首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
ABSTRACT The poison gland of minor workers of P.pallidula. Nyl. contains 3-ethyl-2,5-dimethylpyrazine which induces trail-following in other workers, but does not account for the full trail-following effect of one worker's poison gland. No pyrazines were detected in major workers and their glands do not contain the pheromone.  相似文献   

2.
The chemical composition and behavioural activities of the secretions of the Dufour glands of Myrmica rugulosa and M. schencki have been studied, as part of an extended study on Myrmica ants. Chemically, the Dufour gland of M. rugulosa is filled with a mixture of hydrocarbons dominated by straight chain alkanes and alkenes with 13 to 19 carbon atoms, as found in M. rubra. Significant quantities of (Z,E)-α-farnesene and its homologues, homofarnesene and bishomofarnesene, are also present. In M. schencki, the major compounds present are homofarnesene and bishomofarnesene. In both species, the very volatile portion of the Dufour gland secretion is identical to that analysed in M. rubra. From an ethological point of view, this very volatile part is efficient in attracting workers at a distance (6 to 8 cm) and in decreasing their wandering movements. No specificity was observed when performing cross-tests with Dufour glands freshly isolated from workers of other Myrmica species, but obvious specificities were detected when testing the less volatile part of the Dufour glands' contents, known to be used for marking newly discovered areas.  相似文献   

3.
朱会艳  万树青  陈立 《昆虫学报》2012,55(3):303-308
【目的】测定红火蚁Solenopsis invicta Buren工蚁对其跟踪信息素的触角电位(EAG)及行为反应。【方法】解剖红火蚁工蚁的杜氏腺, 用正己烷溶剂提取其分泌的跟踪信息素进行气相色谱-质谱(GC-MS)分析, 并测定了红火蚁工蚁对杜氏腺提取物、 工蚁提取物和合成的法尼烯混合物的EAG和招募行为反应。【结果】通过与合成的法尼烯混合物的气相色谱(GC)保留时间和质谱图比对, 发现杜氏腺提取物的主要成分并不是Z, E-α-法尼烯。EAG测定结果表明, 红火蚁工蚁对杜氏腺提取物、 工蚁提取物及100 μg的法尼烯混合物均有较强的EAG反应, 其次为10 μg和1 μg的法尼烯混合物。在招募行为测定中, 杜氏腺提取物和工蚁提取物招募作用明显, 而10, 1, 0.1和0.01 μg法尼烯混合物的作用均不显著。【结论】Z, E-α-法尼烯不是红火蚁跟踪信息素的主要成分; 红火蚁工蚁对杜氏腺提取物、 工蚁提取物有较强的EAG反应和明显的招募行为反应。  相似文献   

4.
Recruitment via pheromone trails by ants is arguably one of the best-studied examples of self-organization in animal societies. Yet it is still unclear if and how trail recruitment allows a colony to adapt to changes in its foraging environment. We study foraging decisions by colonies of the ant Pheidole megacephala under dynamic conditions. Our experiments show that P. megacephala, unlike many other mass recruiting species, can make a collective decision for the better of two food sources even when the environment changes dynamically. We developed a stochastic differential equation model that explains our data qualitatively and quantitatively. Analysing this model reveals that both deterministic and stochastic effects (noise) work together to allow colonies to efficiently track changes in the environment. Our study thus suggests that a certain level of noise is not a disturbance in self-organized decision-making but rather serves an important functional role.  相似文献   

5.
The chemistry of the exocrine glands of three species of the small and little-known ant subfamily Cerapachyinae has been examined for the first time. The mandibular glands of Cerapachys jacobsoni contained acetophenone and skatole, but some individuals contained, in addition, 4-methyl-3-heptanone and 3-octanol. The mandibular glands of the new species, presently known as Cerapachys sp. 15 of FI contained 4-methyl-3-heptanone, as the major substance but also 4-methyl-3-heptanol, methyl 6-ethylsalicylate, and traces of 4,5-dimethyl-4-hexen-3-one and homomanicone. The Dufour glands of C. jacobsoni contained a mixture of higher aldehydes, acetates and other esters, with a small amount of hydrocarbons, all in the range C11–C20. The Dufour glands of Cylindromyrmex whymperi contained a mixture of long-chain epoxides, the second ant species to display them. The sternal glands of C. whymperi contain a recruitment pheromone, but only partial identification of the contents was possible. The venom glands of all three species were devoid of volatile material. The Dufour glands of Cerapachys sp. 15 of FI and the mandibular glands of C. whymperi had no detectable volatile contents.  相似文献   

