entire cytochrome b gene (1140 bp). A further 25 sequences were retrieved from GenBank, providing data on an additional 23, mainly Nearctic, Microtus species. Phylogenetic analysis of these 48 species generated four well-supported monophyletic lineages. The genus Chionomys, snow voles, formed a distinct and well-supported lineage separate from the genus Microtus. The subgenus Microtus formed the strongest supported lineage with two sublineages displaying a close relationship between the arvalis species group (common voles) and the socialis species group (social voles). Monophyly of the Palearctic pitymyid voles, subgenus Terricola, was supported, and this subgenus was also subdivided into two monophyletic species groups. Together, these groupings clarify long-standing taxonomic uncertainties in Microtus. In addition, the "Asian" and the Nearctic lineages reported previously were identified although the latter group was not supported. However, relationships among the main Microtus branches were not resolved, suggesting a rapid and potentially simultaneous radiation of a widespread ancestor early in the history of the genus. This and subsequent radiations discernible in the cytochrome b phylogeny, show the considerable potential of Microtus for analysis of historical and ecological determinants of speciation in small mammals. It is evident that speciation is an ongoing process in the genus and that the molecular data provides a vital insight into current species limits as well as cladogenic events of the past.  相似文献   

20.
基于Adh1基因分析高粱属的系统进化关系   总被引:1,自引:0,他引:1  
高梁属中有重要的粮食作物和优良牧草, 也有农业生产上的重要杂草。文章旨在进一步从分子水平阐明高梁属种间的系统进化关系, 为有效利用种质资源进行分子育种改良作物品质提供理论依据, 并明确检疫性杂草的分类地位。根据二色高粱(Sorghum bicolor)的Adh1全基因序列(GenBank登录号: AF050456)设计引物, 扩增并测定黑高粱(S. almum)、假高粱(S. halepense)、丝克高粱(S. silk)和苏丹草(S. sudanense)共计8个植物材料约2 000 bp的Adh1基因部分序列, 结合GenBank中其他24个Sorghum属的同源序列, 以Cleistachne sorghoides的对应序列为外群, 进行了高梁属的亲缘关系分析, 用MP、ML和NJ法分别构建了分子进化树, 得到了基本相同的拓扑结构。结果显示: (1) 高梁属可明显分为三大支, 一支是蒴柄高梁(Chaetosorghum)和异高梁(Heterosorghum)二个亚属, 一支是优高梁亚属(Eusorghum), 这两个分支包含2n=20、40, 染色体较小的种类, 另一分支包括拟高梁 (Parasorghum)和有柄高梁(Stiposorghum)两个亚属, 包含2n=10的种类和它们的多倍体近缘种, 染色体相对较大; (2) S. almum的Adh1基因表现出明显的地理分化; (3) Parasorghum亚属的S. pur-pureosericeum和多色高粱(S. versicolor)、光高粱(S. nitidum)和S. leiocladum聚在一起, 而该亚属中的S. mata-rankense、S. grande、S. timorense却与亚属Stiposorghum的种聚在一起, 表现出更近的亲缘关系; (4) S. mac-rospermum和S. laxiflorum之间具有比其他高梁属种更近的亲缘关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号