首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robust PCA and classification in biosciences   总被引:7,自引:0,他引:7  
MOTIVATION: Principal components analysis (PCA) is a very popular dimension reduction technique that is widely used as a first step in the analysis of high-dimensional microarray data. However, the classical approach that is based on the mean and the sample covariance matrix of the data is very sensitive to outliers. Also, classification methods based on this covariance matrix do not give good results in the presence of outlying measurements. RESULTS: First, we propose a robust PCA (ROBPCA) method for high-dimensional data. It combines projection-pursuit ideas with robust estimation of low-dimensional data. We also propose a diagnostic plot to display and classify the outliers. This ROBPCA method is applied to several bio-chemical datasets. In one example, we also apply a robust discriminant method on the scores obtained with ROBPCA. We show that this combination of robust methods leads to better classifications than classical PCA and quadratic discriminant analysis. AVAILABILITY: All the programs are part of the Matlab Toolbox for Robust Calibration, available at http://www.wis.kuleuven.ac.be/stat/robust.html.  相似文献   

2.
Discrimination of disease patients based on gene expression data is a crucial problem in clinical area. An important issue to solve this problem is to find a discriminative subset of genes from thousands of genes on a microarray or DNA chip. Aiming at finding informative genes for disease classification on microarray, we present a gene selection method based on the forward variable (gene) selection method (FSM) and show, using typical public microarray datasets, that our method can extract a small set of genes being crucial for discriminating different classes with a very high accuracy almost closed to perfect classification.  相似文献   

3.
MOTIVATION: Cancer diagnosis is one of the most important emerging clinical applications of gene expression microarray technology. We are seeking to develop a computer system for powerful and reliable cancer diagnostic model creation based on microarray data. To keep a realistic perspective on clinical applications we focus on multicategory diagnosis. To equip the system with the optimum combination of classifier, gene selection and cross-validation methods, we performed a systematic and comprehensive evaluation of several major algorithms for multicategory classification, several gene selection methods, multiple ensemble classifier methods and two cross-validation designs using 11 datasets spanning 74 diagnostic categories and 41 cancer types and 12 normal tissue types. RESULTS: Multicategory support vector machines (MC-SVMs) are the most effective classifiers in performing accurate cancer diagnosis from gene expression data. The MC-SVM techniques by Crammer and Singer, Weston and Watkins and one-versus-rest were found to be the best methods in this domain. MC-SVMs outperform other popular machine learning algorithms, such as k-nearest neighbors, backpropagation and probabilistic neural networks, often to a remarkable degree. Gene selection techniques can significantly improve the classification performance of both MC-SVMs and other non-SVM learning algorithms. Ensemble classifiers do not generally improve performance of the best non-ensemble models. These results guided the construction of a software system GEMS (Gene Expression Model Selector) that automates high-quality model construction and enforces sound optimization and performance estimation procedures. This is the first such system to be informed by a rigorous comparative analysis of the available algorithms and datasets. AVAILABILITY: The software system GEMS is available for download from http://www.gems-system.org for non-commercial use. CONTACT: alexander.statnikov@vanderbilt.edu.  相似文献   

4.
The growing body of DNA microarray data has the potential to advance our understanding of the molecular basis of disease. However annotating microarray datasets with clinically useful information is not always possible, as this often requires access to detailed patient records. In this study we introduce GLAD, a new Semi-Supervised Learning (SSL) method for combining independent annotated datasets and unannotated datasets with the aim of identifying more robust sample classifiers. In our method, independent models are developed using subsets of genes for the annotated and unannotated datasets. These models are evaluated according to a scoring function that incorporates terms for classification accuracy on annotated data, and relative cluster separation in unannotated data. Improved models are iteratively generated using a genetic algorithm feature selection technique. Our results show that the addition of unannotated data into training, significantly improves classifier robustness.  相似文献   

5.
Pathway analysis using random forests classification and regression   总被引:3,自引:0,他引:3  
MOTIVATION: Although numerous methods have been developed to better capture biological information from microarray data, commonly used single gene-based methods neglect interactions among genes and leave room for other novel approaches. For example, most classification and regression methods for microarray data are based on the whole set of genes and have not made use of pathway information. Pathway-based analysis in microarray studies may lead to more informative and relevant knowledge for biological researchers. RESULTS: In this paper, we describe a pathway-based classification and regression method using Random Forests to analyze gene expression data. The proposed methods allow researchers to rank important pathways from externally available databases, discover important genes, find pathway-based outlying cases and make full use of a continuous outcome variable in the regression setting. We also compared Random Forests with other machine learning methods using several datasets and found that Random Forests classification error rates were either the lowest or the second-lowest. By combining pathway information and novel statistical methods, this procedure represents a promising computational strategy in dissecting pathways and can provide biological insight into the study of microarray data. AVAILABILITY: Source code written in R is available from http://bioinformatics.med.yale.edu/pathway-analysis/rf.htm.  相似文献   

6.

