共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The occurrence of (R)-3′-O-β-d-glucopyranosylrosmarinic acid, rosmarinic acid and caffeic acid in two important South African medicinal plants is reported for the first time. (R)-3′-O-β-d-Glucopyranosylrosmarinic acid and rosmarinic acid were isolated and identified in several samples from three species of the genus Arctopus L. (sieketroos) and three species of the genus Alepidea F. Delaroche (ikhathazo), both recently shown to be members of the subfamily Saniculoideae of the family Apiaceae. The compounds occur in high concentrations (up to 15.3 mg of (R)-3′-O-β-d-glucopyranosylrosmarinic acid per g dry wt) in roots of Arctopus. Our results provide a rationale for the traditional uses of these plants, as the identified compounds are all known for their antioxidant activity, with rosmarinic acid further contributing to a wide range of biological activities. Furthermore, we confirm the idea that (R)-3′-O-β-d-glucopyranosylrosmarinic acid is a useful chemotaxonomic marker for the subfamily Saniculoideae. 相似文献
4.
Two flavonol tetraglycosides comprising a trisaccharide at C-3 and a monosaccharide at C-7 were isolated from the leaves of Styphnolobium japonicum (L.) Schott and characterised as the 3-O-alpha-rhamnopyranosyl(1-->2)[alpha-rhamnopyranosyl(1-->6)]-beta-glucopyranoside-7-O-alpha-rhamnopyranosides of quercetin and kaempferol. The 3-O-alpha-rhamnopyranosyl(1-->2)[alpha-rhamnopyranosyl(1-->6)]-beta-galactopyranoside-7-O-alpha-rhamnopyranoside of kaempferol, the 3-O-alpha-rhamnopyranosyl(1-->2)[alpha-rhamnopyranosyl(1-->6)]-beta-glucopyranosides of kaempferol and quercetin and the 3-O-alpha-rhamnopyranosyl(1-->2)[alpha-rhamnopyranosyl(1-->6)]-beta-galactopyranoside of kaempferol were also obtained from this species for the first time. Some or all of these flavonol tetra- and triglycosides were detected in 17 of 18 specimens of S. japonicum examined from living and herbarium material, although the most abundant flavonoid in the leaves was generally quercetin 3-O-alpha-rhamnopyranosyl(1-->6)-beta-glucopyranoside (rutin). The triglycosides, but not the tetraglycosides, were detected in herbarium specimens of Styphnolobium burseroides M. Sousa, Rudd & Medrano and Styphnolobium monteviridis M. Sousa & Rudd, but specimens of Styphnolobium affine (Torrey & A. Gray) Walp. contained a different profile of flavonol glycosides. The flavonol tetra- and triglycosides of S. japonicum were also present in leaves of Cladrastis kentukea (Dum. Cours.) Rudd, a representative of a genus placed close to Styphnolobium in current molecular phylogenies. An additional constituent obtained from leaves of Styphnolobium japonicum was identified as the maltol derivative, 3-hydroxy-2-methyl-4H-pyran-4-one 3-O-(4'-O-p-coumaroyl-6'-O-(3-hydroxy-3-methylglutaroyl))-beta-glucopyranoside. 相似文献
5.
6.
7.
8.
9.
Anthyllis vulneraria (Leguminosae, subfamily Lotoideae) has been investigated for flavonoids by means of polyamide column chromatography and TLC. The following flavonols have been characterized: quercetin, kaempferol and isorhamnetin, previously reported in this genus, and rhamnocitrin (I), rhamnetin (II), 3,7,4′-trihydroxy-flavone (III), fisetin (IV) and geraldol (V). This last compound has only been isolated once before as a natural product. 相似文献
10.
11.
The flavonoid profiles of two monotypic genera, Teucridium and Tripora, have been studied by analytical methods. These genera were formerly placed in the Verbenaceae, but are now classified in the Lamiaceae, subfamily Ajugoideae. The major flavonoids of both genera were identified as glycosides of scutellarein 4'-methyl ether (5,6,7-trihydroxy-4'methoxyflavone) and acacetin (5,7-dihydroxy-4'-methoxyflavone). The new flavone glycoside, scutellarein 4'-methyl ether 7-O-rutinoside, was isolated from Teucridium parvifolium and the rare scutellarein 4'-methyl ether 7-O-glucuronide from Tripora divaricata. The latter compound has only been reported previously in the related genus Clerodendron. The potential of these flavonoids as taxonomic markers for the tribe Ajugoideae is discussed. 相似文献
12.
13.
