首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spontaneously active (Mr greater than 350,000) and an ATPMg-dependent phosphatase (Mr congruent to 140,000) were identified in bovine aortic smooth muscle. The spontaneously active phosphatase was effective in dephosphorylating both phosphorylase a (240nmol32P/min/mg) and phosphorylated myosin light chains (1000nmol32P/min/mg). In contrast, the ATPMg-dependent phosphatase was only effective in dephosphorylating phosphorylase a (400nmol32P/min/mg). Phosphorylase phosphatase activity of the ATPMg-dependent enzyme was suppressed by the well-characterized modulator protein (inhibitor-2), whereas the activity of the spontaneously active enzyme was unaffected. The aortic spontaneously active phosphatase did not convert to an ATPMg-dependent form when it was stored at 4 degrees or incubated at 30 degrees C in either the presence or absence of modulator protein. These findings suggest that spontaneous and ATPMg-dependent phosphatase activities described in these studies are probably ascribable to different enzymes. Since both phosphorylase and myosin light chains are phosphorylated when smooth muscle contracts these phosphatases may participate in coordinating arterial contractility and metabolism.  相似文献   

2.
An active form of phosphorylase phosphatase of Mr = 33,000, referred to as the catalytic subunit for over a decade, was purified to near-homogeneity from rabbit skeletal muscle. Repeated immunization of a sheep produced immunoglobulins that blocked the activity of the phosphatase. These immunoglobulins were affinity-purified on columns of immobilized phosphorylase phosphatase and used as macromolecular probes in a "Western" immunoblotting procedure with peroxidase-conjugated rabbit anti-sheep immunoglobulins. Only one protein, of Mr = 33,000, was stained in samples of the immunogen, attesting to the specificity of the probes. However, the Mr = 33,000 phosphatase protein was not detected in muscle extracts or in partially purified preparations. Instead, a single protein of Mr = 70,000 was detected. Limited proteolysis, in particular by Staphylococcus aureus V8 protease and thermolysin, converted the immunoreactive protein from Mr = 70,000 to Mr = 33,000. Coagulation of the phosphatase preparation with 80% ethanol at room temperature rendered the Mr = 70,000 protein insoluble, but allowed extraction of the Mr = 33,000 protein from the precipitate. Thus, we conclude that the immunoreactive protein of Mr = 70,000 is the "catalytic subunit" of phosphorylase phosphatase with a catalytic domain of Mr = 33,000. Previous purification schemes have yielded only the fragment of Mr = 33,000 due to its relative resistance to proteolysis and coagulation. Gel filtration chromatography of the "native" form of phosphorylase phosphatase showed Mr approximately 230,000. Both the Mr = 70,000 catalytic subunit and a Mr = 60,000 protein related to inhibitor-2 were detected by immunoblotting in the same fractions that exhibited activity after treatment with Co2+ and trypsin. Only the Mr = 60,000 protein was degraded during this activation process. We propose that the native phosphorylase phosphatase is an elongated structure with two-fold symmetry, containing one catalytic subunit of Mr = 70,000 and one regulatory subunit of Mr = 60,000.  相似文献   

3.
Calcium-activated neutral protease with low affinity for calcium (CANP II, Mr 76,000) can be purified to apparent homogeneity by casein affinity chromatography but contains cyclic-AMP dependent protein kinase activity. CANP II-associated kinase from bovine brain copurifies with protease activity through multiple chromatographic procedures but can be separated by cyclic-AMP affinity chromatography. Isolated protein kinase has subunits of Mr 80,000, 53,000 and 42,000. The kinase preferentially "autophosphorylates" CANP II, but histones, phosphorylase b and neurofilament proteins are also good substrates. The concentrations for half-maximal phosphorylation activity (Km) of cyclic-AMP, (32P)ATP and Mr 150,000 neurofilament protein substrate are 0.2, 6.0 and 0.5 microM, respectively. The specific activity of CANP II associated kinase in phosphorylating neurofilament proteins is intermediate between that of neurofilament- and MAPs 2-associated kinases.  相似文献   