Background  

Feature selection plays an undeniably important role in classification problems involving high dimensional datasets such as microarray datasets. For filter-based feature selection, two well-known criteria used in forming predictor sets are relevance and redundancy. However, there is a third criterion which is at least as important as the other two in affecting the efficacy of the resulting predictor sets. This criterion is the degree of differential prioritization (DDP), which varies the emphases on relevance and redundancy depending on the value of the DDP. Previous empirical works on publicly available microarray datasets have confirmed the effectiveness of the DDP in molecular classification. We now propose to establish the fundamental strengths and merits of the DDP-based feature selection technique. This is to be done through a simulation study which involves vigorous analyses of the characteristics of predictor sets found using different values of the DDP from toy datasets designed to mimic real-life microarray datasets.  相似文献   

7.
Although the random forest classification procedure works well in datasets with many features, when the number of features is huge and the percentage of truly informative features is small, such as with DNA microarray data, its performance tends to decline significantly. In such instances, the procedure can be improved by reducing the contribution of trees whose nodes are populated by non-informative features. To some extent, this can be achieved by prefiltering, but we propose a novel, yet simple, adjustment that has demonstrably superior performance: choose the eligible subsets at each node by weighted random sampling instead of simple random sampling, with the weights tilted in favor of the informative features. This results in an 'enriched random forest'. We illustrate the superior performance of this procedure in several actual microarray datasets.  相似文献   

8.
MOTIVATION: The nearest shrunken centroids classifier has become a popular algorithm in tumor classification problems using gene expression microarray data. Feature selection is an embedded part of the method to select top-ranking genes based on a univariate distance statistic calculated for each gene individually. The univariate statistics summarize gene expression profiles outside of the gene co-regulation network context, leading to redundant information being included in the selection procedure. RESULTS: We propose an Eigengene-based Linear Discriminant Analysis (ELDA) to address gene selection in a multivariate framework. The algorithm uses a modified rotated Spectral Decomposition (SpD) technique to select 'hub' genes that associate with the most important eigenvectors. Using three benchmark cancer microarray datasets, we show that ELDA selects the most characteristic genes, leading to substantially smaller classifiers than the univariate feature selection based analogues. The resulting de-correlated expression profiles make the gene-wise independence assumption more realistic and applicable for the shrunken centroids classifier and other diagonal linear discriminant type of models. Our algorithm further incorporates a misclassification cost matrix, allowing differential penalization of one type of error over another. In the breast cancer data, we show false negative prognosis can be controlled via a cost-adjusted discriminant function. AVAILABILITY: R code for the ELDA algorithm is available from author upon request.  相似文献   

9.
10.
MOTIVATION: Discriminant analysis for high-dimensional and low-sample-sized data has become a hot research topic in bioinformatics, mainly motivated by its importance and challenge in applications to tumor classifications for high-dimensional microarray data. Two of the popular methods are the nearest shrunken centroids, also called predictive analysis of microarray (PAM), and shrunken centroids regularized discriminant analysis (SCRDA). Both methods are modifications to the classic linear discriminant analysis (LDA) in two aspects tailored to high-dimensional and low-sample-sized data: one is the regularization of the covariance matrix, and the other is variable selection through shrinkage. In spite of their usefulness, there are potential limitations with each method. The main concern is that both PAM and SCRDA are possibly too extreme: the covariance matrix in the former is restricted to be diagonal while in the latter there is barely any restriction. Based on the biology of gene functions and given the feature of the data, it may be beneficial to estimate the covariance matrix as an intermediate between the two; furthermore, more effective shrinkage schemes may be possible. RESULTS: We propose modified LDA methods to integrate biological knowledge of gene functions (or variable groups) into classification of microarray data. Instead of simply treating all the genes independently or imposing no restriction on the correlations among the genes, we group the genes according to their biological functions extracted from existing biological knowledge or data, and propose regularized covariance estimators that encourages between-group gene independence and within-group gene correlations while maintaining the flexibility of any general covariance structure. Furthermore, we propose a shrinkage scheme on groups of genes that tends to retain or remove a whole group of the genes altogether, in contrast to the standard shrinkage on individual genes. We show that one of the proposed methods performed better than PAM and SCRDA in a simulation study and several real data examples.  相似文献   