Geoffrey C. Kite Nigel C. Veitch Martha E. Boalch Gwilym P. Lewis Christine J. Leon Monique S.J. Simmonds 《Phytochemistry》2009,70(6):785-7475
The dried fruits and seeds of Styphnolobium japonicum (L.) Schott (syn. Sophora japonica L.) are used in traditional Chinese medicine and known as Fructus Sophorae or Huai Jiao. The major flavonoids in these fruits and seeds were studied by LC-MS and other spectroscopic techniques to aid the chemical authentication of Fructus Sophorae. Among the flavonoids were two previously unreported kaempferol glycosides: kaempferol 3-O-β-glucopyranosyl(1 → 2)-β-galactopyranoside-7-O-α-rhamnopyranoside and kaempferol 3-O-β-xylopyranosyl(1 → 3)-α-rhamnopyranosyl(1 → 6)[β-glucopyranosyl(1 → 2)]-β-glucopyranoside, the structures of which were determined by NMR. Two further tetraglycosides were identified for the first time in S. japonicum as kaempferol 3-O-β-glucopyranosyl(1 → 2)[α-rhamnopyranosyl(1 → 6)]-β-glucopyranoside-7-O-α-rhamnopyranoside and kaempferol 3-O-β-glucopyranosyl(1 → 2)[α-rhamnopyranosyl(1 → 6)]-β-galactopyranoside-7-O-α-rhamnopyranoside; the latter was the main flavonoid in mature seeds. The chromatographic profiles of 27 recorded flavonoids were relatively consistent among fruits of similar ages collected from five trees of S. japonicum, and those of maturing unripe and ripe fruits were similar to a market sample of Fructus Sophorae, and thus provide useful markers for authentication of this herbal ingredient. The flower buds (Huai Mi) and flowers (Huai Hua) of S. japonicum (collectively Flos Sophorae) contained rutin as the main flavonoid and lacked the flavone glycosides that were present in flower buds and flowers of Sophora flavescens Ait., reported to be occasional substitutes for Flos Sophorae. The single major flavonoid in fruits of S. flavescens was determined as 3′-hydroxydaidzein. 相似文献
14.
15.
Chemical constituents from the fruits of Sonneratia caseolaris and Sonneratia ovata (Sonneratiaceae)
Shi-Biao Wu Ying Wen Xu-Wen Li Yun Zhao Zheng Zhao Jin-Feng Hu 《Biochemical Systematics and Ecology》2009
Nine (1–9) and seven (1–6, 10) compounds were isolated from the fruits of Sonneratia caseolaris and Sonneratia ovata, respectively. Their structures were identified by comparing their MS and NMR data as well as the physical properties with the literature. All the isolated compounds were screened against a rat glioma C-6 cell line using the MTT assay method; only compounds (-)-(R)-nyasol (1), (-)-(R)-4′-O-methylnyasol (2) and maslinic acid (6) were found to show moderate cytotoxic activity. Our findings from these two kinds of fruits can be used as a foundation for further chemotaxonomic studies on Sonneratia species. The nor-lignans (1, 2) and 6H-benzo[b,d]pyran-6-one derivatives (3, 4) were isolated from this genus for the first time, indicating that these two classes of compounds may tentatively be considered as taxonomic markers for Sonneratia genus. 相似文献
16.
17.
Inflorescence and floral development of two tropical legume trees, Dahlstedtia pinnata and Dahlstedtia pentaphylla, occurring in the Atlantic Forest of south-eastern and southern Brazil, were investigated and compared with other papilionoids. Few studies have been made of floral development in tribe Millettieae, and this paper is intended to fill that gap in our knowledge. Dahlstedtia species have an unusual inflorescence type among legumes, the pseudoraceme, which comprises axillary units of three or more flowers, each with a subtending bract. Each flower exhibits a pair of opposite bracteoles. The order of flower initiation is acropetal; inception of the floral organs is as follows: sepals (5), petals (5), carpel (1) plus outer stamens (5) and finally inner stamens (5). Organ initiation in sepal, petal and inner stamen whorls is unidirectional; the carpel cleft is adaxial. The vexillum originates from a tubular-shaped primordium in mid-development and is larger than other petals at maturity, covering the keels. The filament tube develops later after initiation of inner-stamen primordia. Floral development in Dahlstedtia is almost always similar to other papilionoids, especially species of Phaseoleae and Sophoreae. But one important difference is the precocious ovule initiation (open carpel with ovules) in Dahlstedtia, the third citation of this phenomenon for papilionoids. No suppression, organ loss or anomalies occur in the order of primordia initiation or structure. Infra-generic differences in the first stages of ontogeny are rare; however, different species of Dahlstedtia are distinguished by the differing distribution pattern of secretory cavities in the flower. 相似文献
18.
19.