首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptors for activated C kinase (RACKs) are a group of protein kinase C (PKC) binding proteins that have been shown to be crucial in the translocation and subsequent functioning of PKC on activation. RACK1 isolated from BALB/3T3 cells transformed with S-ras(Q61K) exhibits receptor activity for PKCgamma as competent as that of RACK1 from BALB/3T3 cells without transformation. However, the ability of RACK1 from transformed cells to bind with beta-tubulin peptide specific for Taxol (PEPtaxol) is defective. Interestingly, when farnesyl pyrophosphate was added at the submicrogram level, the association between RACK1 and PEPtaxol was enhanced significantly in a dosage-dependent manner. A parallel finding for the enhanced effect of farnesyl pyrophosphate on tubulin binding was established with mice RACK1 expressed in vitro. On the other hand, geranylgeranyl pyrophosphate, and retinoic acid failed to modulate the binding between RACK1 and tubulin. The dissociation of RACK1 and tubulin was not effective at damaging the binding between RACK1 and membrane receptor integrin beta1 in transformed cells. These findings indicate that depletion of farnesyl pyrophosphate provides a mechanism to seal PKC signaling on the membrane with immobile RACK1 and to divert cells to aberrant growth, such as transformation.  相似文献   

2.
The WD repeat scaffolding protein RACK1 can mediate integration of the insulin-like growth factor I receptor (IGF-IR) and integrin signaling in transformed cells. To address the mechanism of RACK1 function, we searched for regulatory proteins that associate with RACK1 in an IGF-I-dependent manner. The serine threonine phosphatase protein phosphatase 2A (PP2A) was found associated with RACK1 in serum-starved cells, and it dissociated immediately upon stimulation with IGF-I. This dissociation of PP2A from RACK1 and an IGF-I-mediated decrease in cellular PP2A activity did not occur in cells expressing either the serine 1248 or tyrosine 1250/1251 mutants of the IGF-IR that do not interact with RACK1. Recombinant RACK1 could bind to PP2A in vitro and restore phosphatase activity to PP2A from IGF-I-stimulated cells. Ligation of integrins with fibronectin or Matrigel was sufficient to facilitate IGF-I-mediated dissociation of PP2A from RACK1 and also to recruit beta1 integrin as PP2A dissociated. By using TAT-fused N-terminal and C-terminal deletion mutants of RACK1, we determined that both PP2A and beta1 integrin interact in the C terminus of RACK1 within WD repeats 4 to 7. This suggests that integrin ligation displaces PP2A from RACK1. MCF-7 cells overexpressing RACK1 exhibited enhanced motility, which could be reversed by the PP2A inhibitor okadaic acid. Small interfering RNA-mediated suppression of RACK1 also decreased the migratory capacity of DU145 cells. Taken together, our findings indicate that RACK1 enhances IGF-I-mediated cell migration through its ability to exclusively associate with either beta1 integrin or PP2A in a complex at the IGF-IR.  相似文献   

3.
To determine the localization of the amyloid precursor protein (APP) on the cellular membrane, we performed membrane fractionation of cultured cells including that of Madin-Darby canine kidney (MDCK) and P19 cells transfected with human APP cDNA, non-transfected SH-SY5Y cells, and rat cerebral cortices. In MDCK cells, APP was exclusively present in abundance in the supernatant following solubilization of the plasma membranes using Triton X-100, and in high-density fractions of sucrose density gradient fractionation (SDGF) following Triton X-100 solubilization of whole cellular membranes. Caveolin-1 was not cofractionated with APP. In experiments using P19 cells and rat cerebral cortices, we detected two isoforms of APP. The APP with the apparently lower molecular weight (immature type) coexisted in abundance with integrin in the high-density fractions, whereas the APP with the apparently higher molecular weight (mature type) was recovered predominantly in the low-density fractions with cholesterol and GM1 gangliosides, the concentrations of which were higher than those in the bulk plasma membranes, but lower than those in caveolae-like domains (CLDs), following SDGF of Triton X-100-solubilized cellular membranes. The results of this study suggest the following; first, APP is not present in abundance in caveolae or CLDs, but is in unique cholesterol-rich microdomains; second, the targeting of APP to these unique microdomains may be linked to the maturation of APP in some cells.  相似文献   

