首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Characteristics of the enantioselective hydrolysis of the acetic ester of 4-hydroxy-3-methyl-2-(2-propynyl)-2-cyclopentenone (HMPC) by Arthrobacter lipase were investigated in a water/oil biphasic reaction mixture. Kinetic studies revealed that the strict enantioselectivity was entirely due to a difference in the catalytic constants for the enantiomeric substrates and that (S)-HMPC acetate acted as a competitive inhibitor. The comparison of enantioselectivity for the acetates of HMPC analogues indicated that hydrophobic substituents in the HMPC molecule were essential for the strict enantioselectivity.Biological preparation of an optically active alcohol. Part II  相似文献   

2.
Lipase-catalyzed enantioselective hydrolysis of the acetic ester of racemic α-cyano-3-phenoxybenzyl alcohol (CPBA) was examined to prepare (S)-CPBA. Most of the lipases tested hydrolyzed (S)-CPBA acetate preferentially, while Candida cylindracea lipase favored (R)-CPBA acetate. Enantioselective hydrolysis by Arthrobacter lipase gave the optically pure (S)-CPBA in the reaction mixture of pH 4.0. The kinetic studies showed that (R)-CPBA acetate reacted as a competitive inhibitor. The Arthrobacter lipase solution in the water/oil biphasic reaction system could be used repeatedly. The lipase immobilized to resins had insufficient activity or low operational stability for the repeated batch reaction. The unhydrolyzed (R)-CPBA acetate was racemized by heating with triethylamine and could be reused as the substrate of the enzymatic hydrolysis. A chemico-enzymatic process for the preparation of (S)-CPBA was developed based on these studies.  相似文献   

3.
The generality of enantioselectivity enhancement through the modification of the alcohol moiety of a substrate ester was ascertained, for in the Bacillus subtilis protease-catalyzed hydrolysis of N-unprotected amino acid esters the enantioselectivity was enhanced largely by switching the conventional methyl ester to esters with a longer alkyl chain such as the isobutyl ester (from E = 3 to E = 130–170 in the case of 4-fluorophenylalanine esters) as in the enzymatic hydrolysis mediated by Aspergillus oryzae protease. There was indeed a profound dependence of E on the nature of the ester grouping.  相似文献   

4.
A thermally stable esterase (SNSM‐87) from Klebsiella oxytoca is explored as an enantioselective biocatalyst for the hydrolytic resolution of (R,S)‐2‐hydroxycarboxylic acid esters in biphasic media, where the best methyl esters possessing the highest enantioselectivity and reactivity are selected and elucidated in terms of the structure–enantioselectivity correlations and substrate partitioning in the aqueous phase. With (R,S)‐2‐chloromandelates as the model substrates, an expanded Michaelis–Menten mechanism for the rate‐limiting acylation step is adopted for the kinetic analysis. The Brønsted slope of 25.7 for the fast‐reacting (S)‐2‐chloromandelates containing a difficult leaving alcohol moiety, as well as that of 4.13 for the slow‐reacting (R)‐2‐chloromandelates in the whole range of leaving alcohol moieties, indicates that the breakdown of tetrahedral intermediates to acyl‐enzyme intermediates is rate‐limiting. However, the rate‐limiting step shifts to the formation of tetrahedral intermediates for the (S)‐2‐chloromandelates containing an easy leaving alcohol moiety, and leads to an optimal enantioselectivity for the methyl ester substrate. Biotechnol. Bioeng. 2007; 98: 30–38. © 2007 Wiley Periodicals, Inc.  相似文献   

5.
The protease from Bacillus licheniformis (alcalase) shows a remarkable broad substrate tolerance and high enantioselectivity against nonproteinogenic racemic amino acid derivatives. N‐acetyl protected amino acid esters of mono‐, di‐ or tri‐substituted phenyl alanines and even tert.‐leucine were hydrolyzed with high enantioselectivity. The obtained mixtures of (S)‐N‐acetyl amino acid and (R)‐N‐acetyl amino acid ester can easily be separated. The R‐ or S‐amino acids were obtained by acidic cleavage of the optically pure derivatives or the (R)‐ester was racemized by treatment with potassium t‐butylate.  相似文献   

6.
Kinetic resolution of a chiral alcohol, 4-hydroxy-3-methyl-2-(2′-propenyl)-2-cyclopentenone (HMPC), a key intermediate for the production of prallethrin insecticides, was successfully carried out by enantioselective hydrolysis of (RS)-HMPC acetate using calcium alginate gel-entrapped cells of a newly isolated esterase-producing bacterium Acinetobacter sp. CGMCC 0789. When the effect of different cosolvents was investigated, it was found that isopropanol could markedly enhance the activity and enantioselectivity of the immobilized cells. The optimum concentration of isopropanol was 10% (v/v) where immobilized cells still showed good operational stability. After 10 cycles of reaction, no significant decrease in the enzyme activity was observed. The catalytic specificity constants (Vmax/Km) for both enantiomers of the substrate were determined with partially purified enzyme, giving 0.0184 and 0.671 h−1 for the (S)- and (R)-ester, respectively.  相似文献   

