首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drug-induced taurine depletion of rat heart led to the accumulation of free CoA, free carnitine and long-chain acylcarnitine, but a small decrease in long-chain fatty acyl-CoA. Although elevations in total tissue long-chain acylcarnitine levels have been linked to defective membrane function and the association of long-chain acylcarnitines with extramitochondrial membranes, these effects were absent in isolated sarcoplasmic reticulum prepared from taurine-depleted hearts. In contrast to the sarcoplasmic reticulum data, taurine depletion was associated with a significant decrease in ATP-dependent calcium uptake by isolated sarcolemmal vesicles. The major effect of taurine depletion on the sarcolemma was a 2-fold decrease in both the Vmax of calcium transport and the activity of the Ca2+ -stimulated ATPase. Sarcolemmal vesicles prepared from taurine-depleted hearts also exhibited a decreased capacity to transport calcium in exchange for sodium, although the initial rate of the process was unaffected by taurine depletion. Since incubation of sarcolemma from taurine-depleted hearts with taurine could not overcome the effects of taurine depletion, it was concluded that the effects of taurine were not caused by a direct interaction of it with the calcium pump. Possible mechanisms of taurine action are discussed.  相似文献   

2.
Taurine depletion alters vascular reactivity in rats   总被引:2,自引:0,他引:2  
We recently showed that chronic taurine supplementation is associated with attenuation of contractile responses of rat aorta to norepinephrine and potassium chloride. However, the potential involvement of endogenous taurine in modulation of vascular reactivity is not known. Therefore, we examined the effect of beta-alanine-induced taurine depletion on the in vitro reactivity of rat aorta to selected vasoactive agents. The data indicate that both norepinephrine- and potassium-chloride-induced maximum contractile responses of endothelium-denuded aortae were enhanced in taurine-depleted rats compared with control animals. However, taurine depletion did not affect tissue sensitivity to either norepinephrine or potassium chloride. By contrast, sensitivity of the endothelium-denuded aortae to sodium nitroprusside was attenuated by taurine depletion. Similarly, taurine deficiency reduced the relaxant responses of endothelium-intact aortic rings elicited by submaximal concentrations of acetylcholine, and this effect was associated with decreased nitric oxide production. Taken together, the data suggest that taurine depletion augments contractility but attenuates relaxation of vascular smooth muscle in a nonspecific manner. Impairment of endothelium-dependent responses, which is at least in part associated with reduced nitric oxide generation, may contribute to the attenuation of the vasorelaxant responses. These vascular alterations could be of potential consequence in pathological conditions associated with taurine deficiency.  相似文献   

3.
Administration of guanidinoethanesulfonate (GES) to male rats for 5 weeks resulted in a 90% decrease in the hepatic taurine concentration. This depletion of hepatic taurine was associated with a 570% increase in the concentration of glycine-conjugated bile acids, a 30% decrease in the concentration of taurine-conjugated bile acids, and an increase in the ratio of glycine- to taurine-conjugated bile acids from 0.046 to 0.45. The total concentration of bile salts in the bile and the turnover of cholic acid were not affected by administration of GES. The data indicate that the taurine-depleted rat conserves taurine to some extent by using glycine instead of taurine for bile salt synthesis but not by decreasing the daily fractional turnover of bile acids.  相似文献   

4.
Cardiovascular responses of the taurine-depleted rat to vasoactive agents   总被引:1,自引:0,他引:1  
Mozaffari MS  Abebe W 《Amino acids》2000,19(3-4):625-634
Summary. The objective of this study was to assess the effect of taurine-depletion on cardiovascular responses of rat to vasoactive agents. Male Wistar-Kyoto (WKY) rats were given either tap water (control) or 3% β-alanine (taurine-depleted) for three weeks. Thereafter, mean arterial pressure (MAP) and heart rate of the freely moving animal were measured in response to vasoactive agents. Administration of phenylephine (5–40 μg/kg/min; i.v.) resulted in a similar and significant increase in MAP but a reduction in heart rate in both control and taurine-depleted groups. On the other hand, administration of sodium nitroprusside (15–300 μg/kg/min; i.v.) elicited a similar and significant reduction in MAP but increased heart rate in both groups. Lack of a differential response to phenylephrine and sodium nitroprusside between the two groups suggests that baroreflex regulation of cardiovascular function is not adversely affected by taurine-depletion. Administration of angiotensin II (0.1–3.0 μg/kg/min; i.v.) resulted in a dose-related increase in the pressor response and a decrease in heart rate in both groups. However, angiotensin II-induced pressor response was reduced in the taurine-depleted compared to the control rats (p < 0.05); heart rate was similarly reduced in both groups. Acute exposure to β-alanine (3 g/kg; i.v., 30-minutes) did not alter angiotensin II-induced hemodynamic responses. Similarly, incubation of aortic rings with β-alanine (40 mM, 30 minutes) did not affect the contractile responses to angiotensin II. The results suggest that β-alanine, per se, does not affect angiotensin II-induced responses in rat. However, β-alanine-induced taurine depletion is associated with a reduction in the pressor response to angiotensin II without impairing baroreflex function. Received December 17, 1999/Accepted January 12, 2000  相似文献   