4.
Staphylococcus aureus mutants resistant to the nonionic detergent Triton X-100, isolated from the wild-type strain H and the autolysin-deficient strain RUS3, could grow and divide in broth containing 5% (vol/vol) Triton X-100, while growth of the parental strains was markedly inhibited above the critical micellar concentration (0.02%) of the detergent. Growth-inhibitory concentrations of Triton X-100 killed wild-type cells without demonstrable cellular lysis. Triton X-100 stimulated autolysin activity of S. aureus cells under nongrowing conditions, and this lytic response was markedly reduced in energy-poisoned cells. In contrast, the detergent had no effect on the activity of autolysins in cell-free systems, and growth in the presence of Triton X-100 did not alter either the cellular autolysin activity or the susceptibility of cell walls to exogenous lytic enzymes. Treatment with either Triton X-100 or penicillin G in the growth medium stimulated release of predominantly acylated intracellular lipoteichoic acid and sensitized staphylococci to Triton X-100-induced autolysis. There was no significant difference in the cell wall and membrane compositions or Triton X-100 binding between the parental strains and the resistant mutants. The resistant mutant TXR1, derived from S. aureus H, had a higher level of L-alpha-glycerophosphate dehydrogenase activity, and its oxygen uptake was more resistant to inhibition by a submicellar concentration (0.008%) of Triton X-100. Growth in the presence of subinhibitory concentrations of Triton X-100 rendered S. aureus H cells phenotypically resistant to the detergent and greatly stimulated the level of oxygen uptake. Membranes isolated from such cells exhibited enhanced activity of the respiratory enzymes succinic dehydrogenase and L-alpha-glycerophosphate dehydrogenase.  相似文献   

5.
Previous pmr studies at 220 MHz have led to the suggestion that phosphatidylcholine and the nonionic surfactant Trition-X-100 form mixed micellar structures at high molar ratios of trition to phosphalipid. These mixed micelles provide one form of the phospholipid which the enzyme phospholipase A2 can utilize as substrate. Spin-lattice relaxation times (T1) and spin-spin relaxation times (T2) obtained from line widths for resolvable protons in Triton X-100 micelles and mixed micelles with egg phosphatidycholine and dipalmitoyl phosphatidylcholine are reported. They suggest that the structure of the mixed micelles is generally similar to that of pure Triton X-100 micelles. The T1 values for the phsopholipid in the mixed micelles are found to be similar to those reported for phospholipid in sonicated vesicle preparations which are used as membrane models, but the lines are somewhat sharper suggesting the possibility of less anisotropic motion in the mixed micelles than in the vesicles.  相似文献   

6.
Syndecan-2 was found to detach from RACK1 and associate with caveolin-2 and Ras in cells transformed with oncogenic ras. Most of syndecan-2 from transformed cells was revealed with negligible phosphorylations at tyrosine residues. We experimented with HeLa cells transfected with plasmids encoding syndecan-2 and its mutants (syndecan-2(Y180F), syndecan-2(Y192F), and syndecan-2(Y180,192F)) to provide evidences that PY180 of syndecan-2 is a binding site for RACK1 and is deprived in cells transfected with oncogenic ras. However, in HeLa cells transfected with syndecan-2(Y180F), RACK1 was found to sustain its reactions with syndecan-2 independent of phosphorylation. The finding of syndecan-2 reactive with caveolin-2/Ras suggests the molecular complex most likely to obstruct RACK1 for functional attachment at syndecan-2, as revealed in cells transfected with oncogenic ras. We provided evidences to reinforce the view that molecular rearrangements upon transformation are specific and interesting.  相似文献   