6.
Ratios of volatile phytochemicals potentially offer a means for insects to recognise their host-plant species. However, for this to occur ratios of volatiles would need to be sufficiently consistent between plants and over time to constitute a host-characteristic cue. In this context we collected headspace samples from Vicia faba plants to determine how consistent ratios of key volatile phytochemicals used in host location by one of its insect pests, the black bean aphid, Aphis fabae, were. These were (E)-2-hexenal, (Z)-3-hexen-1-ol, 1-hexanol, benzaldehyde, 6-methyl-5-hepten-2-one, octanal, (Z)-3-hexen-1-yl acetate, (R)-linalool, methyl salicylate, decanal, undecanal, (E)-caryophyllene, (E)-β-farnesene, (S)-germacrene D, and (EE)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, which had previously been found to be electrophysiologically and behaviourally active to A. fabae. Although the quantities of volatiles produced by V. faba showed large between plant and diurnal variation, correlations between quantities of compounds indicated that the ratios of certain pairs of volatiles were very consistent. This suggests that there is a host-characteristic cue available to A. fabae in the form of ratios of volatiles.  相似文献   

7.
We report large induction (>65fold increases) of volatile organic compounds (VOCs) emitted from a single leaf of the invasive weed mossy sorrel, Rumex confertus Willd. (Polygonaceae), by herbivory of the dock leaf beetle, Gastrophysa polygoni L. (Coleoptera: Chrysomelidae). The R. confertus VOC blend induced by G. polygoni herbivory included two green leaf volatiles ((Z)-3-hexenal, (Z)-3-hexen-1-yl acetate) and three terpenes (linalool, ß-caryophyllene, (E)-ß-farnesene). Uninjured leaves produced small constitutive amounts of the GLVs and barely detectable amounts of the terpenes. A Y-tube olfactometer bioassay revealed that both sexes of adult G. polygoni were attracted to (Z)-3-hexenal and (Z)-3-hexen-1-yl acetate at a concentration of 300 ng h−1. No significant G. polygoni attraction or repellence was detected for any VOC at other concentrations (60 and 1500 ng h−1). Yet, G. polygoni males and females were significantly repelled by (or avoided) at the highest test concentration (7500 ng h−1) of both GLVs and (E)-ß-farnesene. Mated male and female G. polygoni might be attracted to injured R. confertus leaves, but might avoid R. confertus when VOC concentrations (especially the terpene (E)-ß-farnesene) suggest high overall plant injury from conspecifics, G. viridula, or high infestations of other herbivores that release (E)-ß-farnesene (e.g., aphids). Tests in the future will need to examine G. polygoni responses to VOCs emitted directly from uninjured (constitutive) and injured (induced) R. confertus, and examine whether R. confertus VOC induction concentrations increase with greater tissue removal on a single leaf and/or the number of leaves with feeding injury.  相似文献   

8.
Tobacco alkaloids of the anabasine type have been found or confirmed in the venom of five species of arid-dwelling Messor ants. They are frequently accompanied by alkylpyrazines. Messor mediorubra contains four alkaloids, with anabasine the major component and also minor pyrazines. Anabasine was found alone in the venom of Messor semirufus and confirmed in Messor ebeninus. Messor rugosus from Tel Aviv contained a mixture of alkaloids and pyrazines, but those from Ein Yahav contained 3-ethyl-2,5-dimethylpyrazine, some 2-phenylethylamine, and N-ethylidene 2-phenylethylamine. Messor arenarius is confirmed as having a complex but variable mixture of alkaloids and pyrazines.  相似文献   