4.
Isolated rat hepatocytes were incubated in a medium containing 0.1 mM [32P]phosphate (0.1 mCi/ml) before exposure to epinephrine, glucagon or vasopressin. 32P-labeled glycogen synthase was purified from extracts of control or hormone-treated cells by the use of specific antibodies raised to rabbit skeletal muscle glycogen synthase. Analysis of the immunoprecipitates by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that a single 32P-labeled polypeptide, apparent Mr 88000, was removed specifically by the antibodies and corresponded to glycogen synthase. Similar electrophoretic analysis of CNBr fragments prepared from the immunoprecipitate revealed that 32P was distributed between two fragments, of apparent Mr 14000 (CB-1) and 28000 (CB-2). Epinephrine, vasopressin or glucagon increased the 32P content of the glycogen synthase subunit. CB-2 phosphorylation was increased by all three hormones while CB-1 was most affected by epinephrine and vasopressin. These effects correlated with a decrease in glycogen synthase activity. From studies using rat liver glycogen synthase, purified by conventional methods and phosphorylated in vitro by individual protein kinases, it was found that electrophoretically similar CNBr fragments could be obtained. However, neither cyclic-AMP-dependent protein kinase nor three different Ca2+-dependent enzymes (phosphorylase kinase, calmodulin-dependent protein kinase, and protein kinase C) were effective in phosphorylating CB-2. The protein kinases most effective towards CB-2 were the Ca2+ and cyclic-nucleotide-independent enzymes casein kinase II (PC0.7) and FA/GSK-3. The results demonstrate that rat liver glycogen synthase undergoes multiple phosphorylation in whole cells and that stimulation of cells by glycogenolytic hormones can modify the phosphorylation of at least two distinct sites in the enzyme. The specificity of the hormones, however, cannot be explained simply by the direct action of any known protein kinase dependent on cyclic nucleotide or Ca2+. Therefore, either control of other protein kinases, such as FA/GSK-3, is involved or phosphatase activity is regulated, or both.  相似文献   

5.
Phosphorylation of rat liver glucocorticoid receptor   总被引:3,自引:0,他引:3  
Rat liver glucocorticoid-receptor complex (GRc) was purified 2000-fold by a combination of methods including (NH4)2SO4-fractionation and phosphocellulose and DNA-cellulose chromatography. The purified glucocorticoid receptor preparation contained a major peptide of Mr = 90,000 and the GRc sedimented as 4 S in 5-20% sucrose gradients. An additional peptide of Mr = 45,000 (45K) was also observed. Some preparations yielded only the Mr = 90,000 (90K) peptide suggesting that the 45K peptide may be a proteolyzed portion of the 90K protein. The purified GRc was incubated with [gamma-32P]ATP in the presence of cAMP-dependent kinase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the above preparation revealed the presence of two 32P-containing bands with apparent Mr = 90,000 and 45,000. The 32P incorporation was dependent on the availability of divalent cation (Mg2+). GRc in cytosol labeled with [3H]dexamethasone mesylate and purified as above co-migrated with 32P-containing bands. GRc was also purified from cytosol obtained from livers of rats injected with [32P]orthophosphate. Both 32P and 3H bands were associated with 90K and 45K peptides. Our results indicate that rat liver glucocorticoid receptor is a phosphoprotein and that both the phosphorylated peptides 90K and 45K also contain the steroid and the DNA binding regions of the glucocorticoid receptor.  相似文献   

6.
Purification and properties of eIF-2 phosphatase   总被引:2,自引:0,他引:2  
Eukaryotic initiation factor 2 (eIF-2) phosphatase has been purified 840-fold to apparent homogeneity from rabbit reticulocyte lysate. Native eIF-2 phosphatase has a Mr = 98,000, pI = 6.1, s20,w = 5.1, and a Stokes radius = 38 A. A subunit composition of one 60,000-dalton polypeptide and one 38,000-dalton polypeptide is indicated. The Km for [32P]eIF-2 is 30 microM and the Vmax = 1.1 nmol of phosphate released/min/microgram. The 38,000-dalton subunit of eIF-2 phosphatase does not co-electrophorese with the catalytic subunit of liver phosphorylase phosphatase, a type 1 protein phosphatase. The specificity of eIF-2 phosphatase for phosphorylation sites on th alpha- and beta-subunits of eIF-2 appears to be determined by the environment of the phosphatase and substrate. Both the alpha- and beta-subunits of [32P]eIF-2 are rapidly dephosphorylated by the purified phosphatase. In unfractionated lysate and in unfractionated lysate supplemented with an equivalent activity of the purified phosphatase, only the alpha-subunit of eIF-2 is dephosphorylated. This indicates other factors are present in the lysate which govern the dephosphorylation of eIF-2.  相似文献   