5.
Kittens were adapted to a semipurified diet and then fed either a control diet that contained 0.1% taurine or a taurine-free diet for 6 weeks; at the end of the feeding period, kittens fed the taurine-free diet had plasma and liver taurine concentrations that were 0.38 and 0.15%, respectively, of those for control kittens. Hepatic cysteinesulfinate decarboxylase activity in taurine-deficient kittens was five-times the level in control kittens, but hepatic cysteine dioxygenase activity was not affected by the dietary treatment. Taurine-conjugated bile acids made up 98% of the total bile acids in the gall bladder of control kittens, but they accounted for only 44% of the total bile acids in the bile of taurine-depleted kittens; both the concentrations of taurine-conjugated bile acids and total bile acids were markedly decreased in taurine-deficient kittens. No effect of taurine depletion on the fractional excretion of taurine in the urine was observed. The kitten may have some mechanisms for adapting to a low-taurine diet, but these are clearly not sufficient to maintain tissue taurine levels in the absence of dietary taurine.  相似文献   

6.
Contractile parameters in Krebs-Henseleit media containing various calcium concentrations were compared in left ventricular papillary muscles of two groups of rats: control and taurine depleted. All tests were carried out with the muscles at initial length, Lmax, the length that produced maximal active tension. From measurements of after- and un-loaded contractions, the velocity-tension curves and the derived maximum velocity of shortening were not different between the groups. Time to peak shortening and extent of shortening were not altered, while relaxation times and contraction duration were significantly prolonged for taurine-depleted muscles. Peak isometric tension and its rate of development were significantly reduced in taurine-depleted muscles compared with controls. Postrest (3 min) stimuli and paired stimuli (200-ms interval) evoked similar potentiated contractile responses in both groups, such that the ratio of their peak tensions remained unchanged. For taurine-depleted muscles the force-frequency relationship (a negative staircase) was parallel to, but lower than, control. These experiments suggest that taurine deficiency leads to reductions in action potential triggered calcium release from internal stores, and deficits in calcium sequestration. This may result from disfacilitation of calcium binding to the sarcoplasmic reticulum and other storage sites during taurine deficiency.  相似文献   

7.
Summary.  An experimental comparative study on isolated guinea pig-lungs has been undertaken to determine the probable beneficial effects of adding taurine to pulmonary reperfusion solutions in lung ischemia-reperfusion. 20 guinea pigs were used. The isolated lungs (n = 10 in each group) previously being perfused by oxygenated Krebs-Henseleit solution were put in normothermic ischemic conditions. After 3 hours of normothermic ischemia the lungs were reperfused (with Krebs-Henseleit solution in the control group, Krebs-Henseleit solution plus taurine 10−2 M in the experiment group) for 20 minutes. Pulmonary artery pressures, tissue malondialdehyde (MDA) and glutathione (GSH) levels were measured before and after the ischemic period and also at the end of reperfusion. Malondialdehyde and glutathione levels of the pefusate were measured before ischemic period and at the end of reperfusion. An electron microscopic analysis was performed on the lung tissues before and after the ischemic period and also at the end of reperfusion. Decreased pulmonary artery pressure, tissue perfusate MDA levels and increased perfusate GSH levels were observed in taurine added group. Electron microscopic evaluation supported our findings indicating preservation of lamellar bodies of type II pneumocytes. It is concluded that taurine may play an important role in protecting tissue against ischemia-reperfusion injury by functioning as an antioxidant. Received May 16, 2001 Accepted September 6, 2001  相似文献   