7.
Profens (2‐arylpropionic acids) are known as one of the major nonsteroidal antiinflammatory drugs (NSAIDs) used in the treatment of inflammation associated with tissue injury. The inflammatory activity of profens is mainly due to their (S)‐enantiomer, whereas they are commercially available not only as pure enantiomers, but as racemates as well. There are several methods widely used in order to obtain enantiomerically pure compounds, however, the kinetic resolution with the application of lipases as biocatalysts may have an added advantage in the production of optically pure active pharmaceutical ingredients, such as milder reaction conditions, reduced energy requirements, and production costs. The aim of this study was to compare the results described in the literature in the case of the influence of reaction medium, alcohol moiety, and reaction temperature on the catalytic activity of lipases from Candida antarctica and Candida rugosa. Chirality 26:663–669, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Porcine pancreas lipase (PPL) resolution of the α-methyl group of racemic methyl 2-methyl-4-oxopentanoate, a valuable synthetic precursor of fragrances and marine natural products, was enhanced by salt modulation of the enzymatic hydrolysis. For the enantioselective hydrolysis of the title ester, PPL was selected from a series of esterases and lipases, and its enantioselectivity was evaluated by changing the reaction medium parameters. The use of 1.6?mol L–1 sodium sulfate in phosphate buffer (pH 7.2) improved the enantioselectivity allowing the formation of methyl (2R)-(+)-2-methyl-4-oxopentanoate and (2S)-(–)-2-methyl-4-oxopentanoic acid with an enantiomeric excess of >99% and 71%, respectively. The study showed that a modulation of PPL enantioselectivity could be achieved by using kosmotropic salts in the reaction media. The present method consists of a practical and low-cost option to improve enzymatic kinetic resolution reactions.  相似文献   

9.
The effect of a chiral centre in the acyl group on the resolution of esters prepared from a racemic alcohol was investigated. R-2-chloropropionic acid afforded a higher enantiomeric ratio than S-2-chioropropionic acid in the hydrolysis of the corresponding esters of racemic 1-phenylethanol catalyzed by Candida cylindracea lipase. Even when a mixture of esters prepared from racemic acid and racemic alcohol was used for resolution of the alcohol, a noteworthy high enantioselectivity was observed. The hydrolysis of a bichiral ester offers an amplification in the resolution of enantiomers of alcohols by the combination of a chemical diastereoselectivity and an enzymatic enantio- and diastereoselectivity.  相似文献   

10.
The homologous lipases fromRhizomucor miehei andHumicola lanuginosa showed approximately the same enantioselectivity when 2-methyldecanoic acid esters were used as substrates. Both lipases preferentially hydrolyzed theS-enantiomer of 1-heptyl 2-methyldecanoate (R. miehei:E S =8.5;H. lanuginosa:E S =10.5), but theR-enantiomer of phenyl 2-methyldecanoate (E R =2.9). Chemical arginine specific modification of theR. miehei lipase with 1,2-cyclohexanedione resulted in a decreased enantioselectivity (E R =2.0), only when the phenyl ester was used as a substrate. In contrast, treatment with phenylglyoxal showed a decreased enantioselectivity (E S =2.5) only when the heptyl ester was used as a substrate. The presence of guanidine, an arginine side chain analog, decreased the enantioselectivity with the heptyl ester (E S =1.9) and increased the enantioselectivity with the aromatic ester (E R =4.4) as substrates. The mutation, Glu 87 Ala, in the lid of theH. lanuginosa lipase, which might decrease the electrostatic stabilization of the open-lid conformation of the lipase, resulted in 47% activity compared to the native lipase, in a tributyrin assay. The Glu 87 Ala mutant showed an increased enantioselectivity with the heptyl ester (E S =17.4) and a decreased enantioselectivity with the phenyl ester (E R =2.5) as substrates, compared to native lipase. The enantioselectivities of both lipases in the esterification of 2-methyldecanoic acid with 1-heptanol were unaffected by the lid modifications.  相似文献   

11.
In comparison with the biocatalyst engineering and medium engineering approaches, very few examples have been reported on using the substrate engineering approach such as substrate-assisted catalysis (SAC) for naturally occurring or engineered lipases and serine proteases to improve the enzyme activity and enantioselectivity. By employing lipase-catalyzed hydrolysis of (R,S)-naproxen esters in water-saturated isooctane as the model system, we demonstrate the proton shuttle device to the leaving alcohol of the substrate as a new means of SAC to effectively improve the lipase activity or enantioselectivity. The result cannot only provide a strong evidence for the rate-limiting proton transfer for the bond-breaking of tetrahedron intermediate of the acylation step, but also sheds light for performing the hydrolysis, transesterification or aminolysis in organic solvents for the ester substrate that originally lipases cannot catalyze, but now can after introducing the device.  相似文献   