7.
Phosphorylase b kinase was extensively purified from rat liver. It was located in a form which could be activated 20--30-fold by a preincubation with adenosine 3':5'-monophosphate (cyclic AMP) and ATP-Mg. This activation was time-dependent, and was paralleled by a simultaneous incorporation of 32P from [gamma-32P]ATP into two polypeptides which comigrated in sodium dodecyl sulfate gel electrophoresis with the alpha and beta subunits of rabbit skeletal muscle phosphorylase b kinase. The liver enzyme was eluted from Sepharose 4B and Bio-Gel A-50m columns at the same place as muscle phosphorylase b kinase, which is indicative of a molecular weight of 1.3 x 10(6). After activation, the most purified liver preparation had a specific activity about 10-fold less than the homogeneous muscle enzyme at pH 8.2. The inactive enzyme form had a pronounced pH optimum around pH 6.0, whereas the activated form was mostly active above neutral pH. The activation of the enzyme reduced the Km for its substrate phosphorylase b severalfold. Liver phosphorylase b kinase was shown to be partially dependent on Ca2+ ions for its activity: addition of 0.5 mM [ethylenebis-(oxoethylenenitrilo)]tetraacetic acid (EGTA) to the phosphorylase b kinase assay increased the Km for phosphorylase b about twofold for both the inactive and the activated form of liver phosphorylase b kinase, but affected the V of the inactive species only.  相似文献   

8.
Tyr(P)-containing proteins were purified from extracts of insulin-treated rat hepatoma cells (H4-II-E-C3) by antiphosphotyrosine immunoaffinity chromatography. Two major insulin-stimulated, Tyr(P) proteins were recovered: an Mr 95,000 protein (identified as the insulin receptor beta subunit by its immunoprecipitation by a patient-derived anti-insulin receptor serum and several anti-insulin receptor (peptide) antisera) and an Mr 180,000 protein (which was unreactive with all anti-insulin receptor antibodies). After purification and tryptic digestion of the Mr 95,000 protein, tryptic peptides containing Tyr(P) were purified by sequential antiphosphotyrosine immunoaffinity, reversed-phase, anion-exchange chromatography. The partial amino acid sequence obtained by gas- and solid-phase Edman degradation was compared to the amino acid sequence of the intracellular extension of the rat insulin receptor deduced from the genomic sequence. Approximately 80% of all beta subunit [32P]Tyr(P) resides on two tryptic peptides: 50-60% of [32P]Tyr(P) is found on the tryptic peptide Asp-Ile-Tyr-Glu-Thr-Asp-Tyr-Tyr-Arg from the tyrosine kinase domain, which is recovered mainly as the double phosphorylated species (predominantly in the form with Tyr(P) at residues 3 and 7 from the amino terminus; the remainder with Tyr(P) at residues 3 and 8), with 10-15% as the triple phosphorylated species. A second tryptic peptide is located near the carboxyl terminus, contains 2 tyrosines, and has the sequence, Thr-Tyr-Asp-Glu-His-Ile-Pro-Tyr-Thr-; this contains 20-30% of beta subunit [32P]Tyr(P) and is identified primarily in a double phosphorylated form. Approximately 10% of beta subunit [32P]Tyr(P) resides on an unidentified tryptic peptide of Mr 4,000-5,000. The insulin-stimulated tyrosine phosphorylation of the insulin receptor in intact rat hepatoma cells thus involves at least 6 of the 13 tyrosine residues located on the beta subunit intracellular extension. These tyrosines are clustered in several domains in a distribution virtually identical to that previously found for partially purified human insulin receptor autophosphorylated in vitro in the presence of insulin. This multisite regulatory tyrosine phosphorylation is the initial intracellular event in insulin action.  相似文献   

