首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two new bufadienolide glycosides with an A/B trans ring structure, 14β,16β-dihydroxy-3β-(β-d-glucopyranosyloxy)-5α-bufa-20,22-dienolide (1), and 14β,16β-dihydroxy-3β-[β-d-glucopyranosyl-(1→4)-(β-d-glucopyranosyloxy)]-5α-bufa-20,22-dienolide (2), two known ecdysteroids (polypodine B and 20-hydroxyecdysone) (3-4), and six known bufadienolide and its glycosides with 5β-OH (hellebrigenin, 16β-hydroxyhellebrigenin-3-O-α-l-rhamnoside, hellebrigenin 3-O-β-d-glucoside, hellebrin, 16β-hydroxyhellebrigenin-3-O-β-d-glucoside, and deglucohellebrin) (5-10) were isolated from the rhizomes of Helleborus thibetanus. The structures of compounds 1 and 2 were elucidated using various spectroscopic methods. All compounds were reported for the first time from the title plant and their chemotaxonomic significance for the genus Helleborus was discussed.  相似文献   

2.
Methylated anthocyanin glycosides were isolated from red Canna indica flower and identified as malvidin 3-O-(6-O-acetyl-β-d-glucopyranoside)-5-O-β-d-glucopyranoside (1), malvidin 3,5-O-β-d-diglucopyranoside (2), cyanidin-3-O-(6″-O-α-rhamnopyranosyl-β-glucopyranoside (3), cyanidin-3-O-(6″-O-α-rhamnopyranosyl)-β-galactopyranoside (4), cyanidin-3-O-β-glucopyranoside (5) and cyanidin-O-β-galactopyranoside (6) by HPLC-PDA. Their structures were subsequently determined on the basis of spectroscopic analyses, that is, 1H NMR, 13C NMR, HMQC, HMBC, ESI-MS, and UV-vis. Compounds (1-4) were found to be in major quantity while compounds (5-6) were in minor quantity.  相似文献   

3.
Phytochemical investigation of the methanolic extract from the aerial parts of Agrimonia pilosa led to the isolation of three compounds, (−)-aromadendrin 3-O-β-d-glucopyranoside (1), desmethylagrimonolide 6-O-β-d-glucopyranoside (2), and 5,7-dihydroxy-2-propylchromone 7-O-β-d-glucopyranoside (3), together with nine known compounds, agrimonolide 6-O-glucoside, takanechromone C, astragalin, afzelin, tiliroside, luteolin, quercetin, isoquercetrin, and quercitrin. Their structures were determined by various spectroscopic analysis and chemical transformations.  相似文献   

4.
Shi-Biao Wu 《Steroids》2009,74(9):761-18673
Three new (1-3) and several known (4-6) steroids were isolated from the leaves of Chinese Melia azedarach. The structures of the new compounds were elucidated by means of spectroscopic methods including 2D NMR techniques and mass spectrometry to be (20S)-5,24(28)-ergostadiene-3β,7α,16β,20-tetrol (1), (20S)-5-ergostene-3β,7α,16β,20-tetrol (2), and 2α,3β-dihydro-5-pregnen-16-one (3). The cytotoxicities of the isolated compounds against three human cancer cell lines (A549, H460, U251) were evaluated; only compounds 1, 2, and (20S)-5-stigmastene-3β,7α,20-triol (4) were found to show significant cyctotoxic effects with IC50s from 12.0 to 30.1 μg/mL.  相似文献   

5.
The absolute configuration (AC) of 6β-hydroxy-3α-senecioyloxytropane (1), 3α-hydroxy-6β-tigloyloxytropane (2), 3α-hydroxy-6β-senecioyloxytropane (3), and 3α-hydroxy-6β-angeloyloxytropane (4) was assigned as (1R,3R,5S,6R) using density functional theory (DFT) calculations at the B3LYP/DGDZVP level of theory in combination with experimental vibrational circular dichroism (VCD) measurements and comparison with the spectra of similar tropanes. The AC of 1 followed from a sample isolated from Schizanthus grahamii, while those of the mixture of 2 and 3, isolated from the same source, were determined by comparing the VCD measurement to a weighted calculation of the individual VCD spectra according to a 69:31 ratio of 2:3 determined by 1H NMR signal integration. In turn, Schizanthus pinnatus provided a 7:3 mixture of 1:4 whose AC was determined using the experimental VCD absorptions in the 1150-950 cm−1 spectral region which were compared with those observed for 1-3 and with those described for other 3α,6β-tropanediol derivatives.  相似文献   