7.
RACK1 can act as a scaffolding protein to integrate IGF-IR and integrin signalling in transformed cells but its actions in regulating IGF-IR signalling in non-transformed cells are less well understood. Here, we investigated the function of RACK1 in the non-transformed cardiomyocyte cell line H9c2. Overexpression of RACK1 in H9c2 cells was sufficient to increase cell size, increase adhesion to collagen 1, enhance protection from hydrogen peroxide-induced cell death, and increase cell migration. However, cell proliferation was decreased in these cells. Small interfering RNA (siRNA)-mediated suppression of RACK1 in H9c2 cells resulted in decreased cell adhesion and migration, but had no effect on cell proliferation or size. Increased basal and IGF-I-mediated Erk phosphorylation was observed in RACK1-overexpressing H9c2 cells. Interestingly, contrary to observations in transformed cells, RACK1 was not observed to interact with the IGF-IR in H9c2 cells. Also in contrast to observations in transformed cells, IGF-I promoted recruitment of Src to RACK1 as well as recruitment of PKC, and PKC to RACK1. Overall, the data indicate that in H9c2 cells RACK1 can influence cell size, cell survival, adhesion, migration, but its responses to IGF-I are independent of an association with the IGF-IR. Thus, the composition of the RACK1 scaffolding complex and its effects on IGF-I signalling may be different in transformed and non-transformed cells.  相似文献   

8.
The alpha 3 beta 1 integrin shows strong, stoichiometric, direct lateral association with the tetraspanin CD151. As shown here, an extracellular CD151 site (QRD(194-196)) is required for strong (i.e., Triton X-100-resistant) alpha 3 beta 1 association and for maintenance of a key CD151 epitope (defined by monoclonal antibody TS151r) that is blocked upon alpha 3 integrin association. Strong CD151 association with integrin alpha 6 beta 1 also required the QRD(194-196) site and masked the TS151r epitope. For both alpha 3 and alpha 6 integrins, strong QRD/TS151r-dependent CD151 association occurred early in biosynthesis and involved alpha subunit precursor forms. In contrast, weaker associations of CD151 with itself, integrins, or other tetraspanins (Triton X-100-sensitive but Brij 96-resistant) were independent of the QRD/TS151r site, occurred late in biosynthesis, and involved mature integrin subunits. Presence of the CD151-QRD(194-196)-->INF mutant disrupted alpha 3 and alpha 6 integrin-dependent formation of a network of cellular cables by Cos7 or NIH3T3 cells on basement membrane Matrigel and markedly altered cell spreading. These results provide definitive evidence that strong lateral CD151-integrin association is functionally important, identify CD151 as a key player during alpha 3 and alpha 6 integrin-dependent matrix remodeling and cell spreading, and support a model of CD151 as a transmembrane linker between extracellular integrin domains and intracellular cytoskeleton/signaling molecules.  相似文献   

9.
Cellular lysis of Streptococcus faecalis induced with triton X-100.   总被引:9,自引:5,他引:4       下载免费PDF全文
Lysis of exponential-phase cultures of Streptococcus faecalis ATCC 9790 was induced by exposure to both anionic (sodium dodecyl sulfate) and nonionic (Triton X-100) surfactants. Lysis in response to sodium dodecyl sulfate was effective only over a limited range of concentrations, whereas Triton X-100-induced lysis occurred over a broad range of surfactant concentrations. The data presented indicate that the bacteriolytic response of growing cells to Triton X-100: (i) was related to the ratio of surfactant to cells and not the surfactant concentration per se; (ii) required the expression of the cellular autolytic enzyme system; and (iii) was most likely due to an effect of the surfactant on components of the autolytic system that are associated with the cytoplasmic membrane. The possibility that Triton X-100 may induce cellular lysis by releasing a lipid inhibitor of the cellular autolytic enzyme is discussed.  相似文献   