8.
The cytoprotective role of taurine in exercise-induced muscle injury   总被引:4,自引:0,他引:4  
Summary.  Intense exercise is thought to increase oxidative stress and damage muscle tissue. Taurine is present in high concentration in skeletal muscle and may play a role in cellular defenses against free radical-mediated damage. The aim of this study was to determine if manipulating muscle levels of taurine would alter markers of free radical damage after exercise-induced injury. Adult male Sprague-Dawley rats were supplemented via the drinking water with either 3% (w/v) taurine (n = 10) or the competitive taurine transport inhibitor, β-alanine (n = 10), for one month. Controls (n = 20) drank tap water containing 0.02% taurine and all rats were placed on a taurine free diet. All the rats except one group of sedentary controls (n = 10) were subjected to 90 minutes of downhill treadmill running. Markers of cellular injury and free radical damage were determined along with tissue amino acid content. The 3% taurine treatment raised plasma levels about 2-fold and 3% β-alanine reduced plasma taurine levels about 50%. Taurine supplementation (TS) significantly increased plasma glutamate levels in exercised rats. Exercise reduced plasma methionine levels and taurine prevented its decline. Taurine supplementation increased muscle taurine content significantly in all muscles except the soleus. β-alanine decreased muscle taurine content about 50% in all the muscles examined. Lipid peroxidation (TBARS) was significantly increased by exercise in the extensor digitorium longus (EDL) and gastrocnemius (GAST) muscles. Both taurine and β-alanine completely blocked the increase in TBARs in the EDL, but had no effect in the GAST. Muscle content of the cytosolic enzyme, lactate dehydrogenase (LDH) was significantly decreased by exercise in the GAST muscle and this effect was attenuated by both taurine and β-alanine. Muscle myeloperoxidase (MPO) activity was significantly elevated in the gastrocnemius muscle, but diet had no effect. MPO activity was significantly increased by exercise in the liver and both taurine and β-alanine blocked this effect. There was no effect of either exercise or the diets on MPO activity in the lung or spleen. Running performance as assessed by a subjective rating scale was improved by taurine supplementation and there was a significant loss in body weight in the β-alanine-treated rats 24 hours after exercise. In summary, taurine supplementation or taurine depletion had measurable cytoprotective actions to attenuate exercise-induced injury. Received October 22, 2001 Accepted February 1, 2002  相似文献   

9.
In mammalian cells, the organic osmolyte taurine is accumulated by the Na-dependent taurine transporter TauT and released though the volume- and DIDS-sensitive organic anion channel. Incubating Ehrlich Lettré tumor cells with methyl-β-cyclodextrin (5 mM, 1 h) reduces the total cholesterol pool to 60 ± 5% of the control value. Electron spin resonance data indicate a concomitant disruption of cholesterol-rich micro-domains. Active taurine uptake, cellular taurine content, and cell volume are reduced by 50, 20 and 20% compared to control values, respectively, whereas the passive taurine release is increased 4.5-fold under isotonic conditions following cholesterol depletion. However, taurine release under isotonic conditions is insensitive to DIDS and inhibitors of the volume-regulated anion channel. Uptake and release of meAIB are similarly affected following cholesterol depletion. Kinetic analysis reveals that cholesterol depletion increases TauT’s affinity toward taurine but reduces its maximal transport capacity. Cholesterol depletion has no impact on TauT regulation by protein kinases A and C. Phospholipase A2 activity, which is required for the activation of volume-sensitive organic anion channel (VSOAC), is increased under isotonic and hypotonic conditions following cholesterol depletion, whereas taurine release under hypotonic conditions is reduced following cholesterol depletion. Hence, acute cholesterol depletion of Ehrlich Lettré cells leads to reduced TauT and VSOAC activities and at the same time increases the release of organic osmolytes via a leak pathway different from the volume-sensitive pathways for amino acids and anions.  相似文献   