11.
The most widely used statistical methods for finding differentially expressed genes (DEGs) are essentially univariate. In this study, we present a new T(2) statistic for analyzing microarray data. We implemented our method using a multiple forward search (MFS) algorithm that is designed for selecting a subset of feature vectors in high-dimensional microarray datasets. The proposed T2 statistic is a corollary to that originally developed for multivariate analyses and possesses two prominent statistical properties. First, our method takes into account multidimensional structure of microarray data. The utilization of the information hidden in gene interactions allows for finding genes whose differential expressions are not marginally detectable in univariate testing methods. Second, the statistic has a close relationship to discriminant analyses for classification of gene expression patterns. Our search algorithm sequentially maximizes gene expression difference/distance between two groups of genes. Including such a set of DEGs into initial feature variables may increase the power of classification rules. We validated our method by using a spike-in HGU95 dataset from Affymetrix. The utility of the new method was demonstrated by application to the analyses of gene expression patterns in human liver cancers and breast cancers. Extensive bioinformatics analyses and cross-validation of DEGs identified in the application datasets showed the significant advantages of our new algorithm.  相似文献   

12.
The human gastrointestinal tract (GI-tract) harbors a complex microbial ecosystem, largely composed of so far uncultured species, which can be detected only by using techniques such as PCR and by different hybridization techniques including phylogenetic microarrays. Manual DNA extraction from feces is laborious and is one of the bottlenecks holding up the application of microarray and other DNA-based techniques in large cohort studies. In order to enhance the DNA extraction step we combined mechanical disruption of microbial cells by repeated bead-beating (RBB) with two automated DNA extraction methods, KingFisher with InviMag Stool DNA kit (KF) and NucliSENS easyMAG (NeM). The semi-automated DNA extraction methods, RBB combined with either KF or NeM, were compared to the manual extraction method currently considered the most suited method for fecal DNA extraction by assessing the yield of 16S rRNA gene copies by qPCR and total microbiota composition by the HITChip, a phylogenetic microarray. Parallel DNA extractions from infant fecal samples by using the three methods showed that the KF and manual methods gave comparable yields of 16S rRNA gene copies as assessed by qPCR, whereas NeM showed a significantly lower yield. All three methods showed highly similar microbiota profiles in HITChip. Both KF and NeM were found to be suitable methods for DNA extraction from fecal samples after the mechanical disruption of microbial cells by bead-beating. The semi-automated methods could be performed in half of the time required for the manual protocol, while being comparable to the manual method in terms of reagent costs.  相似文献   

13.
14.

Motivation

DNA microarray analysis is characterized by obtaining a large number of gene variables from a small number of observations. Cluster analysis is widely used to analyze DNA microarray data to make classification and diagnosis of disease. Because there are so many irrelevant and insignificant genes in a dataset, a feature selection approach must be employed in data analysis. The performance of cluster analysis of this high-throughput data depends on whether the feature selection approach chooses the most relevant genes associated with disease classes.

Results

Here we proposed a new method using multiple Orthogonal Partial Least Squares-Discriminant Analysis (mOPLS-DA) models and S-plots to select the most relevant genes to conduct three-class disease classification and prediction. We tested our method using Golub’s leukemia microarray data. For three classes with subtypes, we proposed hierarchical orthogonal partial least squares-discriminant analysis (OPLS-DA) models and S-plots to select features for two main classes and their subtypes. For three classes in parallel, we employed three OPLS-DA models and S-plots to choose marker genes for each class. The power of feature selection to classify and predict three-class disease was evaluated using cluster analysis. Further, the general performance of our method was tested using four public datasets and compared with those of four other feature selection methods. The results revealed that our method effectively selected the most relevant features for disease classification and prediction, and its performance was better than that of the other methods.  相似文献   