9.
A high molecular weight phosphoprotein phosphatase was purified from rabbit liver using high speed centrifugation, acid precipitation, ammonium sulfate fractionation, chromatography on DEAE-cellulose, Sepharose-histone, and Bio-Gel A-0.5m. The purified enzyme showed a single band on a nondenaturing polyacrylamide anionic disc gel which was associated with the enzyme activity. The enzyme was made up of equimolar concentrations of two subunits whose molecular weights were 58,000 (range 58,000-62,000) and 35,000 (range 35,000-38,000). Two other polypeptides (Mr 76,000 and 27,000) were also closely associated with our enzyme preparation, but their roles, if any, in phosphatase activity are not known. The optimum pH for the reaction was 7.5-8.0. Km value of phosphoprotein phosphatase for phosphorylase a was 0.10-0.12 mg/ml. Freezing and thawing of the enzyme in the presence of 0.2 M beta-mercaptoethanol caused an activation (100-140%) of phosphatase activity with a concomitant partial dissociation of the enzyme into a Mr 35,000 catalytic subunit. Divalent cations (Mg2+, Mn2+, and Co2+) and EDTA were inhibitory at concentrations higher than 1 mM. Spermine and spermidine were also found to be inhibitory at 1 mM concentrations. The enzyme was inhibited by nucleotides (ATP, ADP, AMP), PPi, Pi, and NaF; the degree of inhibition was different with each compound and was dependent on their concentrations employed in the assay. Among various types of histones examined, maximum activation of phosphoprotein phosphatase activity was observed with type III and type V histone (Sigma). Further studies with type III histone indicated that it increased both the Km for phosphorylase a and the Vmax of the dephosphorylation reaction. Purified liver phosphatase, in addition to the dephosphorylation of phosphorylase a, also catalyzed the dephosphorylation of 32P-labeled phosphorylase kinase, myosin light chain, myosin, histone III-S, and myelin basic protein. The effects of Mn2+, KCl, and histone III-S on phosphatase activity were variable depending on the substrate used.  相似文献   

10.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate and affinity chromatography on N6-(2-aminoethyl)-cAMP-Sepharose were used to analyze the cAMP-binding proteins present in cell-free extracts of Blastocladiella emersonii zoospores. In the presence of a mixture of protease inhibitors, 8-azido[32P]cAMP was specifically and quantitatively incorporated into a major protein band of Mr = 58,000, and three minor protein bands of Mr = 50,000, Mr = 43,000, and Mr = 36,000 respectively, after autoradiography following sodium dodecyl sulfate-polyacryl-amide gel electrophoresis. In the absence of the protease inhibitors, the Mr = 58,000 protein band was converted into the lower molecular weight cAMP-binding proteins, indicating a high sensitivity of the intact Mr = 58,000 protein band to endogenous proteases. The Mr = 58,000 protein corresponded to the regulatory subunit (R), of the cAMP-dependent protein kinase of zoospores, as shown by their identical behavior on DEAE-cellulose chromatography. The partially purified protein kinase incorporated 32P from [gamma-32P] ATP . Mg2+ into R as demonstrated by the specific adsorption of the 32P-labeled protein with N6-(2-aminoethyl)-cAMP-Sepharose. The incorporated 32P group was rapidly removed by endogenous phosphoprotein phosphatases in the presence of cAMP, as shown by pulse-chase experiments with [gamma-32P]ATP. Dephosphorylation of R-cAMP and rapid proteolysis may indicate two other mechanisms, in addition to cAMP, for the control of this protein kinase in vivo.  相似文献   