10.
The interaction of the non-ionic detergent Triton X-100 with photosynthetic membrane components of Pisum sativum (pea) is described. The detergent affected both the wavelength and the intensity of the 77K fluorescence-emission peaks of both Photosystem I and Photosystem II preparations, in addition to the effects on whole thylakoids recently described by Murphy & Woodrow [(1984) Biochem. J. 224, 989-993]. Below its critical micellar concentration, Triton X-100 had no effect on 77K fluorescence emissions even after prolonged incubations of up to 30 min. Above the critical micellar concentration of about 0.16 mg X ml-1, Triton X-100 caused a dramatic increase in the intensity of the 680 nm emission. The intensity of the 680 nm fluorescence emission continued to increase as more Triton X-100 was added, until limiting concentrations of detergent were reached. These limiting concentrations were proportional to the amount of membrane present and generally occurred at Triton X-100/chlorophyll (w/w) ratios of 100-200:1. In all cases the detergent effect was seen within 10 min, and is often considerably faster, with longer detergent treatments causing no further effects. The data are discussed in terms of a three-stage mechanism for detergent solubilization of membrane components.  相似文献   

11.
We have recently shown that two ATP binding cassette (ABC) transporters are enriched in Lubrol-resistant noncaveolar membrane domains in multidrug-resistant human cancer cells [Hinrichs, J. W. J., K. Klappe, I. Hummel, and J. W. Kok. 2004. ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells. J. Biol. Chem. 279: 5734-5738]. Here, we show that aminophospholipids are relatively enriched in Lubrol-resistant membrane domains compared with Triton X-100-resistant membrane domains, whereas sphingolipids are relatively enriched in the latter. Moreover, Lubrol-resistant membrane domains contain more protein and lipid mass. Based on these results, we postulate a model for detergent-insoluble glycosphingolipid-enriched membrane domains consisting of a Lubrol-insoluble/Triton X-100-insoluble region and a Lubrol-insoluble/Triton X-100-soluble region. The latter region contains most of the ABC transporters as well as lipids known to be necessary for their efflux activity. Compared with drug-sensitive cells, the detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in drug-resistant cells differ specifically in sphingolipid content and not in protein, phospholipid, or cholesterol content. In drug-resistant cells, sphingolipids with specific fatty acids (especially C24:1) are enriched in these membrane domains. Together, these data show that multidrug resistance-associated changes in both sphingolipids and ABC transporters occur in DIGs, but in different regions of these domains.  相似文献   

12.
Lateral association between different transmembrane glycoproteins can serve to modulate integrin function. Here we characterize a physical association between the integrins alpha(3)beta(1) and alpha(6)beta(1) and CD36 on the surface of melanoma cells and show that ectopic expression of CD36 by CD36-negative MV3 melanoma cells increases their haptotactic migration on extracellular matrix components. The association was demonstrated by co-immunoprecipitation, reimmunoprecipitation, and immunoblotting of surface-labeled cells lysed in Brij 96 detergent. Confocal microscopy illustrated the co-association of alpha(3) and CD36 in cell membrane projections and ruffles. A requirement for the extracellular domain of CD36 in this association was shown by co-immunoprecipitation experiments using surface-labeled MV3 melanoma or COS-7 cells that had been transiently transfected with chimeric constructs between CD36 and intercellular adhesion molecule 1 (ICAM-1) or with a truncation mutant of CD36. CD36 is known to engage in signal transduction and to localize to membrane microdomains or rafts in several cell types. Toward a mechanistic explanation for the functional effects of CD36 expression, we demonstrate that in fractionated Triton X-100 lysates of the MV3 cells stably transfected with CD36, CD36 was greatly enriched with the detergent-insoluble fractions that represent plasma membrane rafts. Significantly, when these fractionated lysates were reprobed for endogenous beta(1) integrin, it was found that a 4-fold increase in the proportion of the mature protein was contained within the detergent-insoluble fractions when extracted from the CD36-transfected cells compared with MV3 cells transfected with vector only. These results suggest that in melanoma cells CD36 expression may induce the sequestration of certain integrins into membrane microdomains and promote cell migration.  相似文献   