9.
The major volatile compounds in the poison glands of two Monomorium ant species from Saudi Arabia have been identified. Monomorium niloticum and Monomorium najrane both contain mixtures of alkyl- and alkenyl-pyrrolidines and -pyrrolines in their venom glands but no Dufour gland volatile compounds were detected. Monomorium mayri showed neither Dufour gland compounds nor venom components detectable by gas chromatography.  相似文献   

10.
In most subfamilies of ants (Formicidae), a pygidial gland occurs in the worker’s dorsal gaster, and where tested, products of this gland function in alarm/defense and/or recruitment communication. These products are well characterized for members of the subfamily Dolichoderinae but remain unidentified for Myrmicinae. Both major and minor workers of one myrmicine, Pheidole biconstricta Mayr, are known to have greatly hypertrophied pygidial glands with alarm/repellent products. GC/MS analysis of methanol extracts of worker gasters revealed actinidine and six diastereomers of iridodials as major components, as well as lesser amounts of two lactones, iridomyrmecin and dihydronepetalactone. The iridoids also occur in the pygidial glands of some dolichoderines. Results are related to functional and phylogenetic considerations. Received 20 December 2004; revised 25 February 2005; accepted 4 March 2005. Work performed at Estación Biológica Cocha Cashu, Madre de Dios, Peru, and Virginia Military Institute, Lexington, VA.  相似文献   

11.
Abstract. Although the presence of small amounts of 3-ethyl-2,5-dimethylpyrazine (EDMP) has been reported in the poison gland of the Pheidole pallidula minor workers, this substance is not the true trail pheromone of this ant. This pyrazine acts as an attractant and a locostimulant. Appropriate solvent extractions and thin-layer chromatography of poison glands, together with trail bioassays, have shown that another substance acts as the trail pheromone. Furthermore, there seems to be an auxiliary pheromone, acting as a synergist; this might be EDMP.  相似文献   

12.
The Dufour gland secretions of myrmica rubra, M. ruginodis, M. sabuleti and M. scabrinodis have been studied. The most volatile portions of the secretion of workers of all four species were found to be similar, containing C2C4 oxygenated compounds. The less volatile portion consists of a mixture of hydrocarbons. In M. ruginodis this is chiefly a mixture of linear saturated and mono-unsaturated hydrocarbons, similar in composition to that of M. rubra, while in M. sabuleti it consists of (Z,E)-α-farnesene and its homologues, homofarnesene, bishomofarnesene and trishomofarnesene, similar in composition to that of M. scabrinodis. Workers of each species studied were attracted to the Dufour gland volatiles of all four species, these substances chiefly causing an increase in running speed, with the workers not distinguishing between conspecific and allospecific secretions, though small quantitative differences could be demonstrated between the speed and orientation reaction of workers of each species. The less volatile fraction of the Dufour gland secretion is used for territorial marking by foraging workers. This marking is specific for each species except between M. rubra and M. ruginodis.  相似文献   

13.
L. Lach 《Insectes Sociaux》2005,52(3):257-262
Summary. Plant and insect exudates are known to play a key role in structuring tropical ant communities, but less is known about the utilization of these resources in communities dominated by invasive ants. Invasive ants are thought to require large amounts of carbohydrates such as honeydew or nectar to maintain their high abundances. Invasive ants that consume floral nectar may compete with legitimate floral visitors through interference or exploitation competition. I compared the nectar-thieving behavior of three widespread invasive ant species: long-legged ants (Anoplolepis gracilipes), Argentine ants (Linepithema humile), and big-headed ants (Pheidole megacephala) in inflorescences of the native Hawaiian ‘ōhi’a tree, an important food source for native fauna. A. gracilipes was least likely to leave inflorescences unvisited and visited inflorescences in higher numbers than both L. humile and P. megacephala. A. gracilipes and L. humile visited more flowers in an inflorescence and were less likely to retreat from a flower with a competitor than P. megacephala. A. gracilipes was able to take 5.5 and 11.3 times the amount of nectar than L. humile and P. megacephala, respectively. Thus, A. gracilipes may be effective at both interference and exploitation competition against other nectarivores, L. humile may be effective at interference competition, and P. megacephala may be relatively weak at both types of competition against other nectarivores. Ascertaining the competitive abilities of invasive ants against legitimate floral visitors will be especially important in agricultural and other systems that are nectar or pollinator limited.Received 6 December 2004; revised 13 January 2005; accepted 14 January 2005.  相似文献   