15.
Integrating gene regulatory networks (GRNs) into the classification process of DNA microarrays is an important issue in bioinformatics, both because this information has a true biological interest and because it helps in the interpretation of the final classifier. We present a method called graph-constrained discriminant analysis (gCDA), which aims to integrate the information contained in one or several GRNs into a classification procedure. We show that when the integrated graph includes erroneous information, gCDA's performance is only slightly worse, thus showing robustness to misspecifications in the given GRNs. The gCDA framework also allows the classification process to take into account as many a priori graphs as there are classes in the dataset. The gCDA procedure was applied to simulated data and to three publicly available microarray datasets. gCDA shows very interesting performance when compared to state-of-the-art classification methods. The software package gcda, along with the real datasets that were used in this study, are available online: http://biodev.cea.fr/gcda/.  相似文献   

16.
17.
18.
An enormous amount of microarray data has been collected and accumulated in public repositories. Although some of the depositions include raw and processed data, significant parts of them include processed data only. If we need to combine multiple datasets for specific purposes, the data should be adjusted prior to use to remove bias between the datasets. We focused on a GeneChip platform and a pre-processing method, RMA, and examined simple quantile correction as the post-processing method for integration. Integration of the data pre-processed by RMA was evaluated using artificial spike-in datasets and real microarray datasets of atopic dermatitis and lung cancer. Studies using the spike-in datasets show that the quantile correction for data integration reduces the data quality at some extent but it should be acceptable level. Studies using the real datasets show that the quantile correction significantly reduces the bias. These results show that the quantile correction is useful for integration of multiple datasets processed by RMA, and encourage effective use of public microarray data.  相似文献   

19.
This paper studies the problem of building multiclass classifiers for tissue classification based on gene expression. The recent development of microarray technologies has enabled biologists to quantify gene expression of tens of thousands of genes in a single experiment. Biologists have begun collecting gene expression for a large number of samples. One of the urgent issues in the use of microarray data is to develop methods for characterizing samples based on their gene expression. The most basic step in the research direction is binary sample classification, which has been studied extensively over the past few years. This paper investigates the next step-multiclass classification of samples based on gene expression. The characteristics of expression data (e.g. large number of genes with small sample size) makes the classification problem more challenging. The process of building multiclass classifiers is divided into two components: (i) selection of the features (i.e. genes) to be used for training and testing and (ii) selection of the classification method. This paper compares various feature selection methods as well as various state-of-the-art classification methods on various multiclass gene expression datasets. Our study indicates that multiclass classification problem is much more difficult than the binary one for the gene expression datasets. The difficulty lies in the fact that the data are of high dimensionality and that the sample size is small. The classification accuracy appears to degrade very rapidly as the number of classes increases. In particular, the accuracy was very low regardless of the choices of the methods for large-class datasets (e.g. NCI60 and GCM). While increasing the number of samples is a plausible solution to the problem of accuracy degradation, it is important to develop algorithms that are able to analyze effectively multiple-class expression data for these special datasets.  相似文献   

20.
MOTIVATION: DNA microarrays allow the simultaneous measurement of thousands of gene expression levels in any given patient sample. Gene expression data have been shown to correlate with survival in several cancers, however, analysis of the data is difficult, since typically at most a few hundred patients are available, resulting in severely underdetermined regression or classification models. Several approaches exist to classify patients in different risk classes, however, relatively little has been done with respect to the prediction of actual survival times. We introduce CASPAR, a novel method to predict true survival times for the individual patient based on microarray measurements. CASPAR is based on a multivariate Cox regression model that is embedded in a Bayesian framework. A hierarchical prior distribution on the regression parameters is specifically designed to deal with high dimensionality (large number of genes) and low sample size settings, that are typical for microarray measurements. This enables CASPAR to automatically select small, most informative subsets of genes for prediction. RESULTS: Validity of the method is demonstrated on two publicly available datasets on diffuse large B-cell lymphoma (DLBCL) and on adenocarcinoma of the lung. The method successfully identifies long and short survivors, with high sensitivity and specificity. We compare our method with two alternative methods from the literature, demonstrating superior results of our approach. In addition, we show that CASPAR can further refine predictions made using clinical scoring systems such as the International Prognostic Index (IPI) for DLBCL and clinical staging for lung cancer, thus providing an additional tool for the clinician. An analysis of the genes identified confirms previously published results, and furthermore, new candidate genes correlated with survival are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号