12.
Summary Pig liver esterase (EC 3.1.1.1) catalyzed hydrolysis of the dimetrhy ester of meso-cis-1,2-cyclohexanedicarboxylic acid yielded the optically pure (1S,2R)-monoester. The corresponding diethyl ester yielded racemic monoester.The diethyl ester of racemic trans-1,2-cyclohexanedicarboxylic acid was kinetically resolved by partial hydrolysis with subtilisin (EC 3.4.21.14) or pig liver esterase. The (1R,2R)-monoester had an enantiomeric excess of 45% and was obtained in an enantiomerically pure form through recrystallisation. The remaining (1S,2S)-diester exhibited an enantiomeric excess of 83%. The nature of the ester function (methyl, ethyl, and propyl esters) had a great influence on the enantiomeric excess obtained and on the kinetic parameters.  相似文献   

13.
Three methods for enzyme modification/immobilization were compared to enhance the catalytic performance of a commercially available lipase, Lipase PS from Pseudomonascepacia, in highly enantioselective transesterification of an agrochemically useful sec-alcohol, (R,?S)-HMPC [=(R,?S)-4-hydroxy-3-methyl-2-(2′-propenyl)-2-cyclopenten-1-one], with vinyl acetate as both acyl donor and reaction medium. The stearic acid-coated lipase showed the highest catalytic activity, with a specific activity improved by 54 times over the native lipase. The microcrystal salt-supported lipase and celite-adsorbed lipase also displayed much better performance as compared with the native lipase. All the three modified lipase preparations showed a similar thermal stability to that of the native enzyme. The enantioselectivity (E-value) was also quite satisfactory in all the cases (E>100 at 30°C), though a trend of slight decline was also observed with the temperature increase in the range of 25–60°C. The optimum aqueous pH, from which the modified lipases were prepared, was 6.0–7.0. A low water activity (aw) of ca. 0.1 was favorable for all the three modified lipases. The stearic acid-coated lipase displayed prominent advantages in catalyzing the transesterification reaction at a very high (R,?S)-HMPC concentration up to 1.0?M.  相似文献   

14.
Candida rugosa lipase was encapsulated within a sol–gel procedure and improved considerably by fluoride-catalyzed hydrolysis of mixtures of octyltriethoxysilane and tetraethoxysilane in the presence of magnetic sporopollenin. The catalytic properties of the immobilized lipases were evaluated into model reactions, i.e., the hydrolysis of p-nitrophenylpalmitate (p-NPP), and the enantioselective hydrolysis of racemic naproxen methyl ester, mandelic acid methyl ester or 2-phenoxypropionic acid methyl ester that were studied in aqueous buffer solution/isooctane reaction system. The encapsulated magnetic sporopollenin (Spo-M-E) was found to give 319 U/g of support with 342% activity yield. It has been observed that the percent activity yields and enantioselectivity of the magnetic sporopollenin encapsulated lipase were higher than that of the encapsulated lipase without support. The substrate specificity of the encapsulated lipase revealed more efficient hydrolysis of the racemic naproxen methyl ester and 2-phenoxypropionic acid methyl ester than racemic mandelic acid methyl ester. It was observed that excellent enantioselectivity (E > 400) was obtained for encapsulated lipase with magnetic sporopollenin with an ee value of S-Naproxen and R-2 phenoxypropionic acid about 98%.  相似文献   

15.
Lipase from Arthrobacter sp. was immobilized onto low-cost diatomite materials using different protocols for the resolution of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-one (HMPC) by asymmetric acylation. The support surface was grafted various functional groups including methacryloxypropyl, vinyl, octyl, dodecyl and γ-(aminopropyl)-glutaraldehyde. These modifications resulted in various mechanisms during the immobilization and thus introduced different characteristics to the prepared lipases. The interfacially adsorbed lipase onto dodecyl-modified support exhibited both higher activity and stability among these immobilized preparations. The modified enzyme-aggregate coating method was performed based on interfacial adsorption in our work, and the characteristics of this immobilized lipase were investigated and compared with those by cross-linking and interfacial adsorption methods. It was shown that the enzyme-aggregate coated lipase yielded the highest activity with a recovered activity of 8.5-fold of the free enzyme, and the highest operational stability with 85% of initial activity remained after 10 recycles. Excellent enantioselectivity (E ≥ 400, with e.e. = 99% of S-HMPC) was obtained for most lipase preparations in our paper (E = 85 for the free enzyme).  相似文献   