10.
N Lake  M de Roode  S Nattel 《Life sciences》1987,40(10):997-1005
Electrocardiograms were monitored in unanesthetized rats during treatment with drinking water containing guanidinoethyl sulfonate (GES), an inhibitor of taurine transport, which depleted cardiac taurine content. Treatment led to a selective prolongation of the QT interval which was highly correlated with the degree of taurine depletion (r2 = 0.92, p less than .001). Compared to controls, the duration of ventricular muscle action potentials was significantly increased in GES-treated rats, and this accounted for the prolongation of QT intervals. Oral taurine supplements reversed GES-induced cardiac taurine depletion and the associated increased duration of action potentials and QT intervals. In vitro superfusion with 0.2-10 mM GES or taurine had no effect on action potentials of control or GES-treated rats. These data indicate that intracellular taurine may play a role in regulating myocardial action potential duration, particularly during repolarization.  相似文献   

11.
Wu G  Yang J  Sun C  Luan X  Shi J  Hu J 《Amino acids》2009,36(3):457-464
To investigate the effect of taurine on alcoholic liver disease in rats, male Wistar rats were administered alcohol intragastrically for 3 months. The effect of β-alanine-mediated taurine depletion and taurine administration on the development of alcoholic liver disease was examined. It was found that taurine administration produced lower levels of aspartate aminotransferase and alkaline aminotransferase than that of the untreated group. In addition, the levels of hepatic total protein, glutathione and superoxide dismutase were higher in the taurine treated groups than those in the untreated control or the taurine depleted groups, while hepatic malondialdehyde content exhibited the negative effect. Moreover, the concentrations of hepatic hydroxyproline, serum hyaluronic acid, interleukin-2, interleukin-6, tumor necrosis factor-α and laminin were all decreased in the taurine treated groups. The pathological changes showed that the percentage of fatty degeneration and inflammation in the taurine groups were lower than that of the control, taurine depleted and automatic recovery groups. These in vivo findings demonstrate that hepatic disease caused by chronic alcohol consumption can be prevented and cured by administration of taurine.  相似文献   

12.
The sulfur-containing amino acid taurine is an inhibitory neuromodulator in the brain of mammals, as well as a key substance in the regulation of cell volumes. The effect of Ca(2+) on extracellular taurine concentrations is of special interest in the context of the regulatory mechanisms of taurine release. The aim of this study was to characterize the basal release of taurine in Ca(2+)-free medium using in vivo microdialysis of the striatum of anesthetized rats. Perfusion of Ca(2+)-free medium via a microdialysis probe evoked a sustained release of taurine (up to 180 % compared to the basal levels). The Ca(2+) chelator EGTA (1mM) potentiated Ca(2+) depletion-evoked taurine release. The substitution of CaCl(2) by choline chloride did not alter the observed effect. Ca(2+)-free solution did not significantly evoke release of taurine from tissue loaded with the competitive inhibitor of taurine transporter guanidinoethanesulfonate (1mM), suggesting that in Ca(2+) depletion taurine is released by the transporter operating in the outward direction. The volume-sensitive chloride channel blocker diisothiocyanostilbene-2,2'-disulfonate (1mM) did not attenuate the taurine release evoked by Ca(2+) depletion. The non-specific blocker of voltage-sensitive Ca(2+) channels NiCl(2) (0.65 mM) enhanced taurine release in the presence of Ca(2+). CdCl(2) (0.25 mM) had no effect under these conditions. However, both CdCl(2) and NiCl(2) attenuated the effect of Ca(2+)-free medium on the release of taurine. The data obtained imply the involvement of both decreased influx of Ca(2+) and increased non-specific influx of Na(+) through voltage-sensitive calcium channels in the regulation of transporter-mediated taurine release in Ca(2+) depletion.  相似文献   

13.
Summary High resolution electron microscopy of ultrathin sections confirms the presence of a membrane surrounding the tapetal rods in the cat. Cats depleted of taurine exhibit disruption and disorganization of this membrane, probably the first stage of more severe tapetal degeneration. Histochemical localization of zinc shows it to be present on the periphery of the tapetal rods. The amount of zinc present on the periphery of the tapetal rods of taurine depleted cats was greatly reduced. Taurine in feline tapetum, confirmed by autoradiography and direct measurement, was also greatly reduced in taurine-depleted cats. We conclude that both taurine and zinc are localized on the periphery of the tapetal rods and that they contribute to the stability of the membrane. We have also confirmed earlier reports that the cat tapetal rods contain riboflavin and no detectable cysteine.Presented in part at the International Symposium Taurine-Questions and Answers Mexico City, November 16–19, 1980  相似文献   