6.
Four new (1-4) and 13 known (5-17) sesquiterpene lactones along with two known diterpenes (18, 19) were isolated from the whole plant of Carpesium faberi. The new structures were elucidated by means of spectroscopic techniques and some chemical transformations to be pseudoguaian-1α(H)-8α,12-olide-4β-O-β-d-glucopyranoside (1), 4β,10α-dihydroxy-5α(H)-1,11(13)-guaidien-8α,12-olide (2), 4β,10β-dihydroxy-5α(H)-1, 11(13)-guaidien-8β,12-olide (3), and (4S)-acetyloxyl-11(13)-carabren-8β,12-olide (4). All isolates were tested against MCF-7 human breast cancer cells using the MTT assay. Among them, the sesquiterpene lactones (except tomentosin 17) possessing an α-methylene-γ-lactone moiety were found to have in vitro antiproliferative activities, with IC50 values of 3.0-38.8 μg/mL. The effects of four selected sesquiterpene lactones (guaianolide 2, carabranolide 4, pseudoguaianolide 9, eudesmanolide 13) on the cell cycle were examined using flow cytometry (FCM).  相似文献   

7.
The chemical composition of the Caribbean sponge Pandaros acanthifolium was investigated and led to the isolation of seven new steroidal glycosides namely pandarosides A-D (1, 3, 4 and 6) along with the three methyl esters of pandarosides A, C, and D (2, 5 and 7). Their structures were characterized as 3β-[β-glucopyranosyl-(1→2)-β-glucopyranosyloxyuronic acid]-16-hydroxy-5α,14β-poriferast-16-ene-15,23-dione (1) and its methyl ester (2), 3β-[β-glucopyranosyloxyuronic acid]-16-hydroxy-5α,14β-poriferast-16-ene-15,23-dione (3), 3β-[β-glucopyranosyl-(1→2)-β-glucopyranosyloxyuronic acid]-16-hydroxy-5α,14β-cholest-16-ene-15,23-dione (4) and its methyl ester (5), 3β-(β-glucopyranosyloxyuronic acid)-16-hydroxy-5α,14β-cholest-16-ene-15,23-dione (6) and its methyl ester (7) on the basis of detailed spectroscopic analyses, including 2D NMR and HRESIMS studies. Pandarosides A-D and their methyl esters (1-7) are all characterized by a rare 2-hydroxycyclopentenone D-ring with a 14β configuration. The absolute configuration of the aglycon part of pandaroside A (1) was assigned by comparison between experimental and TDDFT calculated circular dichroism spectra on the more stable conformer.  相似文献   

8.
Iridoid glycosides, 2′,3′,6′-tri-O-acetyl-4′-O-trans-p-(O-β-d-glucopyranosyl)coumaroyl-7-ketologanin (1), 2′-O-caffeoylloganic acid (2), 2′-O-p-hydroxybenzoylloganic acid (3), 2′-O-trans-p-coumaroylloganic acid (4), and 2′-O-cis-p-coumaroylloganic acid (5), were isolated from whole plants of Gentiana loureirii along with six known iridoids, 7-ketologanin (6), loganin (7), loganic acid (8), sweroside, boonein, and isoboonein, and three other known compounds. Their structures were elucidated by spectroscopic means and chemical correlations. The isolated iridoids were evaluated for antibacterial and antioxidant activities, but were either inactive or very weakly active.  相似文献   

9.
Chromone glucosides, takanechromones A-C (1, 2 and 5) and chromanone glucosides, named takanechromanones A and B (3 and 4), were isolated from the methanolic extracts of Hypericumsikokumontanum together with 27 known compounds. Their structures were established based on spectroscopic evidence. The isolated compounds and some chromone derivatives were assayed for antimicrobial activity against Helicobacter pylori and cytotoxicity against human cancer cell lines.  相似文献   

10.
Zhang Z  Li S  Ownby S  Wang P  Yuan W  Zhang W  Scott Beasley R 《Phytochemistry》2008,69(10):2070-2080
Phytochemical investigation on the whole plant of Eryngium yuccifolium resulted in the isolation and identification of three phenolic compounds (1-3) and 12 polyhydroxylated triterpenoid saponins, named eryngiosides A-L (4-15), together with four known compounds kaempferol-3-O-(2,6-di-O-trans-p-coumaroyl)-β-d-glucopyranoside (16), caffeic acid (17), 21β-angeloyloxy-3β-[β-d-glucopyranosyl-(1→2)]-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosyloxyolean-12-ene-15α,16α,22α,28-tetrol (18), and saniculasaponin III (19). This study reports the isolation of these compounds and their structural elucidation by extensive spectroscopic analyses and chemical degradation.  相似文献   