13.
The hexose transporter family, which mediates a facilitated uptake in mammalian cells, consists of more than 10 members containing 12 membrane-spanning segments with a single N-glycosylation site. However, it remains unknown how these isoforms are functionally organized in the membrane domains. In this report, we describe a differential distribution of the glucose transporter isoforms GLUT1 and GLUT3 to detergent-resistant membrane domains (DRMs) in non-polarized mammalian cells. Whereas more than 80% of cellular proteins containing GLUT3 in HeLa cell lines was solubilized by a non-ionic detergent (either Triton X-100 or Lubrol WX) at 4 degrees C, GLUT1 remained insoluble together with the DRM-associated proteins, such as caveolin-1 and intestinal alkaline phosphatase (IAP). These DRM-associated proteins and the ganglioside GM1 were shown to float to the upper fractions when Triton X-100-solubilized cell extracts were centrifuged on a density gradient. In contrast, GLUT3 as well as most soluble proteins remained in the lower layers. Furthermore, perturbations of DRMs due to depletion of cholesterol by methyl-beta-cyclodextrin (m beta CD) rendered GLUT1 soluble in Triton X-100. Immunostaining patterns for these isoforms detected by confocal laser scanning microscopy in a living cell were also distinctive. These results suggest that in non-polarized mammalian cells, GLUT1 can be organized into a raft-like DRM domain but GLUT3 may distribute to fluid membrane domains. This differential distribution may occur irrespective of the N-glycosylation state or cell type.  相似文献   

14.
Protein tyrosine phosphatase α (PTPα) promotes integrin-stimulated cell migration in part through the role of Src-phosphorylated PTPα-Tyr(P)-789 in recruiting and localizing p130Cas to focal adhesions. The growth factor IGF-1 also stimulates PTPα-Tyr-789 phosphorylation to positively regulate cell movement. This is in contrast to integrin-induced PTPα phosphorylation, that induced by IGF-1 can occur in cells lacking Src family kinases (SFKs), indicating that an unknown kinase distinct from SFKs can target PTPα. We show that this IGF-1-stimulated tyrosine kinase is Abl. We found that PTPα binds to the scaffold protein RACK1 and that RACK1 coordinates the IGF-1 receptor, PTPα, and Abl in a complex to enable IGF-1-stimulated and Abl-dependent PTPα-Tyr-789 phosphorylation. In cells expressing SFKs, IGF-1-stimulated phosphorylation of PTPα is mediated by RACK1 but is Abl-independent. Furthermore, expressing the SFKs Src and Fyn in SFK-deficient cells switches IGF-1-induced PTPα phosphorylation to occur in an Abl-independent manner, suggesting that SFK activity dominantly regulates IGF-1/IGF-1 receptor signaling to PTPα. RACK1 is a molecular scaffold that integrates growth factor and integrin signaling, and our identification of PTPα as a RACK1 binding protein suggests that RACK1 may coordinate PTPα-Tyr-789 phosphorylation in these signaling networks to promote cell migration.  相似文献   

15.
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a multifunctional receptor that undergoes constitutive endocytosis and recycling. To identify LRP-1 in lipid rafts, we biotin-labeled cells using a membrane-impermeable reagent and prepared Triton X-100 fractions. Raft-associated proteins were identified in streptavidin affinity-precipitates of the Triton X-100-insoluble fraction. PDGF beta-receptor was identified exclusively in lipid rafts, whereas transferrin receptor was excluded. LRP-1 distributed partially into rafts in murine embryonic fibroblasts (MEFs) and HT 1080 cells, but not in smooth muscle cells and CHO cells. LRP-1 partitioning into rafts was not altered by ligands, including alpha2-macroglobulin, platelet-derived growth factor-BB, and receptor-associated protein (RAP). To examine LRP-1 trafficking between membrane microdomains, we developed a novel method based on biotinylation and detergent fractionation. Association of LRP-1 with rafts was transient; by 15 min, nearly all of the LRP-1 that was initially raft-associated exited this compartment. LRP-1 in the Triton X-100-soluble fraction, which excludes lipid rafts, demonstrated complex kinetics, with phases reflecting import from rafts, endocytosis, and recycling. Potassium depletion blocked LRP-1 endocytosis but did not inhibit trafficking of LRP-1 from rafts into detergent-soluble microdomains. Our data support a model in which LRP-1 transiently associates with rafts but does not form a stable pool. Fluid movement of LRP-1 between microdomains may facilitate its function in promoting the endocytosis of other plasma membrane proteins, such as the urokinase receptor, which localizes in lipid rafts.  相似文献   