11.
An ATP x Mg-dependent protein phosphatase (FC) was purified to near homogeneity from rabbit muscle. The enzyme was completely devoid of any spontaneous activity but could be activated by a protein activator (FA) in the presence of ATP and Mg ions. The inactive phosphatase migrated as a single protein band on sodium dodecyl sulfate-gel electrophoresis, and in discontinuous gel electrophoresis, where the potential phosphatase activity was located in the main protein band. The molecular weight determined by sodium dodecyl sulfate electrophoresis or by sucrose density centrifugation was found to be 70,000. FC migrated on gel filtration as a 140,000 molecular weight species. The activation by FA was not paralleled by an incorporation of [32P]-phosphate into the ATP x Mg-dependent phosphatase, and from the kinetics of activation a protein-protein interaction with ATP x Mg as a necessary factor, can be inferred as the mechanism of activation. After activation by FA and ATP X Mg, the purified enzyme had a specific activity of 10,000 units/mg of protein, and a Km for rabbit muscle phosphorylase a of approximately 1.0 mg/ml. The activated enzyme did not release [32P]phosphate from 32[-labeled rabbit muscle synthase b, prepared from glucagon-treated dogs. It did, however, remove all the 32P label from phosphorylase b kinase, autophosphorylated to the level of 2.0 mol/mol of 1.3 X 10(6) molecular weight.  相似文献   

12.
Activation of phosphorylase in intact glycogen particles from skeletal muscle by Ca2+ and MgATP is known as flash activation. By using [gamma-32P]ATP to monitor protein phosphorylation, we have demonstrated that there is, coincident with phosphorylase activation and inactivation, coordinated phosphorylation/dephosphorylation of phosphorylase, glycogen synthase, the beta-subunit of phosphorylase kinase and proteins of Mr = 43,000 and 32,000. Our results show that within the glycogen particle phosphorylase kinase and type-1 protein phosphatase are organized to allow access to a set of protein components. This arrangement may contribute to the reciprocal regulation of their activities.  相似文献   

13.
M A Shia  P F Pilch 《Biochemistry》1983,22(4):717-721
In the presence of adenosine 5'-[gamma-32P]triphosphate ([gamma-32P]ATP) and a partially purified human placental insulin receptor preparation, insulin stimulates the phosphorylation of an Mr 94000 protein in a time- and dose-dependent manner. Half-maximal stimulation of 32P incorporation occurs at (2-3) X 10(-9) M insulin, a concentration identical with the Kd for insulin binding in this preparation. Immunoprecipitations with monoclonal anti-insulin receptor antibody demonstrate that the Mr 94000 protein kinase substrate is a component of the insulin receptor, the beta subunit. If the partially purified, soluble placental receptor preparation is immunoprecipitated and then exposed to [gamma-32P]ATP and insulin, phosphorylation of the Mr 94000 protein is maintained. The photoincorporation of 8-azido[alpha-32P]ATP into placental insulin receptor preparations was carried out to identify the ATP binding site responsible for the protein kinase activity. Photoincorporation into numerous proteins was observed, including both subunits of the insulin receptor. However, when photolabeling was performed in the presence of excess adenosine 5'-(beta, gamma-imidotriphosphate), a nonhydrolyzable ATP derivative, the beta subunit of the insulin receptor was the only species protected from label incorporation. These data indicate that the beta subunit of the insulin receptor has insulin-dependent protein kinase activity. Phosphotyrosine formation is the primary result of this activity in placental insulin receptor preparations.  相似文献   

14.
A high molecular weight protein phosphatase (phosphatase H-II) was isolated from rabbit skeletal muscle. The enzyme had a Mr = 260,000 as determined by gel filtration and possessed two types of subunit, of Mr = 70,000 and 35,000, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On ethanol treatment, the enzyme was dissociated to an active species of Mr = 35,000. The purified phosphatase dephosphorylated lysine-rich histone, phosphorylase a, glycogen synthase, and phosphorylase kinase. It dephosphorylated both the alpha- and beta-subunit phosphates of phosphorylase kinase, with a preference for the dephosphorylation of the alpha-subunit phosphate over the beta-subunit phosphate of phosphorylase kinase. The enzyme also dephosphorylated p-nitrophenyl phosphate at alkaline pH. Phosphatase H-II is distinct from the major phosphorylase phosphatase activities in the muscle extracts. Its enzymatic properties closely resemble that of a Mr = 33,500 protein phosphatase (protein phosphatase C-II) isolated from the same tissue. However, despite their similarity of enzymatic properties, the Mr = 35,000 subunit of phosphatase H-II is physically different from phosphatase C-II as revealed by their different sizes on sodium dodecyl sulfate-gel electrophoresis. On trypsin treatment of the enzyme, this subunit is converted to a form which is a similar size to phosphatase C-II.  相似文献   