14.
Taurine effectively prevents ischemia-induced apoptosis in the cardiomyocytes and hypothalamic nuclei. The present study explores the influence of taurine on mitochondrial damage, oxidative stress and apoptosis in experimental liver fibrosis. Male albino Wistar rats were divided into six groups and maintained for a period of 60 days as follows: Group I, control; Group II, ethanol treatment [6 g/(kg/day)]; Group III, fibrosis induced by ethanol and iron (0.5% w/w); Group IV, ethanol + iron + taurine (2% w/v); Group V, ethanol + taurine treatment and Group VI, control + taurine treatment. Hepatocytes isolated from ethanol plus iron-treated rats showed decreased cell viability and redox ratio, increased reactive oxygen species formation, lipid peroxidation, DNA fragmentation, and formation of apoptotic bodies. Liver mitochondria showed increased susceptibility to swell, diminished activities of mitochondrial respiratory chain complexes and antioxidants. Taurine administration to fibrotic rats restored mitochondrial function, reduced reactive oxygen species formation, prevented DNA damage, and apoptosis. Thus taurine might contribute to the amelioration of the disease process.  相似文献   

15.
Taurine (2-aminoethanesulfonic acid) is found in milimolar concentrations in mammalian tissues. One of its main functions is osmoregulation; however, it also exhibits cytoprotective activity by diminishing injury caused by stress and disease. Taurine depletion is associated with several defects, many of which are found in the aging animal, suggesting that taurine might exert anti-aging actions. Therefore, in the present study, we examined the hypothesis that taurine depletion accelerates aging by reducing longevity and accelerating aging-associated tissue damage. Tissue taurine depletion in taurine transporter knockout (TauTKO) mouse was found to shorten lifespan and accelerate skeletal muscle histological and functional defects, including an increase in central nuclei containing myotubes, a reduction in mitochondrial complex 1 activity and an induction in an aging biomarker, Cyclin-dependent kinase 4 inhibitor A (p16INK4a). Tissue taurine depletion also enhances unfolded protein response (UPR), which may be associated with an improvement in protein folding by taurine. Our data reveal that tissue taurine depletion affects longevity and cellular senescence; an effect possibly linked to a disturbance in protein folding.  相似文献   

16.
Summary. We studied in vivo production of taurine, hypotaurine and sulfate following subcutaneous administration of L-cysteinesulfinate (CSA) to rats and mice. When 5.0 mmol/kg of body weight of CSA was injected to rats, increased urinary excretions of taurine, hypotaurine and sulfate in 24 h urine were 617, 52 and 1,767 μmol/kg, respectively. From these results together with our previous data, sulfate production was calculated to be 1.6 times greater than taurine production. Increased contents (μmol/g of wet tissue) over the control of taurine and hypotaurine in mouse tissues at 60 min after the injection of 5.0 mmol/kg body weight of CSA were: liver, 3.5 and 9.9; kidney, 0.3 and 5.2; heart, 3.7 and 0.2; blood plasma, 0.4 and 0.2, respectively. Upon loading of hypotaurine or taurine, tissue contents of these amino acids in liver and kidney increased greatly. Our results indicate that liver is the most active tissue for taurine production, followed by kidney, and that external CSA, hypotaurine and taurine are easily taken up by these tissues.  相似文献   

17.
Summary Partial depletion of the taurine content in the rat retina was accomplished for up to 22 weeks by introduction of 1.5% guanidinoethanesulfonate (GES) in the drinking water. Taurine levels decreased by 50% after 1 week of GES treatment and by 80% at 16 weeks. Replacement of GES by taurine to the GES-treated rats from week 16 to 22 returned their taurine content to the control value. Whereas addition of taurine (1.5%) to the drinking water of control rats from week 16 to 22 elevated the retinal taurine content to 118% of the control value, the administration of untreated water to GES-treated animals for the 16 to 22 week time period increased the retinal taurine content to only 76% of the control value.The amplitude of the electroretinogram (ERG) b-wave was decreased by 60% after GES-treatment for 16 weeks and maintained this reduced level for up to 22 weeks. Administration of taurine in the drinking water from week 16 to 22 returned the b-wave amplitude to a range not statistically different from the control values whereas the administration of untreated water produced less improvement.After 6 weeks of GES treatment when the retinal taurine content was reduced by 70% and the amplitude of the b-wave was reduced by 50% (extrapolated from Figure 1), phosphorylation of a specific protein with an approximate molecular weight of 20K was increased by 94%. The increased phosphorylation of the ~20K protein observed after GES treatment was reversed when the animals were treated with taurine (1 1/2%) in the drinking water for an additional 6 weeks. There was no change in the phosphorylation of the ~20K protein when animals were treated with taurine for 6 weeks. The data obtained support the theory that taurine may have a regulatory effect on retinal protein phosphorylation.  相似文献   