14.
We combined behavioral analyses in the laboratory and field to investigate chemical communication in the formation of foraging columns in two Nearctic seed harvesting ants, Messor pergandei and Messor andrei. We demonstrate that both species use poison gland secretions to lay recruitment trails. In M. pergandei, the recruitment effect of the poison gland is enhanced by adding pygidial gland secretions. The poison glands of both species contain 1-phenyl ethanol. Minute quantities (3 μl of a 0.1 ppm solution) of 1-phenyl ethanol drawn out along a 40 cm long trail released trail following behavior in M. pergandei, while M. andrei required higher concentrations (0.5–1 ppm). Messor pergandei workers showed weak trail following to 5 ppm trails of the pyrazines 2,5-dimethylpyrazine and 2,3,5-trimethylpyrazine, whereas M. andrei workers showed no behavioral response. Minute quantities of pyrazines were detected in M. pergandei but not in M. andrei poison glands using single ion monitoring gas chromatography–mass spectrometry.  相似文献   

15.
1. The spread of Argentine ants, Linepithema humile (Mayr), in introduced areas is mainly through the displacement of native ant species owing to high inter‐specific competition. In South Africa, L. humile has not established in the climatically suitable eastern and northern escarpments dominated by the African big headed ant, Pheidole megacephala (Fabricius), probably owing to local biotic resistance. 2. Inter‐specific aggression, at the individual and colony level, and competition for a shared resource were evaluated in the laboratory. 3. Aggression between the two ant species was very high in all of the assays. Both species suffered similar mortality rates during one‐on‐one aggression assays, however, during symmetrical group confrontations, L. humile workers showed significantly higher mortality rates than P. megacephala workers. During asymmetrical group confrontations both species killed more of the other ant species when they had numeric advantage. Both ant species located the shared resource at the same time; however, once P. megacephala discovered the bait, they displaced L. humile from the bait through high inter‐specific aggression, thereafter dominating the bait for the remainder of the trial. 4. The results demonstrate the potential of P. megacephala to prevent the establishment and survival of incipient L. humile colonies through enhanced resource competition and high inter‐specific aggression. This is the first study to indicate potential biotic resistance to the spread of L. humile in South Africa.  相似文献   

16.
Phytochemical analysis of Fijian populations of the green alga Tydemania expeditionis led to the isolation of two unsaturated fatty acids, 3(ζ)-hydroxy-octadeca-4(E),6(Z),15(Z)-trienoic acid (1) and 3(ζ)-hydroxy-hexadeca-4(E),6(Z)-dienoic acid (2), along with the known 3(ζ)-hydroxy-octadeca-4(E),6(Z)-dienoic acid (4). Investigations of the red alga Hydrolithon reinboldii led to identification of a glycolipid, lithonoside (3), and five known compounds, 15-tricosenoic acid, hexacosa-5,9-dienoic methyl ester, β-sitosterol, 10(S)-hydroxypheophytin A, and 10(R)-hydroxypheophytin A. The structures of 1-3 were elucidated by spectroscopic methods (1D and 2D NMR spectroscopy and ESI-MS). Compounds 1, 2, and 4, containing conjugated double bonds, demonstrated moderate inhibitory activity against a panel of tumor cell lines (including breast, colon, lung, prostate and ovarian cells) with IC50 values ranging from 1.3 to 14.4 μM. The similar cell selectivity patterns of these three compounds suggest that they might act by a common, but unknown, mechanism of action.  相似文献   