15.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate (8-azido-cyclic [32P]AMP) was used to analyze both the cAMP-binding component of the purified cAMP-dependent protein kinase, and the cAMP-binding proteins present in crude tissue extracts of bovine cardiac muscle. 8-Azido-cyclic [32P]AMP reacted specifically and in stoichiometric amounts with the cAMP-binding proteins of bovine cardiac muscle. Upon phosphorylation, the purified cAMP-binding protein from bovine cardiac muscle changed its electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels from an apparent molecular weight of 54,000 to an apparent molecular weight of 56,000. In tissue extracts of bovine cardiac muscle, most of the 8-azido-cyclic [32P]AMP was incorporated into a protein band with an apparent molecular weight of 56,000 which shifted to 54,000 upon treatment with a phosphoprotein phosphatase. Thus a substantial amount of the cAMP-binding protein appeared to be in the phosphorylated form. Autoradiograms following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both the pure and impure cAMP-binding proteins labeled with 8-azido-cyclic [32P]AMP revealed another binding component with a molecular weight of 52,000 which incorporated 32P from [gamma-32P]ATP without changing its electrophoretic mobility. Limited proteolysis of the 56,000- and 52,000-dalton proteins labeled with 32P from either [gamma-32P]ATP.Mg2+ or 8-azido-cyclic [32P]AMP showed patterns indicating homology. On the other hand, peptide maps of the major 8-azido-cyclic [32P]AMP-labeled proteins from tissue extracts of bovine cardiac muscle (Mr = 56,000) and rabbit skeletal muscle (Mr = 48,000) displayed completely different patterns as expected for the cAMP-binding components of types II and I protein kinases. Both phospho- and dephospho-cAMP-binding components from the purified bovine cardiac muscle protein kinase were also resolved by isoelectric focusing on polyacrylamide slab gels containing 8 M urea. The phosphorylated forms labeled with 32P from either [gamma-32P]ATP or 8-azido-cyclic [32P]AMP migrated as a doublet with a pI of 5.35. The 8-azido-cyclic [32P]AMP-labeled dephosphorylated form also migrated as a doublet with a pI of 5.40. The phosphorylated and dephosphorylated cAMP-binding proteins migrated with molecular weights of 56,000 and 54,000, respectively, following a second dimension electrophoresis in sodium dodecyl sulfate. The lower molecular weight cAMP-binding component (Mr = 52,000) was also apparent in these gels. Similar experiments with the cAMP-binding proteins present in tissue extracts of bovine cardiac muscle indicate that they are predominantly in the phosphorylated form.  相似文献   

16.
A bacterial trehalose phosphorylase (TPase; EC 2.4.1.64) was purified from the culture supernatant of Bacillus stearothermophilus SK-1 to apparent homogeneity, and some properties were investigated. Furthermore, a gene from SK-1 responsible for the TPase was cloned by Southern hybridization with a degenerate oligonucleotide probe synthesized on the basis of the N-terminal sequence of the purified enzyme. The Mr of the enzyme was estimated to be 150,000 by gel filtration and 83,000 by SDS-PAGE, so the enzyme is likely to be a homodimer. The enzyme had optimum activity at pH 7.0-8.0 or nearby and the optimum temperature was about 75 degrees C. The deduced amino acid sequence of the SK-1 TPase encodes a theoretical protein with a Mr of 87,950. Alignment of amino acid sequences with a maltose phosphorylase from Lactobacillus brevis the crystal structure and active site of which had been analyzed suggested that these two phosphorylases evolved from a common ancestor. The Escherichia coli cells harboring the plasmid containing the cloned TPase gene had about 100 times the activity of SK-1.  相似文献   