11.
Stereocontrolled syntheses of branched tri-, tetra-, and pentasaccharides displaying a Galβ1→3GalNAc core in the glycan portion of the glycoprotein antigen from the parasite Echinococcusmultilocularis have been accomplished. Trisaccharide Galβ1→3(GlcNAcβ1→6)GalNAcα1-OR (A), tetrasaccharide Galβ1→3(Galβ1→4GlcNAcβ1→6)GalNAcα1-OR (D), and pentasaccharides Galβ1→3(Galβ1→4Galβ1→4GlcNAcβ1→6)GalNAcα1-OR (E) and Gal β1→3(Galα1→4Galβ1→4GlcNAcβ1→6)GalNAcα1-OR (F) (R = 2-(trimethylsilyl)ethyl) were synthesized by block synthesis. The disaccharide 2-(trimethylsilyl)ethyl 2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl-(1→3)-2-azido-4-O-benzyl-2-deoxy-α-d-galactopyranoside served as a common glycosyl acceptor in the synthesis of the branched oligosaccharides. Moreover, linear trisaccharide Galβ1→4Galβ1→3GalNAcα1-OR (B) and branched tetrasaccharide Galβ1→4Galβ1→3(GlcNAcβ1→6)GalNAcα1-OR (C) were synthesized by stepwise condensation.  相似文献   

12.
From the leaves of Cananga odorata var. fruticosa, five unusual monoterpene glucosides, named canangafruticosides A-E (1-5), along with two unusual non-glucosidic monoterpenes (6, 7) were isolated. An aryldihydronaphthalene-type lignan dicarboxylate (8) was also isolated, with two moles of canangafruticoside A (1) on its ester moiety. This lignan also showed strong blue fluorescence emission under basic conditions. The structures of these compounds were elucidated by means of spectroscopic methods, with their absolute configurations determined by application of the modified Mosher’s method to a compound chemically derived from canangafruticoside E.  相似文献   

13.
Four undescribed labdane diterpenoids, 1,2-dehydro-3,7-dioxo-manoyl oxide (1), 1,2-dehydro-7β-hydroxy-3-oxo-manoyl oxide (2), 3,7-dioxo-manoyl oxide (3), and 3β-hydroxy-7-oxo-manoyl oxide (4) together with three known diterpenoids (5-7) and four highly methoxylated bibenzyls (8-11) were isolated from the liverwort Frullania inouei. The absolute structures of 1-4 were established by combined analysis of NMR data, CD data coupled with TDDFT CD calculations, and single-crystal X-ray diffraction measurement. Cytotoxicity tests to human tumor KB, KB/VCR, K562 or K562/A02 cells showed bibenzyls 8-11 inhibited cell proliferation with ID50 values ranging from 11.3 to 49.6 μM and overcame the multidrug resistance (MDR) with the reversal fold (RF) values ranging from 3.19 to 10.91 (5 μM) for vincristine-resistant KB/VCR and RF values from 4.40 to 8.26 (5 μM) for adriamycin-resistant K562/A02 cells, respectively. However, none of the diterpenoids were found to be active (ID50 > 50 μM).  相似文献   

14.
An ethanol extract of the aerial parts of Delphinium gracile DC. yielded five flavonol glycosides quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-caffeoyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (1), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (2), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(Z-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (3), kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (4) kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (5) in addition to 4-(β-d-glucopyranosyloxy)-6-methyl-2H-pyran-2-one (6) and rutin. Structures were elucidated by spectroscopic methods.  相似文献   

15.
A new cardenolide, 17β-H-periplogenin-3-O-β-d-digitoxoside (1), and a new pregnane glycoside, Δ5-pregnene-3β,16α-diol-d-O-[2,4-O-diacetyl-β-digitalopyranosyl-(1 → 4)-β-d-cymaropyranoside]-16-O-[β-d-glucopyranoside] (2) were isolated from the roots of Streptocaulon tomentosum (Asclepiadaceae) together with a series of known compounds. Their chemotaxonomic significance for the separation of S. tomentosum from Streptocaulon juventas is discussed, suggesting a rather clear distinction of these species.  相似文献   