16.
Acetylcholine receptor clustering and triton solubility: neural effect   总被引:6,自引:0,他引:6  
Previous studies by Prives et al. (1980, 1982a and b) have shown that acetylcholine receptors (AchRs) are extracted from muscle cells in vitro by Triton X-100 at different rates, and that clustered receptors extract most slowly. The present study was aimed at comparing the relative extractability of receptors in clusters with those in intercluster regions and the role of neural factors in regulating this extractability. Using primary rat muscle cells in vitro we confirmed that receptor extraction with Triton X-100 does not fit a single exponential but has more than one rate, and that in control cells clustered receptors extract more slowly than do receptors in intercluster regions. The major new observation in this study was that neural extract lowered the overall Triton extraction rate of intercluster receptors to that of clustered receptors. Additional new observations include the findings that (1) both clustered and intercluster receptors show multiphasic extraction rates; (2) stabilization of AchRs against Triton extraction increases with time in the surface membrane; (3) the effect of neural extract on Triton extractability of AChR is dependent on factors that control RNA synthesis, cytoskeletal elements, and collagen; (4) fixation and/or buffer washes accelerate receptor extraction only in cells that are treated with Triton, but not in control cells; (5) in control cells (not exposed to neural factors) Triton X-100 causes new clusters to form. From experiments using Con A we suggest that the Triton-induced new clusters may not be formed by a redistribution of receptors but are, most likely, due to the presence of groups of intercluster receptors with extraction rates lower than those of surrounding receptors.  相似文献   

17.
Insulin-like growth factor (IGF)-I regulates a mutually exclusive interaction of PP2A and beta1 integrin with the WD repeat scaffolding protein RACK1. This interaction is required for the integration of IGF-I receptor (IGF-IR) and adhesion signaling. Here we investigated the nature of the binding site for PP2A and beta1 integrin in RACK1. A WD7 deletion mutant of RACK1 did not associate with PP2A but retained some interaction with beta1 integrin, whereas a WD6/WD7 mutant lost the ability to bind to both PP2A and beta1 integrin. Using immobilized peptide arrays representing the entire RACK1 protein, we identified a common cluster of amino acids (FAGY) at positions 299-302 within WD7 of RACK1 which were essential for binding of both PP2A and beta1 integrin to RACK1. PP2A showed a higher level of association with a peptide in which Tyr-302 was phosphorylated compared with an unphosphorylated peptide, whereas beta1 integrin binding was not affected by phosphorylation. RACK1 mutants in which either the FAGY cluster or Tyr-302 were mutated to AAAF, or Phe, respectively, did not interact with either PP2A or beta1 integrin. These mutants were unable to rescue the decrease in PP2A activity caused by suppression of RACK1 in MCF-7 cells with small interfering RNA. MCF-7 cells and R+ (IGF-IR-overexpressing fibroblasts) expressing these mutants exhibited decreased proliferation and migration, whereas R- cells (IGF-IR null fibroblasts) were unaffected. Taken together, the data demonstrate that Tyr-302 in RACK1 is required for interaction with PP2A and beta1 integrin, for regulation of PP2A activity, and for IGF-I-mediated cell migration and proliferation.  相似文献   