17.
Complete purification of the pseudorabies virus protein kinase   总被引:2,自引:0,他引:2  
The recently described pseudorabies virus protein kinase has been purified from infected hamster fibroblasts by a combination of anion-exchange, hydrophobic-interaction and affinity chromatography. The purification resulted in enzyme with a specific activity in excess of 1,000 nmol phosphate mg-1 min-1 in relatively high yield. Gel electrophoresis of the purified enzyme under denaturing conditions revealed a single stained band at a position of migration corresponding to a Mr 38,000. Incubation of the purified enzyme with [gamma-32P]ATP in the absence of added substrate resulted in incorporation of 32P into this protein band, consistent with the 38-kDa protein being a protein kinase with a capacity for autophosphorylation. The phosphorylated form of the protein has an isoelectric point of approximately 4.9. Gel permeation chromatography of the purified enzyme indicated a native Mr 70,000, suggesting that the protein kinase has a homodimeric structure.  相似文献   

18.
The catalytic subunit of the branched-chain alpha-keto acid dehydrogenase (BCKDH) phosphatase (Damuni, Z., Merryfield, M.L., Humphreys, J.S., and Reed, L.J., (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 4335-4338) has been purified over 50,000-fold from extracts of bovine kidney mitochondria. The apparently homogeneous protein consists of a single polypeptide chain with an apparent Mr = approximately 33,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. BCKDH phosphatase, with an apparent Mr = 460,000, was dissociated to its catalytic subunit with no apparent change in activity, at an early stage in the purification procedure by treatment with 6 M urea. The specific activity of the catalytic subunit was 1,500-2,500 units/mg. The catalytic subunit exhibited approximately 10% maximal activity with 32P-labeled pyruvate dehydrogenase complex but was inactive with phosphorylase a and with p-nitrophenyl phosphate. The catalytic subunit, like the Mr = 460,000 species, was inhibited by nanomolar concentrations of BCKDH phosphatase inhibitor protein, was unaffected by protein phosphatase inhibitor 1 and inhibitor 2, and was inhibited by nucleoside tri- and diphosphates but not by nucleoside monophosphates.  相似文献   

19.
The predominant form of phosphorylase phosphatase activity in porcine renal cortical extracts was a polycation-stimulated protein phosphatase. This activity was present in extracts in a high-molecular-weight form which could be converted to a free catalytic subunit by treatment with ethanol, urea, or freezing and thawing in the presence of beta-mercaptoethanol. The catalytic subunit of the polycation-stimulated phosphatase was purified by chromatography on DEAE-Sephacel, heparin-Sepharose, and Sephadex G-75. The phosphatase appeared to be homogeneous on SDS-polyacrylamide gel electrophoresis. The enzyme had an apparent Mr of 35 000 on gel filtration and SDS-polyacrylamide gel electrophoresis. The purified phosphatase could be stimulated by histone H1, protamine, poly(D-lysine), poly(L-lysine) or polybrene utilizing phosphorylase a as the substrate. It preferentially dephosphorylated the alpha-subunit of phosphorylase kinase. The phosphatase was highly sensitive to inhibition by ATP. These results suggest that the renal polycation-stimulated phosphatase catalytic subunit is very similar to or identical with the skeletal muscle phosphatase form which has been previously designated phosphatase-2Ac.  相似文献   

20.
1. Glycogen phosphorylase purified from muscle of mullet (Liza ramada) has been kinetically characterized. 2. Kinetic analysis for the substrates glucose-1-P and glycogen showed no homotropic co-operativity. AMP exhibited only a slight homotropic co-operative behaviour, although it caused a decrease in the Km for glucose-1-P. 3. Glucose, ATP and glucose-6-P behaved as phosphorylase b inhibitors. Kinetic analysis of the inhibition showed the characteristic heterotropic effect both for the substrate glucose-1-P and the activator AMP. 4. However, glucose-6-P, which enhances the co-operativity between AMP molecules, lost its heterotropic effect on the glucose-1-P saturation curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号