16.
Two new spirostanoides, filiasparosides E (1) and F (2), one new furostanoside, filiasparoside G (3), and one new ecdysterone, stachysterone A-20, 22-acetonide (4), together with six known steroidal saponins, asparagusin A (5), filiasparoside A (6), filiasparoside B (7), aspafilioside A (8), aspafilioside B (9), and filiasparoside C (10) were isolated from the roots of Asparagus filicinus Buch.-Ham. Their structures were elucidated on the basis of spectroscopic and chemical evidence. Compounds 1-10 were investigated for their cytotoxicities against human breast adenocarcinoma MDA-MB-231 cell line and compounds 8-10 exhibited cytotoxic activities with IC50 values ranging from 3.4 to 6.6 μM.  相似文献   

17.
Alla A. Kicha 《Steroids》2009,74(2):238-1018
Five new steroidal monoglycosides, kurilensosides E (1), F (2), G (3), H (4) and 15-O-sulfate of echinasteroside C (5) were isolated along with the previously known echinasteroside C (6) from the alcoholic extract of the Far Eastern starfish Hippasteria kurilensis collected near Kuril Islands. Compounds 1-3 were determined to contain unusual polyhydroxysteroidal aglycons lacking 6-hydroxy group. Aglycon moiety of kurilensoside H (4) was shown to be the first case of marine polar steroids containing 4,5-epoxy functionality. Hypothetic pathways of the biosynthesis of polyhydroxysteroids and related glycosides in starfish and the existence of the late C-6 oxidation pathway in H. kurilensis are discussed.  相似文献   

18.
An integrated LC-MS and NMR metabolomic study was conducted to investigate metabolites whose formation was induced by lactofen (1), a soybean (Glycine max L.) disease resistance-inducing herbicide. First, LC-MS analyses of control and lactofen (1)-induced soybean extracts were performed. The LC-MS raw data were then processed by a custom designed bioinformatics program to detect the induced metabolites so formed. Finally, structures of unknown induced metabolites were determined on the basis of their 1D and 2D NMR spectroscopic data. Structure of two previously unreported compounds, 7,8-dihydroxy-4′-methoxy-3′-prenylisoflavone (2) and 7-hydroxy-4′,8-dimethoxy-3′-prenylisoflavone (3) were elucidated together with four known prenylated compounds, 3′-prenyldaidzein (4), 8-prenyldaidzein (5), 3′-prenylgenistein (6), and 4-prenylcoumestrol (7). Compounds (2-6) are reported for the first time in soybean, as are the 13C chemical shift assignments for compound (7). Formation of these six prenylated compounds was also induced by the primary defense glucan elicitor from the cell wall of the pathogen Phytophthora sojae (Kauf. and Gerde.), further suggesting a potential role in soybean defense. These results highlight the metabolic flexibility within soybean secondary product pathways and suggest that prenylation may be associated with defense responses. Moreover, this study demonstrates a promising future approach using metabolomics on elicitor-induced plants for discovery of unknown compounds even in relatively well studied plants.  相似文献   

19.
Lu Y  Luo J  Kong L 《Phytochemistry》2011,72(7):668-673
A rare 16β-H steroidal alkaloid saponin (1), an avenacoside-type saponin (2), two steroidal saponins (4, 5), one revised-structure steroidal saponin (3) and six known compounds (6-11) were isolated from aerial parts of Solanum surattense Burm. f. Their structures were established on the basis of physical data, as well as by using spectroscopic (HRESIMS, 1D and 2D NMR), and chemical analysis methods. Compounds 1 and 11 showed cytotoxicity against A549 cell line with IC50 values of 20.3 and 15.7 μM, respectively.  相似文献   

20.
Stilbenoids, syagrusins A-B (1-2), and a stilbenolignan, 5-hydroxyaiphanol (3), along with three known phenylpropanoids (4-6), were isolated from seeds of Syagrus romanzoffiana. Compounds 1 and 2 possess unusual 1,4,4a,9a-tetrahydrofluoren-9-one and bicyclo[3.3.0]octanedione skeletons, respectively, whereas compound 3 is a stilbenolignan belonging to a very rare structural class of plant secondary metabolites. Their structures were elucidated by spectroscopic analyses. Compounds 1-3 exhibited moderate inhibitory activity against α-glucosidase with IC50 values of 16.9 μM (1), 23.7 μM (2) and 12.8 μM (3), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号