18.
Surfactants are known to increase the apparent aqueous solubility of polycyclic aromatic hydrocarbons (PAHs) and may thus be used to enhance the bioavailability and thereby to stimulate the biodegradation of these hydrophobic compounds. However, surfactants may in some cases reduce or inhibit biodegradation because of toxicity to the bacteria. In this study, toxicity of surfactants on Sphingomonas paucimobilis strain EPA505 and the effect on fluoranthene mineralization were investigated using Triton X-100 as model surfactant. The data showed that amendment with 0.48 mM (0.3 g l-1) of Triton X-100 completely inhibited fluoranthene and glucose mineralization and reduced cell culturability by 100% in 24 h. Electron micrographs indicate that Triton X-100 adversely affects the functioning of the cytoplasmic membrane. However, in the presence of 4.13 mM Ca2+-ions, Triton X-100 more than doubled the maximum fluoranthene mineralization rate and cell culturability was reduced by only 10%. In liquid cultures divalent ions, Ca2+ in particular and Mg2+ to a lesser extent, were thus shown to be essential for the surfactant-enhanced biodegradation of fluoranthene. Most likely the Ca2+-ions stabilized the cell membrane, making the cell less sensitive to Triton X-100. This is the first report on a specific factor which is important for successful surfactant-enhanced biodegradation of PAHs.  相似文献   

19.
Various aspects of membrane solubilization by the Triton X-series of nonionic detergents were examined in pig liver mitochondrial membranes. Binding of Triton X-100 to nonsolubilized membranes was saturable with increased concentrations of the detergent. Maximum binding occurred at concentrations exceeding 0.5% Triton X-100 (w/v). Solubilization of both protein and phospholipid increased with increasing Triton X-100 to a plateau which was dependent on the initial membrane protein concentration used. At low detergent concentrations (less than 0.087% Triton X-100, w/v), proteins were preferentially solubilized over phospholipids. At higher Triton X-100 concentrations the opposite was true. Using the well-defined Triton X-series of detergents, the optimal hydrophile-lipophile balance number (HLB) for solubilization of phosphatidylglycerophosphate synthase (EC 2.7.8.5) was 13.5, corresponding to Triton X-100. Activity was solubilized optimally at detergent concentrations between 0.1 and 0.2% (w/v). The optimal protein-to-detergent ratio for solubilization was 3 mg protein/mg Triton X-100. Solubilization of phosphatidylglycerophosphate synthase was generally better at low ionic strength, though total protein solubilization increased at high ionic strength. Solubilization was also dependent on pH. Significantly higher protein solubilization was observed at high pH (i.e., 8.5), as was phosphatidylglycerophosphate synthase solubilization. The manipulation of these variables in improving the recovery and specificity of membrane protein solubilization by detergents was examined.  相似文献   

20.
The assembly and budding of human immunodeficiency virus type 1 (HIV-1) at the plasma membrane are directed by the viral core protein Pr55(gag). We have analyzed whether Pr55(gag) has intrinsic affinity for sphingolipid- and cholesterol-enriched raft microdomains at the plasma membrane. Pr55(gag) has previously been reported to associate with Triton X-100-resistant rafts, since both intracellular membranes and virus-like Pr55(gag) particles (VLPs) yield buoyant Pr55(gag) complexes upon Triton X-100 extraction at cold temperatures, a phenotype that is usually considered to indicate association of a protein with rafts. However, we show here that the buoyant density of Triton X-100-treated Pr55(gag) complexes cannot be taken as a proof for raft association of Pr55(gag), since lipid analyses of Triton X-100-treated VLPs demonstrated that the detergent readily solubilizes the bulk of membrane lipids from Pr55(gag). However, Pr55(gag) might nevertheless be a raft-associated protein, since confocal fluorescence microscopy indicated that coalescence of GM1-positive rafts at the cell surface led to copatching of membrane-bound Pr55(gag). Furthermore, extraction of intracellular membranes or VLPs with Brij98 yielded buoyant Pr55(gag) complexes of low density. Lipid analyses of Brij98-treated VLPs suggested that a large fraction of the envelope cholesterol and phospholipids was resistant to Brij98. Collectively, these results suggest that Pr55(gag) localizes to membrane microdomains that are largely resistant to Brij98 but sensitive to Triton X-100, and these membrane domains provide the platform for assembly and budding of Pr55(gag) VLPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号