17.
Ants use species-specific trail pheromones to coordinate their sophisticated foraging behavior. During the past decades, many trail pheromone components with various structures have been identified in ants, including the red imported fire ant, Solenopsis invicta, a notorious invasive species worldwide. Four compounds, Z,E- (ZEF) and E,E-α-farnesene (EEF), Z,E- (ZEHF) and E,E-α-homofarnesene (EEHF), have been reported as components of S. invicta trail pheromone. However, another study reported an analog of α-farnesene, Z,Z,Z-allofarnesene, as a key trail pheromone component. These contrasting results caused some uncertainty about the trail pheromone composition in S. invicta. In this study, we synthesized ZEF and EEF, ZEHF and EEHF, and reanalyzed the chemicals in the Dufour gland extract and in the trail pheromone fraction of S. invicta worker body extract. The reported isomers of farnesene and homofarnesene were detected and showed trail-following activity, with ZEF as the major compound, while no allofarnesene was found, neither in the Dufour gland extract nor in the whole-body extract. Our results confirm ZEF and EEF, ZEHF and EEHF as trail pheromone components of S. invicta.  相似文献   

18.
Spatial distribution of ant workers and, notably their aggregation/segregation behaviour, is a key-element of the colony social organization contributing to the efficiency of task performance and division of labour. In polymorphic species, specialized worker castes notably differ in their intrinsic aggregation behaviour. In this context, knowing the preponderant role of minors in brood care, we investigate how a stimulus such as brood can influence the spatial patterns of Pheidole pallidula worker castes. In a homogeneous area without brood, it was shown that minors display only a low level of aggregation while majors form large clusters in the central area. Here we find out that these aggregation patterns of both minors and majors can be deeply influenced by the presence of brood. For minors, it nucleates or enhances the formation of a large stable cluster. Such high sensitivity of minors to brood stimuli fits well with their role as main brood tenders in the colony. For majors, interattraction between individuals still remains the prevailing aggregation factor while brood strongly influences the localisation of their cluster. We discuss how the balance between interattraction and sensitivity to environmental stimuli determines the mobility of each worker castes and, consequently, the availability of minors and majors to participate in everyday colony tasks. Moreover, we will evoke the functional value of majors’ cluster location close to the brood, namely with respect to social regulation of the colony caste ratio. Received 30 May 2005; revised 11 January 2006; accepted 13 January 2006.  相似文献   

19.
We report that in Okinawa Island (southern Japan) the pupae of the invasive ant Pheidole megacephala were parasitized by an undescribed Uropodidae mite species. Our observations suggest that by sucking the hemolymph of the ant pupae during its own development, mites induce some conspicuous morphological changes and the death of parasitized P. megacephala pupae. Of the 75 collected nests, 69 (92%) were infested by the mite species. The prevalence of parasitism varied strongly among the worker and sexual castes, with the soldier and male pupae being the most attacked, followed by the minor and queen pupae. Our data represent the first case of such high parasitism in an invasive ant population. Received 2 August 2005; revised 29 September 2005; accepted 7 November 2005.  相似文献   

20.
Body size is an important life history trait that can evolve rapidly as a result of how species interact with each other and their environment. Invasive species often encounter vastly different ecological conditions throughout their introduced range that can influence relative investment in growth, reproduction and defence among populations. In this study, we quantified variation in worker size, morphology and proportion of majors among five populations of a worldwide invasive species, the big‐headed ant, Pheidole megacephala (Fabricius). The sampled populations differed in ant community composition, allowing us to examine if P. megacephala invests differently in the size and number of majors based on the local ant fauna. We also used genetic data to determine if these populations of P. megacephala represented cryptic species or if morphological differences could be attributed to change following introduction. We found significant variation in worker mass among the populations. Both major and minor workers were largest in Australia, where the ant fauna was most diverse, and minor workers were smallest in Hawaii and Mauritius, where P. megacephala interacted with few to no other ants. We also found differences in major and minor worker morphology among populations. Majors from Mauritius had significantly larger heads (width and length) relative to whole body size than those from Hawaii and Florida. Minors had longer heads and hind tibias in South Africa compared with populations from Australia, Hawaii and Florida. The proportion of majors did not differ among populations, suggesting that these populations may not be subject to trade‐offs in investment in major size versus number. Our molecular data place all samples within the same clade, supporting that these morphologically different populations represent the same species. These results suggest that the variation in shape and morphology of major and minor workers may therefore be the result of rapid adaptation or plastic responses to local conditions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 423–438.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号