16.
In the enantioselective hydrolysis of enol esters with Pichia farinosa IAM 4682 to give α-chiral ketones, the final enantioselective protonation was found to be promoted by a factor differed from the enzyme catalyzing simple hydrolysis. The crude cell-free extracts from P. farinosa was subjected to ultracentrifugation. Although the supernatant fraction could hydrolyze 1-acetoxy-2-benzylcyclohexene (1), the resulting 2-benzylcyclohexanone (2) was a racemate. On the other hand, the precipitate could not hydrolyze 1. However, on mixing of both fractions the suspension recovered again an enantioselective ability effectively to afford optically active (R)-2. The same phenomena were observed in the hydrolysis using commercially available lipases and an esterase. These results indicate that enantioselectivity-promoting factor should be involved in the precipitate.  相似文献   

17.
The kinetic resolution of racemates constitutes one major route to manufacture optically pure compounds. The enzymatic kinetic resolution of (R,S)-1-phenylethanol over Candida antarctica lipase B (CALB) by using vinyl acetate as the acyl donor in the acylation reaction was chosen as model reaction. A systematic screening and optimization of the reaction parameters, such as enzyme, ionic liquid and substrates concentrations with respect to the final product concentration, were performed. The enantioselectivity of immobilized CALB commercial preparation, Novozym 435, was assayed in several ionic liquids as reaction media. In particular, three different ionic liquids: (i) 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6], (ii) 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] and (iii) 1-ethyl-3-methylimidazolium triflimide [emim][NTf2] were tested. At 6.6% (w/w) of Novozym 435, dispersed in 9.520 M of [bmim][PF6] at 313.15 K, using an equimolar ratio of vinyl acetate/(R,S)-1-phenylethanol after 3 h of bioconversion, the highest possible conversion (50%) was reached with enantiomeric excess for substrate higher than 99%.  相似文献   

18.
The lipase-catalyzed optical resolution of 2-, 3-, and 5-hydroxyalkyl phosphorus compounds 1 provided the corresponding optically pure diastereomers in good yields. (SP, R)- and (RP, S)-1 were acylated faster than (SP, S)- and (RP, R)-1. The stereoselectivity at the phosphorus atom changed with the flexibility of the active sites in the lipases. The stereoselectivity at the phosphorus atom was higher in the reaction of 1a than in the reaction of 1b,c. The reaction rate of -hydroxyalkylphosphine oxide 1c was faster than that of 1a, although less enantioselectivity was observed at the phosphorus atom.  相似文献   

19.
The homologous lipases fromRhizomucor miehei andHumicola lanuginosa showed approximately the same enantioselectivity when 2-methyldecanoic acid esters were used as substrates. Both lipases preferentially hydrolyzed theS-enantiomer of 1-heptyl 2-methyldecanoate (R. miehei:E S =8.5;H. lanuginosa:E S =10.5), but theR-enantiomer of phenyl 2-methyldecanoate (E R =2.9). Chemical arginine specific modification of theR. miehei lipase with 1,2-cyclohexanedione resulted in a decreased enantioselectivity (E R =2.0), only when the phenyl ester was used as a substrate. In contrast, treatment with phenylglyoxal showed a decreased enantioselectivity (E S =2.5) only when the heptyl ester was used as a substrate. The presence of guanidine, an arginine side chain analog, decreased the enantioselectivity with the heptyl ester (E S =1.9) and increased the enantioselectivity with the aromatic ester (E R =4.4) as substrates. The mutation, Glu 87 Ala, in the lid of theH. lanuginosa lipase, which might decrease the electrostatic stabilization of the open-lid conformation of the lipase, resulted in 47% activity compared to the native lipase, in a tributyrin assay. The Glu 87 Ala mutant showed an increased enantioselectivity with the heptyl ester (E S =17.4) and a decreased enantioselectivity with the phenyl ester (E R =2.5) as substrates, compared to native lipase. The enantioselectivities of both lipases in the esterification of 2-methyldecanoic acid with 1-heptanol were unaffected by the lid modifications.  相似文献   

20.
The lipase‐catalyzed enantioselective hydrolysis of acetates containing tetrazole moiety was studied. Among all tested lipases, Novozyme SP 435 allowed to obtain optically active 4‐(5‐aryl‐2H‐tetrazol‐2yl)butan‐2‐ol and 1‐(5‐aryl‐2H‐tetrazol‐2yl)‐propan‐2‐ol and their acetates with the highest optical purities (ee = 95%‐99%) and excellent enantioselectivity (E>100). Some of the synthesized tetrazole derivatives were screened for their antifungal activity. Racemic mixtures of 4‐[5‐(4‐chlorophenyl)‐2H‐tetrazol‐2‐yl)butan‐2‐ol as well as pure enantiomers of this compound showed promising antifungal activity against F. sambucinum, F. oxysporum, C. coccodes, and A. niger. Chirality 26: 811–816, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号