18.
The purpose of this study was to determine the effect of selenium deficiency on tissue taurine levels and urinary taurine excretion. Weanling male Sprague-Dawley rats were fed selenium-deficient or selenium-adequate diets for 20 weeks. As selenium deficiency developed, urinary taurine excretion increased in selenium-deficient rats compared to controls. At 12 weeks, the selenium-deficient rats excreted 1.7-fold more taurine than control rats. At the same time plasma glutathione peroxidase was 1.2% of control and plasma glutathione was 226% of control. At 20 weeks, renal taurine was decreased but renal glutathione was increased in selenium-deficient rats compared to controls. Feeding the experimental diet for 6 weeks without methionine supplementation caused a fall in urinary taurine excretion. However, there was no difference between selenium-deficient and control rats. These results indicate that selenium deficiency affects renal handling of taurine in the rat when dietary sulfur amino acids are not restricted.  相似文献   

19.

Background

Systemic hypertension may be associated with an increased pulmonary vascular resistance, which we hypothesized could be, at least in part, mediated by increased leptin.

Methods

Vascular reactivity to phenylephrine (1 μmol/L), endothelin-1 (10 nmol/L) and leptin (0.001–100 nmol/L) was evaluated in endothelium-intact and -denuded isolated thoracic aorta and pulmonary arteries from spontaneously hypertensive versus control Wistar rats. Arteries were sampled for pathobiological evaluation and lung tissue for morphometric evaluation.

Results

In control rats, endothelin-1 induced a higher level of contraction in the pulmonary artery than in the aorta. After phenylephrine or endothelin-1 precontraction, leptin relaxed intact pulmonary artery and aortic rings, while no response was observed in denuded arteries. Spontaneously hypertensive rats presented with increased reactivity to phenylephrine and endothelin-1 in endothelium-intact pulmonary arteries. After endothelin-1 precontraction, endothelium-dependent relaxation to leptin was impaired in pulmonary arteries from hypertensive rats. In both strains of rats, aortic segments were more responsive to leptin than pulmonary artery. In hypertensive rats, pulmonary arteries exhibited increased pulmonary artery medial thickness, associated with increased expressions of preproendothelin-1, endothelin-1 receptors type A and B, inducible nitric oxide synthase and decreased endothelial nitric oxide synthase, together with decreased leptin receptor and increased suppressor of cytokine signaling 3 expressions.

Conclusions

Altered pulmonary vascular reactivity in hypertension may be related to a loss of endothelial buffering of vasoconstriction and decreased leptin-induced vasodilation in conditions of increased endothelin-1.  相似文献   

20.
The purpose of this study was to investigate the oxidative status in experimental hypothyroidism and the antioxidant effect of taurine supplementation. Forty male Sprague Dawley rats were randomly divided into four groups (group 1, control; group 2, control + taurine; group 3, propylthiouracil (PTU); group 4, PTU + taurine). Hypothyroidism was induced by giving 0.05% PTU in drinking water for 8 weeks. Taurine was supplemented in drinking water at a concentration of 1% for 5 weeks. Plasma (p < 0.05), red blood cell (p < 0.01), liver (p < 0.001) and kidney tissue (p > 0.05) malondialdehyde levels were increased in the PTU group compared with those of the control rats and were decreased in the PTU + taurine group compared with the PTU alone group. No significant changes were observed in glutathione levels of kidney and liver in the PTU group, but taurine supplementation significantly increased the glutathione levels of these tissues. Paraoxonase and arylesterase activities were decreased in the PTU group while taurine supplementation caused no significant changes in paraoxonase and arylesterase activities. These findings suggest that taurine supplementation may play a protective role against the increased oxidative stress resulting from hypothyroidism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号